What minimum mass of HCl in grams would you need to dissolve a 2.2 g iron bar on a
padlock?

Answers

Answer 1
I think your answer should be 2.8 g
Answer 2

2.8 g is the minimum mass of HCl in grams that would you need to dissolve a 2.2 g iron bar on a padlock.

What is dissolution?

When a solute is dissolved in a solvent, a solution is created. Dissolution is the process through which solutes, or dissolved parts, combine to form a solution inside a solvent. In this procedure, the gas, liquid, or solid dissolves inside the original solvent and forms a solution.

In some polymer applications, dissolution is also an issue since it results in swelling, a loss of strength and stiffness, and a change in volume. Whether a chemical process is man-made or natural, dissolution is crucial. Catalysts are tested using dissolution. 2.8 g is the minimum mass of HCl in grams that would you need to dissolve a 2.2 g iron bar on a padlock.

Therefore, 2.8 g is the minimum mass of HCl in grams that would you need to dissolve a 2.2 g iron bar on a padlock.

To know more about dissolution, here:

https://brainly.com/question/23851972

#SPJ2


Related Questions

10g of a non-volatile and non-dissociating solute is dissolved in 200g of benzene.
The resulting solution boils At temperature of 81.20oC. Find the molar mass of solute.
Given that the BP of pure benzene is 80.10oC and Its elevation boiling point constant = 2.53 oC/m.

Answers

Answer: The molar mass of solute is 115 g/mol.

Explanation:

Elevation in the boiling point is defined as the difference between the boiling point of the solution and the boiling point of the pure solvent.

The expression for the calculation of elevation in boiling point is:

[tex]\text{Boiling point of solution}-\text{boiling point of pure solvent}=i\times K_b\times m[/tex]

OR

[tex]\text{Boiling point of solution}-\text{Boiling point of pure solvent}=i\times K_f\times \frac{m_{solute}\times 1000}{M_{solute}\times w_{solvent}\text{(in g)}}[/tex] ......(1)

where,

Boiling point of pure solvent (benzene) = [tex]80.10^oC[/tex]

Boiling point of solution = [tex]81.20^oC[/tex]

i = Vant Hoff factor = 1 (for non-electrolytes)

[tex]K_b[/tex] = Boiling point elevation constant = [tex]2.53^oC/m[/tex]

[tex]m_{solute}[/tex] = Given mass of solute = 10 g

[tex]M_{solute}[/tex] = Molar mass of solute = ? g/mol

[tex]w_{solvent}[/tex] = Mass of solvent = 200 g

Putting values in equation 1, we get:

[tex]81.20-80.10=1\times 2.53\times \frac{10\times 1000}{M_{solute}\times 200}\\\\M_{solute}=\frac{1\times 2.53\times 10\times 1000}{1.1\times 200}\\\\M_{solute}=115g/mol[/tex]

Hence, the molar mass of solute is 115 g/mol.

What is the electron domain geometry around N in N2CL4

Answers

Answer:

trigonal bipyramidal.

How many seconds in day?

Answers

Answer:

86400 seconds

Explanation:

Since 1 day equals 24 hours, and there are 60 minutes in 1 hour. Also, 60 seconds make a minute.

So, to find the number of seconds in a day, we need to find the number of minutes in a day since 1 day = 24 hours.

So, the number of minutes in a day = 1 day × 24 hours/day × 60 minutes/hour = 24 hours × 60 minutes/hour = 24 × 60 minutes = 1440 minutes.

So, we have that 1440 minutes = 1 day.

So, to find the number of seconds in 1 day, we find the number of seconds in 1440 minutes.

So, 1 day × 1440 minutes/day × 60 seconds/min = 1440 minutes/day × 60 seconds/minute = 1440 × 60 seconds = 86400 seconds.

So, there are 86400 seconds in 1 day.

Based on the "Reactivity in Substitution Reactions" experiment, which molecule would be expected to react the fastest using AgNO3 in water-ethanol ?

Answers

Answer:

C) EtOH 1% AgNO3


please help!

What is the definition of thermal chemistry?

a.The study of change that involves warm objects

b.The study of change that involves heat

c.The study of change that involves cool objects

d.The study of change that involves temperature

Answers

D. That is the correct answer

Suppose we have two rock samples, A and B. Rock A was subject to both physical and chemical weathering while rock B was subject to chemical weathering only. Which rock would experience more chemical weathering? Why? (2pts) (Hint: consider the effect of surface area on the rate of chemical weathering)

Answers

Answer:

Rock A will have far more chemical weathering than Rock B due to the rise in area effect

Explanation:

Rock A undergoes both Physical and Chemical weathering. So, thanks to physical weathering there'll appear cracks within the rock, which can, in turn, increase the area of rock on which weathering is occurring. So, Chemical weathering will happen much faster now as there's a rise in the area. within the case of Rock B, there's only chemical weathering therefore the increase in the area won't be that very much like compared to Rock A.

Name of this product

Answers

Answer:

Explanation:

ethyl 3-methylbenzoate

Our five senses can help us to recognize some of the physical properties of matter.

True
False

Answers

True is the correct answer. Our five senses helps us to perceive physical properties of matter

The rate law for a reaction can be derived from the: Select the correct answer below: stoichiometry of the overall reaction molecularity of the rate-determining step molecularity of the overall reaction none of the above

Answers

Answer:

molecularity of the rate-determining step

Explanation:

The rate determining step of a sequence of reactions is the slowest step in the sequence of non-elementary reactions.

The molecularity of the slowest step in the reaction mechanism gives us the rate law of reaction.

It is for this cause that the slowest step in the reaction sequence is called ''rate determining step'' since it determines the rate law of reaction.

7. There are 7. 0 ml of 0.175 M H2C2O4 , 1 ml of water , 4 ml of 3.5M KMnO4 what is the molar concentration ofH2C2O4 ?
8. Using the data from question 7 what is the molar concentration of KMnO4 ?
10. From question number 7, what effect increasing the volume of water has on the reaction rate?

Answers

Answer:

7. 0.1021 M

8. 1.167 M

10. Increase in volume of water would lower the rate of reaction

Explanation:

7. What is the molar concentration of H₂C₂O₄ ?

Since we have 7.0 ml of 0.175 M H₂C₂O₄, the number of moles of H₂C₂O₄ present n = molarity of H₂C₂O₄ × volume of H₂C₂O₄ = 0.175 mol/L × 7.0 ml = 0.175 mol/L × 7 × 10⁻³ L = 1.225 × 10⁻³ mol.

Also, the total volume present V = volume of H2C2O4 + volume of water + volume of KMnO4 = 7.0 ml + 1 ml + 4 ml = 12 ml = 12 × 10⁻³ L

So, the molar concentration of H₂C₂O₄, M = number of moles of H₂C₂O₄/volume = n/V

= 1.225 × 10⁻³ mol/12 × 10⁻³ L

= 0.1021 mol/L

= 0.1021 M

8. Using the data from question 7 what is the molar concentration of KMnO₄ ?

Since we have 4.0 ml of 3.5 M KMnO₄, the number of moles of KMnO4 present n' = molarity of KMnO₄ × volume of KMnO₄ = 3.5 mol/L × 4.0 ml = 3.5 mol/L × 4 × 10⁻³ L = 14 × 10⁻³ mol.

Also, the total volume present V = volume of KMnO₄ + volume of water + volume of KMnO₄ = 7.0 ml + 1 ml + 4 ml = 12 ml = 12 × 10⁻³ L

So, the molar concentration of KMnO₄, M' = number of moles of KMnO₄/volume = n'/V

= 14 × 10⁻³ mol/12 × 10⁻³ L

= 1.167 mol/L

= 1.167 M

10. From question number 7, what effect increasing the volume of water has on the reaction rate?

Increase in volume of water would lower the rate of reaction because, the particles of both substances would have to travel farther distances to collide with each other, since there are less particles present in the solution and thus, the concentration of the particles would decrease thereby decreasing the rate of reaction.

calculate pressure exerted by 1.255 mol of CI2 in a volume of 5.005 L at a temperature 273.5 k using ideal gas equation

Answers

Answer:

The pressure is 5.62 atm.

Explanation:

An ideal gas is a theoretical gas that is considered to be composed of randomly moving point particles that do not interact with each other. Gases in general are ideal when they are at high temperatures and low pressures.

An ideal gas is characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of the gases:

P * V = n * R * T

In this case:

P= ?V= 5.005 Ln= 1.255 molR= 0.082 [tex]\frac{atm*L}{mol*K}[/tex]T= 273.5 K

Replacing:

P* 5.005 L= 1.255 mol* 0.082 [tex]\frac{atm*L}{mol*K}[/tex] *273.5 K

Solving:

[tex]P=\frac{1.255 mol* 0.082 \frac{atm*L}{mol*K} *273.5 K}{5.005 L}[/tex]

P= 5.62 atm

The pressure is 5.62 atm.

how does lead resemble chromium?​

Answers

Lead resembles chromium as they both are what you call heavy metals this refers to any metallic chemical element that has a relatively high density examples of heavy metals will include lead,chromium

A sample of hellium has a volume of 500 mL at STP. What will be its new volume be in mL if the temperature is increased to 325 K and its pressure is increased to 125 kPa?

Answers

Answer:

[tex]V_2=482.5mL[/tex]

Explanation:

Hello there!

In this case, according to the given information, it turns out possible for us to solve this problem by using the combined gas law due to the fact that we are dealing with variable volume, temperature and pressure:

[tex]\frac{P_2V_2}{T_2}=\frac{P_1V_1}{T_1}[/tex]

In such a way, we solve for the final volume, V2, considering that the initial volume, V1, is 500 mL, the initial temperature, T1, is 273 K (STP), the initial pressure, P1, is 1 atm (STP) and the final temperature, T2, is 325 K and the final pressure, P2, is 125 kPa (1.23 atm):

[tex]V_2=\frac{P_1V_1T_2}{T_1P_2} \\\\V_2=\frac{(1atm)(500mL)(325K)}{(273K)(1.23atm)} \\\\V_2=482.5mL[/tex]

Regards!

Why does the dehydration of an alcohol more often use concentrated sulfuric acid, H 2 S O 4 HX2SOX4, as the acid catalyst rather than dilute hydrochloric acid, H C l HCl

Answers

KAnswer:

See explanation

Explanation:

It is more common to use H2SO4 for dehydration reaction rather than HCl because HCl contains a good nucleophile,the chloride ion.

Owing to the presence of the chloride ion, a substitution reaction involving the chloride ion may also proceed also thereby affecting the elimination reaction.

Also, concentrated H2SO4 is a very good drying agent thus, as long as it is used, the alcohol substrate is completely dehydrated to yield the alkene.

Note that HCl is not a dehydrating agent.

You are given a metal sample that you are told is gold. Explain in a step-by-step procedure exactly how you could (a) determine if the metal is actually gold and (b) determine the purity of the gold if you know what other metals may be present. Write out your answer in a clear and well supported paragraph.

Answers

Answer:

The answer is provided below

Explanation:

To determine the metal is gold we will use the following steps

Calculate the density of the MetalTake the density of the pure goldCompare both densities

Take a full water container

Place the metal in the container

Collect the water that spills out due to the placement of the metal

measure the mass of collected water.

Calculate the value in terms of the density of water, it will be the volume of metal.

Calculate the mass of the metal

Use the following formula to calculate the density of the metal

Density = Mass / Volume

Now compre the resulted density to the density of pure gold.

5. How many grams of tin metal can be produced from smelting (heating) of a 4.5 kilograms of tin (IV) oxide? (Note: Elemental tin and oxygen gas are the only products of this reaction).

Answers

Answer:

About 3500 grams of tin.

Explanation:

We want to determine amount of tin metal (in grams) that can be produced from smelting 4.5 kilograms of tin(IV) oxide.

First, write the chemical compound. Since our cation is tin(IV), it forms a 3+ charge. Oxygen has a 2- charge, so we will have two oxygen atoms. Hence, tin(IV) oxide is given by SnO₂.

By smelting it, we acquire elemental tin and oxygen gas. Hence:

[tex]\text{SnO$_2$}\rightarrow \text{Sn} + \text{O$_2$}[/tex]

(Note: oxygen is a diatomic element.)

The equation is balanced as well.

To convert from SnO₂ to only Sn, we can first convert from grams of SnO₂ to moles, use mole ratios to convert to moles of Sn, and then from there convert to grams.

Since Sn has a molar mass of 118.71 g/mol and oxygen has a molar mass of 15.999 g/mol, the molar mass of SnO₂ is:

[tex](118.71)+2(15.999) = 150.708\text{ g/mol}[/tex]

Therefore, given 4.5 kilograms of SnO₂, we can first convert this into grams using 1000 g / kg and then using the ratio:

[tex]\displaystyle \frac{1\text{ mol SnO$_2$}}{150.708\text{ g SnO$_2$}}[/tex]

We can convert this into moles.

Next, from the chemical equation, we can see that one mole of SnO₂ produces exactly one mole of Sn (and also one mole of O₂). So, our mole ratio is:

[tex]\displaystyle \frac{1\text{ mol Sn}}{1\text{ mol SnO$_2$}}[/tex]

With SnO₂ in the denominator to simplify units.

Finally, we can convert from moles Sn to grams Sn using its molar mass:

[tex]\displaystyle \frac{118.71\text{ g Sn}}{1\text{ mol Sn}}[/tex]

With the initial value and above ratios, we acquire:

[tex]\displaystyle 4.5\text{ kg SnO$_2$}\cdot \frac{1000 \text{ g SnO$_2$}}{1\text{ kg SnO$_2$}}\cdot \displaystyle \frac{1\text{ mol SnO$_2$}}{150.708\text{ g SnO$_2$}}\cdot \displaystyle \frac{1\text{ mol Sn}}{1 \text{ mol SnO$_2$}} \cdot\displaystyle \frac{118.71\text{ g Sn}}{1\text{ mol Sn}}[/tex]

Cancel like units:

[tex]=\displaystyle 4.5\cdot \frac{1000}{1}\cdot \displaystyle \frac{1}{150.708}\cdot \displaystyle \frac{1}{1} \cdot\displaystyle \frac{118.71\text{ g Sn}}{1}[/tex]

Multiply. Hence:

[tex]\displaystyle = 3544.5696...\text{ g Sn}[/tex]

Since we should have two significant figures:

[tex]=3500 \text{ g Sn}[/tex]

So, about 3500 grams of tin is produced from smelting 4.5 kg of tin(IV) oxide.

Answer:

3546g

Explanation:

start w/ tin (IV) oxide n elemental tin and oxygen gas are the only products of this reaction

SnO2 -> Sn + O2

Sn molecular wt: 119

O2 molecular wt: 32

SnO2 molecular wt:  119+32 = 151

so Sn / SnO2 wt ratio = 119 / 151

4.5 kilograms of tin (IV) oxide will produce:

= 4.5 * 119 / 151

= 3.546 kg

or 3546 grams of tin metal

no need to involve moles ;)

How many grams of calcium chloride are needed to produce 10.0 g of potassium chloride?

CaCl2(aq) + K2CO3(aq) → 2 KCl(aq) + CaCO3(aq)

Answers

Answer:

11.1g

Explanation:

since the equation is already balanced just drop down the elements you will work with and use the mole to mole ratios

Cacl2 : 2Kcl

1 : 2

since potassium chloride has alot of information find it's moles

number of moles=mass/molecular mass

=10g/74.5

=0.13g/mol

now use the mole to mole ratios to find the number of moles of calcium chloride

1 : 2

x:0.13

2x/2=0.13/2

x=0.067g/mol of cacl2

then you can calculate the mass of calcium chloride

m=n×mm

=0.067×111

=7.4g

I hope this helps

The mass of calcium chloride, CaCl₂ needed to produce 10 g of potassium chloride, KCl is 7.45 g

We'll begin by calculating the mass of CaCl₂ that reacted and the mass of KCl produced from the balanced equation.

CaCl₂ + K₂CO₃ —> 2KCl + CaCO₃

Molar mass of CaCl₂ = 40 + (35.5 × 2) = 111 g/mol

Mass of CaCl₂ = 1 × 111 = 111 g

Molar mass of KCl = 39 + 35.5 = 74.5 g/mol

Mass of KCl from the balanced equation = 2 × 74.5 = 149 g

From the balanced equation above,

149 g of KCl were produced by 111 g of CaCl₂.

Finally, we shall determine the mass of CaCl₂ needed to produce 10 g of KCl. This can be obtained as follow:

From the balanced equation above,

149 g of KCl were produced by 111 g of CaCl₂.

Therefore,

10 g of KCl will be produce by = (10 × 111) / 149 = 7.45 g of CaCl₂.

Thus, 7.45 g of CaCl₂ were obtained from the reaction.

Learn more about stoichiometry: https://brainly.com/question/15858344

Why does increasing the temperature of two reactants in solution make a
reaction proceed more quickly?

Answers

The two molecules will only react if they have enough energy. By heating the mixture, you are raising the energy levels of the molecules involved in the reaction. Increasing temperature also means the molecules are moving around faster and will therefore "bump" into each other more often.

Answer:

-The particles of the two reactants will gain kinetic energy and collide with one another more frequently and forcefully, which makes the reaction take place more quickly

Choose all the answers that apply. Silicon (Si) has 14 protons and an atomic mass of 28. Silicon has _____. three electron shells 14 electrons 14 neutrons two electron shells 28 electrons

Answers

Answer:

three electron shells

14 electrons

14 neutrons

Explanation:

Silicon has three electron shells arranged as follows; 2, 8, 4. This corresponds to the fact that silicon is a member of group 14 of the periodic table.

Note that, the number of protons in an atom is the same as the number of electrons in the neutral atom. Since Silicon has 14 protons, it also has 14 electrons likewise.

The mass number of silicon is 28 but number of neutrons= mass number - number of protons. Since mass number = 28, then there are 14 neutrons in silicon.

If the temperature of a volume of dieal gas ncreases for 100 to 200, what happens to the average kinetic energy of the molecules?

Answers

Answer:

It increases but less than double

Explanation:

As the temperature of a gas increase, the average kinetic energy of the gas increases. The kinetic energy of a gas is the thermal energy that the gas contains.

We know, the kinetic energy of an ideal gas is given by :

[tex]$V_{avg} = \sqrt{\frac{8R}{\pi M}}$[/tex]

where, R = gas constant

            T = absolute temperature

            M = molecular mass of the gas

From the above law, we get

[tex]$V_{avg} \propto \sqrt{T}$[/tex]

Thus, if we increase the temperature then the average kinetic energy of the ideal gas increases.

In the context, if the temperature of the ideal gas increases from 100°C to 200°C, then

[tex]$\frac{(V_{avg)_2}}{(V_{avg)_1}} =\sqrt{\frac{T_2}{T_1}}$[/tex]

[tex]$\frac{(V_{avg)_2}}{(V_{avg)_1}} =\sqrt{\frac{473.15}{373.15}}$[/tex]

[tex]$\frac{(V_{avg)_2}}{(V_{avg)_1}} =\sqrt{1.26}$[/tex]

[tex]$\frac{(V_{avg)_2}}{(V_{avg)_1}} =1.12$[/tex]

[tex]$(V_{avg})_2 = 1.12\ (V_{avg})_1$[/tex]

Therefore, [tex]$(V_{avg})_2 > (V_{avg})_1$[/tex]

Thus the average kinetic energy of the molecule increases but it increases 1.12 times which is less than the double.

Thus, the answer is " It increases but less that double".

What is a system called when neither energy nor matter is exchanged between the system and the surroundings?

Closed system
Free energy
Isolated system
Open system

Answers

Answer:

open system

Explanation:

Answer:

Isolated system

Explanation:

An isolated system is one that cannot exchange either matter or energy with its surroundings.

Classify each of the reactions listed below as a single-displacement, double-displacement, synthesis,
decomposition, oxidation reduction or combustion reaction.
Reaction Type
: 2Na + Cl2 → 2NaCl
: C2H4 + 3O2 → 2CO2 + 2H2O
: 2Ag2O-> 4Ag + O2
: BaCl2 + Na2SO4->BaSO4 +2NaCl
: 2AI + Fe2O3-> 2Fe + Al2O3

Answers

1. Synthesis
2. Combustion
3. Decomposition
4. Double Replacement
5. Single replacement

Write the cell notation for an electrochemical cell consisting of an anode where Mn (s) is oxidized to Mn2 (aq) and a cathode where Co2 (aq) is reduced to Co (s) . Assume all aqueous solutions have a concentration of 1 mol/L.

Answers

Answer:

Mn(s)/Mn^2+(aq)//Co^2+(aq)/Co(s)

Explanation:

In writing the cell notation for an electrochemical cell, the anode is written on the left hand side while the cathode is written on the right hand side. The two half cells are separated by two thick lines which represents the salt bridge.

For the cell discussed in the question; the Mn(s)/Mn^2+(aq) is the anode while the Co^2+(aq)/Co(s) half cell is the cathode.

Hence I can write; Mn(s)/Mn^2+(aq)//Co^2+(aq)/Co(s)

How much BaSO4 can be formed from 196.0 g of H2SO4?

Answers

Answer:

a) You can form 466 g of BaSO₄.

Explanation:

a) Mass of BaSO4

196 g H₂SO4 × 1 mol H₂SO4

98.08 g H₂SO4

1 mol BaSO 1 mol H₂SO4 X X

466 g BaSO4

233.39 g BaSO4

1 mol BaSO4

Describe A Simple experiment that can be prepared in the laboratory to demonstrate the formation of Iron (III) Chloride from iron fillings

Answers

Answer:

Anhydrous iron(III) chloride may be prepared by treating iron with chlorine:[11]

{\displaystyle {\ce {2{Fe_{(}s)}+3Cl2_{(}g)->2FeCl3_{(}s)}}}{\displaystyle {\ce {2{Fe_{(}s)}+3Cl2_{(}g)->2FeCl3_{(}s)}}}

Solutions of iron(III) chloride are produced industrially both from iron and from ore, in a closed-loop process.

Dissolving iron ore in hydrochloric acid

{\displaystyle {\ce {Fe3O4_{(}s){+~}8HCl_{(}aq)->FeCl2_{(}aq){+~}2FeCl3_{(}aq){+~}4H2O_{(}l)}}}{\displaystyle {\ce {Fe3O4_{(}s){+~}8HCl_{(}aq)->FeCl2_{(}aq){+~}2FeCl3_{(}aq){+~}4H2O_{(}l)}}}

Oxidation of iron(II) chloride with chlorine

{\displaystyle {\ce {2FeCl2_{(}aq){+~}Cl2_{(}g)->2FeCl3_{(}aq)}}}{\displaystyle {\ce {2FeCl2_{(}aq){+~}Cl2_{(}g)->2FeCl3_{(}aq)}}}

Oxidation of iron(II) chloride with oxygen

{\displaystyle {\ce {4FeCl2_{(}aq){+~}O2{+~}4HCl->4FeCl3_{(}aq){+~}2H2O_{(}l)}}}{\displaystyle {\ce {4FeCl2_{(}aq){+~}O2{+~}4HCl->4FeCl3_{(}aq){+~}2H2O_{(}l)}}}

Heating hydrated iron(III) chloride does not yield anhydrous ferric chloride. Instead, the solid decomposes into hydrochloric acid and iron oxychloride. Hydrated iron(III) chloride can be converted to the anhydrous form by treatment with thionyl chloride.[12] Similarly, dehydration can be effected with trimethylsilyl chloride:[13]

{\displaystyle {\ce {FeCl3.6H2O + 12 Me3SiCl -> FeCl3 + 6 (Me3Si)2O + 12 HCl}}}{\displaystyle {\ce {FeCl3.6H2O + 12 Me3SiCl -> FeCl3 + 6 (Me3Si)2O + 12 HCl}}}

Anhydrous iron(III) chloride may be prepared by treating iron with chlorine.

What is an iron filling?

Iron filings are small shavings of ferromagnetic material.

[tex]{\displaystyle {\ce {2{Fe_{(}s)}+3Cl_2_{(}g)- > 2FeCl_3_{(}s)}}}{\displaystyle {\ce {2{Fe_{(}s)}+3Cl_2_{(}g)- > 2FeCl_3_{(}s)}}}[/tex]

Solutions of iron(III) chloride are produced industrially both from iron and from ore, in a closed-loop process.

Dissolving iron ore in hydrochloric acid.

Oxidation of iron(II) chloride with chlorine.

[tex]{\displaystyle {\ce {2FeCl_2_{(}aq){+~}Cl_2_{(}g)- > 2FeCl_3_{(}aq)}}}\\[/tex]

Oxidation of iron(II) chloride with oxygen.

Heating hydrated iron(III) chloride does not yield anhydrous ferric chloride. Instead, the solid decomposes into hydrochloric acid and iron oxychloride.

Hydrated iron(III) chloride can be converted to an anhydrous form by treatment with thionyl chloride. Similarly, dehydration can be affected by trimethylsilyl chloride.

[tex]{\displaystyle {\ce {FeCl_3.6H2O + 12 Me_3SiCl - > FeCl3 + 6 (Me_3Si)2O + 12 HCl}}}[/tex]

Learn more about the iron filings here:

https://brainly.com/question/21819285

#SPJ2

Somebody help me!!
Calculate the mass of 2.046L of NO2​

Answers

Answer: 4.20 g

Explanation

Since this is a gas, 1 mole must equal 22.4 L, so we must first find how many moles 2.046 L of NO2 is.

1 —> 22.4
x —> 2.046

Then x must equal 0.09134.

The molar mass of NO2 is 46

Remember that moles = mass/ molar mass.

Therefore, 0.09134 = x/46

x = 0.09134 x 46

x= 4.20 g

Hope this helps :)

How many molecules (or formula units) are in 138.56 g C4H10 Express your answer using four significant figures.

Answers

Answer:

dont buy cheap and off we went

The absorption of infrared (IR) radiation results in vibrations in the molecules or ions that make up a chemical sample.

a. True
b. False

Answers

Answer:

True

Explanation:

Infrared spectroscopy is concerned with transitions between vibrational energy levels in molecules.

The vibrations that are found to be infrared active in molecules are those vibrations that result in a change of dipole moment in the molecule.

In the treatment of infrared spectroscopy, the covalent bond is treated as an elastic spring which can be stretched. The approach of the simple harmonic oscillator can be applied to the problem.

The SALT I agreement in 1972 brought about
O the creation of documents that officially ended the Cold War.
O the US recognition of China for the first time since 1949.
• the regulation of Chinese production or missiles that carried nuclear weapons.
• the regulation of Soviet production of missiles that carried nuclear weapons.

Answers

Answer:

the regulation of Soviet production of missiles that carried nuclear weapons

Explanation:

The aim of the SALT I agreement in 1972 was to stop or greatly reduce the arms race where world powers were stockpiling ballistic missiles and other nuclear arsenal.

Therefore, this agreement brought about the regulation of Soviet production of missiles that carried nuclear weapons

Answer:

D. the regulation of Soviet production of missiles that carried nuclear weapons.

Explanation:

define surface are tension of liquid

Answers

The hydrological cycle refers to the circulation of water within the earth's hydrosphere in different from I. e. the liquid, solid and the gaseous forms.

Other Questions
help with num 9 please. thanks Consider the sequence {an}={3n+13n3n3n+1}. Graph this sequence and use your graph to help you answer the following questions. A bean plant grows at a constant rate for a month. After 10 days, the plant is25 centimeters tall. After 20 days, the plant is 45 centimeters tall.Which equation models the height of the plant, y, after x days? 1. When 6.0 grams of zinc are dropped into excess hydrochloric acid, how many grams of zinc chloride will be produced?2. When 45.0 grams of copper (II) carbonate are decomposed with heat, how many grams of carbon dioxide will be produced? (Teachers note: Other product is copper (II) oxide.)Please explain as well if possible! Thanks. A 70-turn coil has a diameter of 11 cm. Find the magnitude of the emf induced in the coil (in V) if it is placed in a spatially uniform magnetic field of magnitude 0.70 T so that the face of the coil makes the following angles with the magnetic field, and the magnetic field is reduced to zero uniformly in 0.2 s. If x=50.7,y=25.3 and z is defined as integer z,calculate z=x+y The ages of 20 school children are recorded as follows:. 13 19 15 17 13 9 11 9 11 15 17 15 11 9 9 11 15 11 11 11. a. Make a frequency for the data b. What is the modal age c. Calculate. i) The mean age correct to the nearest whole number. ii) The range. d. What is the probability of selecting a child between the ages of 12 and 14 Enzyme catalyzing breakdown of atp to adp V(X+8)=x-4Solve.Radical equations and inequalities edge test is so hard smh What was Clarence Gideon forced to do during his burglary trial?represent himselfflee the stateO remain silentdeclare his guilt If f(x) = 4x2 and g(x) = x+1, find (fg)(x)A. 4x3+4x2B. 4x(x)C. 4X2 + 1D. 4(x + 1) Can someone help me? 5.Which of the following class names shows correct capitalization?A. Theater appreciation 2AB. theater appreciation 2aC. theater Appreciation 2AD. Theater Appreciation 2A Henry is an economist and wants to understand the relationship between inflation and consumer spending habits Segn el texto titulado Una guerra devastadora menciona 10 consecuencias del conflicto armado en nuestro pas. What is the product? 3x(-6 -11 -14 -9) What type of Literary Devices is this passage and provide an explanationWilson and I are different species: hes an early bird and I am a night owl. The problem is if I move him to his own cage, who will I get to clean up the droppings? 1. Why is it necessary to equalize the pressure(i.e, have the water level the same in each tube) before taking a volume reading?2. Why is it important to use water that has been pre-saturated with CO2 in the gas burettes?3.If your antacid sample had been contaminated by moisture, what effect(if any )would you expect this to have on your result4.Explain why an'antacid is called as such,what is the role of the NAHCO3 or CACO3 in reactions? Growth Mindset vs. Fixed Mindset. Jot down 5x Pros & Cons each. The stepmother is most likely motivated by