What Number is equivalent to 4^3
A. 7
B. 12
O C. 64
D. 81

Answers

Answer 1

Answer:

C

Step-by-step explanation:

4³ means 4 multiplied by itself 3 times, that is

4 × 4 × 4

= 16 × 4

= 64 → C


Related Questions

g A random sample of size 16 taken from a normally distributed population revealed a sample mean of 50 and a sample variance of 36. The upper limit of a 95% confidence interval for the population mean would equal:

Answers

Answer:

The  upper limit is    

                   [tex]k = 52.94[/tex]

Step-by-step explanation:

From the question we  told that

     The  sample size is [tex]n = 16[/tex]

      The sample mean is  [tex]\= x = 50[/tex]

      The sample variance is  [tex]\sigma ^2 = 36[/tex]

For  a  95% confidence interval the confidence level is  95%

Given that the confidence level is 95% then the level of significance is  mathematically evaluated  as  

             [tex]\alpha = 100 - 95[/tex]

              [tex]\alpha = 5 \%[/tex]

              [tex]\alpha = 0.05[/tex]

Next we obtain the critical value of  [tex]\frac{\alpha }{2}[/tex] from the normal distribution table(reference- math dot armstrong dot edu), the value is  

              [tex]Z_{\frac{ \alpha }{2} } = 1.96[/tex]

             

Generally the margin of error is mathematically represented as

             [tex]E = Z_{\frac{\alpha }{2} } * \frac{\sigma}{\sqrt{n} }[/tex]

 Here  [tex]\sigma[/tex] is the standard deviation which is mathematically evaluated as

                  [tex]\sigma = \sqrt{\sigma^2}[/tex]

substituting values

                  [tex]\sigma = \sqrt{36}[/tex]

=>                [tex]\sigma = 6[/tex]

So

                    [tex]E = 1.96 * \frac{6}{\sqrt{16} }[/tex]

                     [tex]E = 2.94[/tex]

The 95% confidence interval is mathematically represented as

                 [tex]\= x - E < \mu < \= x + E[/tex]

substituting values

                [tex]50 -2.94 < \mu <50 +2.94[/tex]

                [tex]47.06 < \mu <52.94[/tex]

The  upper limit is    

                   [tex]k = 52.94[/tex]

   

                 

AB is dilated from the origin to create A'B' at A' (0, 8) and B' (8, 12). What scale factor was AB dilated by?

Answers

Answer:

4

Step-by-step explanation:

Original coordinates:

A (0, 2)

B (2, 3)

The scale is what number the original coordinates was multiplied by to reach the new coordinates

1. Divide

(0, 8) ÷ (0, 2) = 4

(8, 12) ÷ (2, 3) = 4

AB was dilated by a scale factor of 4.

Simplify . 7+ the square root of 6(3+4)-2+9-3*2^2 The solution is

Answers

Answer:

7+sqrt(37)

Step-by-step explanation:

7+sqrt(6*(3+4)-2+9-3*2^2)=7+sqrt(6*7+7-3*4)=7+sqrt(42+7-12)=7+sqrt(37)

Which of the following is an even function? f(x) = (x – 1)2 f(x) = 8x f(x) = x2 – x f(x) = 7

Answers

Answer:

f(x) = 7

Step-by-step explanation:

f(x) = f(-x) it is even

-f(x)=f(-x) it is odd

f(x) = (x – 1)^2 neither even nor odd

f(x) = 8x   this is a line  odd functions

f(x) = x^2 – x  neither even nor odd

f(x) = 7  constant  this is an even function

Answer:

answer is f(x)= 7

Step-by-step explanation:

just took edge2020 test

find the 5th term in the sequence an=n÷n+1

Answers

Answer:

The 5th term of a sequence is defined as the term with n = 5.  So for this sequence, a sub 5 = 5/6

For a certain instant lottery game, the odds in favor of a win are given as 81 to 19. Express the indicated degree of likelihood as a probability value between 0 and 1 inclusive.

Answers

Answer: 0.81

Step-by-step explanation:

[tex]81:19\ \text{can be written as the fraction}\ \dfrac{81}{81+19}=\dfrac{81}{100}=\large\boxed{0.81}[/tex]

A work shift for an employee at Starbucks consists of 8 hours (whole).
What FRACTION (part) of the employees work shift is represented by 2
hours? *

Answers

Answer:

1/4 of an hour

Step-by-step explanation:

2 divided by 8 = 1/4

Answer:

1/4

Step-by-step explanation:

A whole shift is 8 hours

Part over whole is the fraction

2/8

Divide top and bottom by 2

1/4

A fair die is tossed once, what is the probability of obtaining neither 5 nor 2?​

Answers

Answer:

4/6 or 66.666...%

Step-by-step explanation:

If you want to find the probability of obtaining neither a 5 nor a 2 you find how many times they occur and add them together in this case 5 occurs once and 2 also occurs once out of 6 numbers so 1/6 + 1/6 equals 2/6, you now know that 4/6 of them won't be a 5 nor a 2 and because it is a fair die the likelihood of it falling on a number is the same for all sides so the answer is 4/6 or 66.67%.

Let f(x) = x - 1 and g(x) = x^2 - x. Find and simplify the expression. (f + g)(1) (f +g)(1) = ______

Answers

Answer:

The simplified answer of the given expression is 1.

Step-by-step explanation:

When you see (f + g)(x), then it means that you are going to add f(x) and g(x) together. So, we are going to add the terms together that are given in the problem. We are also given the value of x which is 1. So, we are going to combine this information together so we can simplify the expression.

(f + g)(1)

f(x) = x - 1

g(x) = x²

(f + g)(1) = (1 - 1) + (1²)

Simplify the terms in the parentheses.

(f + g)(1) = 0 + 1

Add 0 and 1.

(f + g)(1) = 1

So, (f + g)(1) will have a simplified answer of 1.

evaluate the expression 4x^2-6x+7 if x = 5

Answers

Answer:

77

Step-by-step explanation:

4x^2-6x+7

Let x = 5

4* 5^2-6*5+7

4 * 25 -30 +7

100-30+7

7-+7

77

Please Solve
F/Z=T for Z

Answers

Answer:

F /T = Z

Step-by-step explanation:

F/Z=T

Multiply each side by Z

F/Z *Z=T*Z

F = ZT

Divide each side by T

F /T = ZT/T

F /T = Z

Answer:

[tex]\boxed{\red{ z = \frac{f}{t} }}[/tex]

Step-by-step explanation:

[tex] \frac{f}{z} = t \\ \frac{f}{z} = \frac{t}{1} \\ zt = f \\ \frac{zt}{t} = \frac{f}{t} \\ z = \frac{f}{t} [/tex]

You are going to your first school dance! You bring $20,
and sodas cost $2. How many sodas can you buy?
Please write and solve an equation (for x sodas), and
explain how you set it up.

Answers

Answer:

10

Step-by-step explanation:

Let the no. of sodas be x

Price of each soda = $2

Therefore, no . of sodas you can buy = $2x

2x=20

=>x=[tex]\frac{20}{2}[/tex]

=>x=10

you can buy 10 sodas

Answer: 10 sodas

Step-by-step explanation:

2x = 20       Divide both sides by 2  

x = 10

If I brought 20 dollars and I  want to by only sodas and each sodas cost 2 dollars, then I will divide the total amount of money that I brought  by 2 to find out how many sodas I could by.

consider the bevariate data below about Advanced Mathematics and English results for a 2015 examination scored by 14 students in a particular school.The raw score of the examination was out of 100 marks.
Questions:
a)Draw a scatter graph
b)Draw a line of Best Fit
c)Predict the Advance Mathematics mark of a student who scores 30 of of 100 in English.
d)calculate the correlation using the Pearson's Correlation Coefficient Formula
e) Determine the strength of the correlation

Answers

Answer:

Explained below.

Step-by-step explanation:

Enter the data in an Excel sheet.

(a)

Go to Insert → Chart → Scatter.

Select the first type of Scatter chart.

The scatter plot is attached below.

(b)

The scatter plot with the line of best fit is attached below.

The line of best fit is:

[tex]y=-0.8046x+103.56[/tex]

(c)

Compute the value of x for y = 30 as follows:

[tex]y=-0.8046x+103.56[/tex]

[tex]30=-0.8046x+103.56\\\\0.8046x=103.56-30\\\\x=\frac{73.56}{0.8046}\\\\x\approx 91.42[/tex]

Thus, the Advance Mathematics mark of a student who scores 30 out of 100 in English is 91.42.

(d)

The Pearson's Correlation Coefficient is:

[tex]r=\frac{n\cdot \sum XY-\sum X\cdot \sum Y}{\sqrt{[n\cdot \sum X^{2}-(\sum X)^{2}][n\cdot \sum Y^{2}-(\sum Y)^{2}]}}[/tex]

  [tex]=\frac{14\cdot 44010-835\cdot 778}{\sqrt{[14\cdot52775-(825)^{2}][14\cdot 47094-(778)^{2}]}}\\\\= -0.7062\\\\\approx -0.71[/tex]

Thus, the Pearson's Correlation Coefficient is -0.71.

(e)

A correlation coefficient between ± 0.50 and ±1.00 is considered as a strong correlation.

The correlation between Advanced Mathematics and English results is -0.71.

This implies that there is a strong negative correlation.

A normal distribution has a mean of 30 and a variance of 5.Find N such that the probability that the mean of N observations exceeds 30.5 is 1%.​

Answers

Answer:

109

Step-by-step explanation:

Use a chart or calculator to find the z-score corresponding to a probability of 1%.

P(Z > z) = 0.01

P(Z < z) = 0.99

z = 2.33

Now find the sample standard deviation.

z = (x − μ) / s

2.33 = (30.5 − 30) / s

s = 0.215

Now find the sample size.

s = σ / √n

s² = σ² / n

0.215² = 5 / n

n = 109

Evaluate integral _C x ds, where C is
a. the straight line segment x = t, y = t/2, from (0, 0) to (12, 6)
b. the parabolic curve x = t, y = 3t^2, from (0, 0) to (2, 12)

Answers

Answer:

a.    [tex]\mathbf{36 \sqrt{5}}[/tex]

b.   [tex]\mathbf{ \dfrac{1}{108} [ 145 \sqrt{145} - 1]}}[/tex]

Step-by-step explanation:

Evaluate integral _C x ds  where C is

a. the straight line segment x = t, y = t/2, from (0, 0) to (12, 6)

i . e

[tex]\int \limits _c \ x \ ds[/tex]

where;

x = t   , y = t/2

the derivative of x with respect to t is:

[tex]\dfrac{dx}{dt}= 1[/tex]

the derivative of y with respect to t is:

[tex]\dfrac{dy}{dt}= \dfrac{1}{2}[/tex]

and t varies from 0 to 12.

we all know that:

[tex]ds=\sqrt{ (\dfrac{dx}{dt})^2 + ( \dfrac{dy}{dt} )^2}} \ \ dt[/tex]

[tex]\int \limits _c \ x \ ds = \int \limits ^{12}_{t=0} \ t \ \sqrt{1+(\dfrac{1}{2})^2} \ dt[/tex]

[tex]= \int \limits ^{12}_{0} \ \dfrac{\sqrt{5}}{2}(\dfrac{t^2}{2}) \ dt[/tex]

[tex]= \dfrac{\sqrt{5}}{2} \ \ [\dfrac{t^2}{2}]^{12}_0[/tex]

[tex]= \dfrac{\sqrt{5}}{4}\times 144[/tex]

= [tex]\mathbf{36 \sqrt{5}}[/tex]

b. the parabolic curve x = t, y = 3t^2, from (0, 0) to (2, 12)

Given that:

x = t  ; y = 3t²

the derivative of  x with respect to t is:

[tex]\dfrac{dx}{dt}= 1[/tex]

the derivative of y with respect to t is:

[tex]\dfrac{dy}{dt} = 6t[/tex]

[tex]ds = \sqrt{1+36 \ t^2} \ dt[/tex]

Hence; the  integral _C x ds is:

[tex]\int \limits _c \ x \ ds = \int \limits _0 \ t \ \sqrt{1+36 \ t^2} \ dt[/tex]

Let consider u to be equal to  1 + 36t²

1 + 36t² = u

Then, the differential of t with respect to u is :

76 tdt = du

[tex]tdt = \dfrac{du}{76}[/tex]

The upper limit of the integral is = 1 + 36× 2² = 1 + 36×4= 145

Thus;

[tex]\int \limits _c \ x \ ds = \int \limits _0 \ t \ \sqrt{1+36 \ t^2} \ dt[/tex]

[tex]\mathtt{= \int \limits ^{145}_{0} \sqrt{u} \ \dfrac{1}{72} \ du}[/tex]

[tex]= \dfrac{1}{72} \times \dfrac{2}{3} \begin {pmatrix} u^{3/2} \end {pmatrix} ^{145}_{1}[/tex]

[tex]\mathtt{= \dfrac{2}{216} [ 145 \sqrt{145} - 1]}[/tex]

[tex]\mathbf{= \dfrac{1}{108} [ 145 \sqrt{145} - 1]}}[/tex]

Oregon State University is interested in determining the average amount of paper, in sheets, that is recycled each month. In previous years, the average number of sheets recycled per bin was 59.3 sheets, but they believe this number may have increase with the greater awareness of recycling around campus. They count through 79 randomly selected bins from the many recycle paper bins that are emptied every month and find that the average number of sheets of paper in the bins is 62.4 sheets. They also find that the standard deviation of their sample is 9.86 sheets. What is the value of the test-statistic for this scenario

Answers

Answer:

The test statistic is [tex]t = 2.79[/tex]

Step-by-step explanation:

From the question we are told that

    The population mean is [tex]\mu = 59.3[/tex]

    The sample size is  [tex]n = 79[/tex]

    The  sample mean is  [tex]\= x = 62.4[/tex]

    The  standard deviation is  [tex]\sigma = 9.86[/tex]

Generally the test statistics is mathematically represented as

            [tex]t = \frac{\= x - \mu }{ \frac{ \sigma}{ \sqrt{n} } }[/tex]

substituting values

          [tex]t = \frac{ 62.2 - 59.3 }{ \frac{ 9.86}{ \sqrt{ 79} } }[/tex]

          [tex]t = 2.79[/tex]

Please answer this correctly without making mistakes

Answers

Answer:

355/12

Step-by-step explanation:

Answer:

355/12mi

Step-by-step explanation:

9 1/2 = 19/2

20 1/12 = 241/12

19/2 + 241/12 = 355/12mi

If f(x) = 2x2 – 3x – 1, then f(-1)=

Answers

ANSWER:
Given:f(x)=2x^2-3x-1
Then,f(-1)=2(-1)^2-3(-1)-1
f(-1)=2(1)+3-1
f(-1)=5-1
f(-1)=4


HOPE IT HELPS!!!!!!
PLEASE MARK BRAINLIEST!!!!!

The value of function at x= -1 is f(-1) = 4.

We have the function as

f(x) = 2x² - 3x -1

To find the value of f(-1) when f(x) = 2x² - 3x -1, we substitute x = -1 into the expression:

f(-1) = 2(-1)² - 3(-1) - 1

      = 2(1) + 3 - 1

      = 2 + 3 - 1

      = 4.

Therefore, the value of function at x= -1 is f(-1) = 4.

Learn more about Function here:

https://brainly.com/question/32020999

#SPJ6

Consider the surface f(x,y) = 21 - 4x² - 16y² (a plane) and the point P(1,1,1) on the surface.

Required:
a. Find the gradient of f.
b. Let C' be the path of steepest descent on the surface beginning at P, and let C be the projection of C' on the xy-plane. Find an equation of C in the xy-plane.
c. Find parametric equations for the path C' on the surface.

Answers

Answer:

A) ( -8, -32 )

Step-by-step explanation:

Given function : f (x,y) = 21 - 4x^2 - 16y^2

point p( 1,1,1 ) on surface

Gradient of F

attached below is the detailed solution

Find all values of x on the graph of f(x) = 2x3 + 6x2 + 7 at which there is a horizontal tangent line.

Answers

Answer:

the equation is not correct, u have to write like

ax'3+bx'2+cx+d

Answer:

x=-2 and x=0

Step-by-step explanation:

So I know it isn't x=-3 and x=0. So my guess is that it is x=0 and x=-2 and heres why.

First, I find the derivative of f(x)=2x^3+6x^2+7 which is 6x^2+12x

Then, I plugged in all the values of x's I had and I found out that you get 0 for -2 and 0 when you plug them in

So, in conclusion I believe the answer to be x=-2 and x=0

A soccer player has made 3 of her last 10 field goals, which is a field goal percentage of 30%. How many more consecutive field goals would she need to make to raise her field goal percentage to 50%?

Answers

Answer:

4 consecutive goals

Step-by-step explanation:

If 3 of last 10 field goals = 30%

Which is equivalent to

(Number of goals scored / total games played) * 100%

(3 / 10) * 100% = 30%

Number of consecutive goals one has to score to raise field goal to 50% will be:

Let y = number of consecutive goals

[(3+y) / (10+y)] * 100% = 50%

[(3+y) / (10+y)] * 100/100 = 50/100

[(3+y) / (10+y)] * 1 = 0.5

(3+y) / (10+y) = 0.5

3+y = 0.5(10 + y)

3+y = 5 + 0.5y

y - 0.5y = 5 - 3

0.5y = 2

y = 2 / 0.5

y = 4

Therefore, number of consecutive goals needed to raise field goal to 50% = 4

The odds in favor of a horse winning a race are 7:4. Find the probability that the horse will win the race.

Answers

Answer:

7/11 = 0.6363...

Step-by-step explanation:

7 + 4 = 11

probability of winning: 7/11 = 0.6363...

The probability that the horse will in the race is [tex]\mathbf{\dfrac{7}{11}}[/tex]

Given that the odds  of the horse winning the race is 7:4

Assuming the ratio is in form of a:b, the probability of winning the race can be computed as:

[tex]\mathbf{P(A) = \dfrac{a}{a+b}}[/tex]

From the given question;

The probability of the horse winning the race is:

[tex]\mathbf{P(A) = \dfrac{7}{7+4}}[/tex]

[tex]\mathbf{P(A) = \dfrac{7}{11}}[/tex]

Learn more about probability here:

https://brainly.com/question/11234923?referrer=searchResults

99 litres of gasoline oil is poured into a cylindrical drum of 60cm in diameter. How deep is the oil in the drum? ​

Answers

Answer:

  35 cm

Step-by-step explanation:

The volume of a cylinder is given by ...

  V = πr²h

We want to find h for the given volume and diameter. First, we must convert the given values to compatible units.

  1 L = 1000 cm³, so 99 L = 99,000 cm³

  60 cm diameter = 2 × 30 cm radius

So, we have ...

  99,000 cm³ = π(30 cm)²h

  99,000/(900π) cm = h ≈ 35.01 cm

The oil is 35 cm deep in the drum.

Figure out if the figure is volume or surface area.​

(and the cut out cm is 4cm)

Answers

Answer:

Surface area of the box = 168 cm²

Step-by-step explanation:

Amount of cardboard needed = Surface area of the box

Since the given box is in the shape of a triangular prism,

Surface area of the prism = 2(surface area of the triangular bases) + Area of the three rectangular lateral sides

Surface area of the triangular base = [tex]\frac{1}{2}(\text{Base})(\text{height})[/tex]

                                                           = [tex]\frac{1}{2}(6)(4)[/tex]

                                                           = 12 cm²

Surface area of the rectangular side with the dimensions of (6cm × 9cm),

= Length × width

= 6 × 9

= 54 cm²

Area of the rectangle with the dimensions (9cm × 5cm),

= 9 × 5

= 45 cm²

Area of the rectangle with the dimensions (9cm × 5cm),

= 9 × 5

= 45 cm²

Surface area of the prism = 2(12) + 54 + 45 + 45

                                           = 24 + 54 + 90

                                           = 168 cm²

Choose the algebraic description that maps ΔABC onto ΔA′B′C′ in the given figure. Question 9 options:
A) (x, y) → (x, y – 6)
B) (x, y) → (x – 6, y)
C) (x, y) → (x, y + 6)
D) (x, y) → (x + 6, y)

Answers

Answer:

  B) (x, y) → (x – 6, y)

Step-by-step explanation:

Each x-value in the image is 6 less than in the pre-image. Each y-value is the same. That means x gets mapped to x-6, and y gets mapped to y:

  (x, y) → (x – 6, y)

2/5 ( 1/3 x− 15/8 )− 1/3 ( 1/2 − 2/3 x)

Answers

Answer:

16/45x-11/12

Step-by-step explanation:

Multiply across

2/15x-30/40-1/6+2/9x=

Get common denominators of like terms

6/45x+10/45x-9/12-2/12=

Combine like terms

16/45x-11/12

The simplified expression is: (16/45)x - (11/12)

To simplify the given expression, we'll follow the steps:

Step 1: Distribute the fractions through the parentheses.

Step 2: Simplify the expression by combining like terms.

Let's proceed with the simplification:

Step 1: Distribute the fractions through the parentheses:

2/5 * (1/3x - 15/8) - 1/3 * (1/2 - 2/3x)

Step 2: Simplify the expression:

To distribute 2/5 through (1/3x - 15/8):

2/5 * 1/3x = 2/15x

2/5 * (-15/8) = -15/20 = -3/4

So, the first part becomes: 2/15x - 3/4

To distribute -1/3 through (1/2 - 2/3x):

-1/3 * 1/2 = -1/6

-1/3 * (-2/3x) = 2/9x

So, the second part becomes: -1/6 + 2/9x

Now, the entire expression becomes:

2/15x - 3/4 - 1/6 + 2/9x

Step 3: Combine like terms:

To combine the terms with "x":

2/15x + 2/9x = (2/15 + 2/9)x

Now, find the common denominator for (2/15) and (2/9), which is 45:

(2/15 + 2/9) = (6/45 + 10/45) = 16/45

So, the combined x term becomes:

(16/45)x

Now, combine the constant terms:

-3/4 - 1/6 = (-18/24 - 4/24) = -22/24

To simplify -22/24, we can divide both numerator and denominator by their greatest common divisor (which is 2):

-22 ÷ 2 = -11

24 ÷ 2 = 12

So, the combined constant term becomes:

(-11/12)

Putting it all together, the simplified expression is:

(16/45)x - (11/12)

To know more about expression:

https://brainly.com/question/33660485

#SPJ2

Complete question is:

Simplify the given expression: 2/5 ( 1/3 x− 15/8 )− 1/3 ( 1/2 − 2/3 x)

anyone can help me with these questions?
please gimme clear explanation :)​

Answers

Step-by-step explanation:

The limit of a function is the value it approaches.

In #37, as x approaches infinity (far to the right), the curve f(x) approaches 1.  As x approaches negative infinity (far to the left), the curve f(x) approaches -1.

lim(x→∞) f(x) = 1

lim(x→-∞) f(x) = -1

In #38, as x approaches infinity (far to the right), the curve f(x) approaches 2.  As x approaches negative infinity (far to the left), the curve f(x) approaches -3.

lim(x→∞) f(x) = 2

lim(x→-∞) f(x) = -3

Which graph shows the polar coordinates (-3,-) plotted

Answers

Graph 1 would be the answer

find the range of the inequality 2e-3< 3e-1​

Answers

Answer:

[tex]x = { - 1, 0,1 ,2 ...}[/tex]

Step-by-step explanation:

[tex]2e - 3 < 3e - 1 = 2e - 3e < - 1 + 3 = - 1e < 2 = e > - 2[/tex]

Hope this helps ;) ❤❤❤

What is the value of the product (3 – 2i)(3 + 2i)?

Answers

Answer:

13

Step-by-step explanation:

(3 - 2i)(3 + 2i)

Expand

(9 + 6i - 6i - 4i^2)

Add

(9 - 4i^2)

Convert i^2

i^2 = ([tex]\sqrt{-1}[/tex])^2 = -1

(9 - 4(-1))

Add

(9 + 4)

= 13

Answer:

13.

Step-by-step explanation:

(3 - 2i)(3 + 2i)

= (3 * 3) + (-2i * 3) + (2i * 3) + (-2i * 2i)

= 9 - 6i + 6i - 4[tex]\sqrt{-1} ^{2}[/tex]

= 9 - 4(-1)

= 9 + 4

= 13

Hope this helps!

Other Questions
A small research project performed by a BSU graduate student showed that sample BSU students scored significantly higher than ISU students. Based on this study, the student assumed that she could pick any student from the BSU or ISU program and they would compare in the same way (BSU student would out perform the ISU student). This assumption is: Guardian Corporation has two major divisions-Healthcare Products and Pharmaceutical Products. It provides the following information for the year Pharmaceutical Division Healthcare Division $150,000 $47.000 $310,000 $1,000,000 $218,400 $5,660,000 13 0% sales ating income age assets Target rate of return 13 0% Calculate the residual income for the Healthcare Division. a. $47 000 b. $6700 c. $27.500 d. $103,000 solve for x, x=2.7(35)+1/2(-9.7)*35^2 In four to five sentences, give an example of a decision you made and its intended consequences. Then give an example of a decision you made that had unintended consequences. You are planning to save for retirement over the next 25 years. To do this, you will invest $880 per month in a stock account and $480 per month in a bond account. The return of the stock account is expected to be an APR of 10.8 percent, and the bond account will earn an APR of 6.8 percent. When you retire, you will combine your money into an account with an APR of 7.8 percent. All interest rates are compounded monthly. How much can you withdraw each month from your account assuming a withdrawal period of 20 years For a proton (mass = 1.673 x 1027 kg) moving with a velocity of 2.83 x 104 m/s, what is the de Broglie wavelength (in pm)? A manufacturer of chocolate chips would like to know whether its bag filling machine works correctly at the 445 gram setting. It is believed that the machine is underfilling the bags. A 12 bag sample had a mean of 442 grams with a standard deviation of 20. A level of significance of 0.05 will be used. Assume the population distribution is approximately normal. State the null and alternative hypotheses. Escriba un argumento de tres prrafos a favor o en contra de la idea de utilizar incendios controlados para proteger reas silvestres. Today, prominent hospitals and medical schools commonly hire actors to portray the sick to help aspiring doctors learn to relate to patients. This is called Please answer this question now Complete the square to make a perfect square trinomial. Then, write the result as a binomial squared. n^2+5/2n An asset has an average return of 10.31 percent and a standard deviation of 22.47 percent. What is the most you should expect to lose in any given year with a probability of 16 percent as83) The volume ofa wall, 5 timeshigh as it is board and 8times as long as it is high, 12.8(a.metors) Find The Breadth of theWall A 4.00- resistor, an 8.00- resistor, and a 24.0- resistor are connected together. (a) What is the maximum resistance that can be produced using all three resistors? (b) What is the minimum resistance that can be produced using all three resistors? (c) How would you connect these three resistors to obtain a resistance of 10.0 ? (d) How would you connect these three resistors to obtain a resistance of 8.00 ? Which king of England led the charge to make American colonists pay much higher taxes? The graph shows a point of equilibrium.A graph titled Daily Market for Graphic Tees at the Clothing Shop has Quantity supplied on the x-axis, from 0 to 50 in increments of 10, and price in dollars on the y-axis, from 0 to 18 in increments of 2. A line that represents supply has a positive slope and a line that represents demand has a negative slope. The lines intersect at point (30, 9).What is the price at which equilibrium is achieved? Based on all student records at Camford University, students spend an average of 5.30 hours per week playing organized sports. The populations standard deviation is 3.20 hours per week. Based on a sample of 64 students, Healthy Lifestyles Incorporated (HLI) would like to apply the central limit theorem to make various estimates. Compute the standard error of the sample mean. (Round your answer to 2 decimal places.) Which response has both answers correct? Will a precipitate form when 250 mL of 0.33 M Na 2CrO 4 are added to 250 mL of 0.12 M AgNO 3? [K sp(Ag 2CrO 4) = 1.1 10 12] What is the concentration of the silver ion remaining in solution? What is the slope of the line containing the midpoint of the segment with endpoints at (2, 4) and (0, -2) and the midpoint of the segment with endpoints at (5, 1) and (1, 5)?Express your answer in simplest form. Plzzzz help!!!! What is the role of a cytoskeleton?