Answer:
A.
Step-by-step explanation:
x-2y=4 has a x-intercept of 4, a slope of 1/2, and a y-intercept of -2. 2x+y=4 has a x-intercept of -2, a slope of 2, and a y-intercept of -4.
what is the length of a rectangular solid with a volume of 180 cu ft, if it is 9 ft high and 4ft wide?
Answer:
5 ft
Step-by-step explanation:
The formula for Volume is V=lwh, or Volume = length x width x height.
The equation would be:
[tex]180=l(4)(9)[/tex]
or
[tex]180=36l[/tex]
To find the answer, divide by 36.
[tex]\frac{180}{36} =\frac{36l}{36}[/tex]
[tex]5=l[/tex]
Lakisha wants to buy some bitcoins. The exchange rate is $1 USD to 0.004 bitcoin. How many bitcoins can she buy with $400?
Answer:
1.6 Bitcoins
Step-by-step explanation:
Given data
We have the rate as
$1 USD to 0.004
Hence $400 will buy x bitcoins
Cross multiply to find the value of x
1*x= 400*0.004
x=1.6
Hence $400 will get you 1.6 Bitcoins
Please look at the file below. (No links will give brainiest)
Answer:
3.564 m^2
Step-by-step explanation:
The area of the original garden is
A = 5.4 * 1.5 = 8.1
The new garden is
5.4*1.2 = 6.48 by 1.5*1.2 =1.8
The area is
A = 6.48*1.8=11.664
The increase in area is
11.664-8.1=3.564
The given information is,
To find the increase in area of the garden.
Formula we use,
→ Area = Length × Width
Area of the real garden is,
→ 5.4 × 1.5
→ 8.1 m
The new garden will be,
→ 5.4 × 1.2 = 6.48 m
→ 1.5 × 1.2 = 1.8 m
The area of the new garden is,
→ 6.48 × 1.8
→ 11.664
Then the increase in area of the garden,
→ 11.664 - 8.1
→ 3.564 m²
Hence, 3.564 m² is the increase in area.
Scores on the SAT are approximately normally distributed. One year, the average score on the Math SAT was 500 and the standard deviation was 120. What was the score of a person who did better than 85% of all the test-takers
Answer:
The score of a person who did better than 85% of all the test-takers was of 624.44.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
One year, the average score on the Math SAT was 500 and the standard deviation was 120.
This means that [tex]\mu = 500, \sigma = 120[/tex]
What was the score of a person who did better than 85% of all the test-takers?
The 85th percentile, which is X when Z has a p-value of 0.85, so X when Z = 1.037.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]1.037 = \frac{X - 500}{120}[/tex]
[tex]X - 500 = 1.037*120[/tex]
[tex]X = 624.44[/tex]
The score of a person who did better than 85% of all the test-takers was of 624.44.
Help! Given that tanθ=-1, what is the value of secθ, for 3π/2<θ<2π?
Answer: Choice B) [tex]\sqrt{2}[/tex]
Work Shown:
[tex]\sec^2(\theta) = \tan^2(\theta) + 1\\\\\sec^2(\theta) = (\tan(\theta))^2 + 1\\\\\sec^2(\theta) = (-1)^2 + 1\\\\\sec^2(\theta) = 2\\\\\sec(\theta) = \sqrt{2}\\\\[/tex]
Note: secant is positive in quadrant Q4, when theta is between 3pi/2 radians and 2pi radians (270 degrees and 360 degrees). So that's why we don't consider the minus form of the plus minus.
3-6÷12
simplyfication
PLEASE HELPPPPP ASAPPPPPPPPPPPPP PLEASEEEE
Answer:
0.5679
Step-by-step explanation:
From. The table Given above :
The probability of female Given an advanced degree ;
P(F|A) = p(FnA) / p(A)
From the table, p(FnA) = 322
P(Advanced degree), P(A) = (245 + 322) = 567
Hence,
P(F|A) = p(FnA) / p(A) = 322 / 567 = 0.5679
Based on a poll, among adults who regret getting tattoos, 24% say that they were too young when they got their tattoos. Assume that six adults who regret getting tattoos are randomly selected, and find the indicated probability.
a. Find the probability that none of the selected adults say that they were too young to get tattoos.
b. Find the probability that exactly one of the selected adults says that he or she was too young to get tattoos.
c. Find the probability that the number of selected adults saying they were too young is 0 or 1.
Answer:
a) 0.1927 = 19.27% probability that none of the selected adults say that they were too young to get tattoos.
b) 0.3651 = 36.51% probability that exactly one of the selected adults says that he or she was too young to get tattoos.
c) 0.5578 = 55.78% probability that the number of selected adults saying they were too young is 0 or 1.
Step-by-step explanation:
For each person, there are only two possible outcomes. Either they say they were too young to get tattoos, or they do not say this. The probability of a person saying this is independent of any other person, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
24% say that they were too young when they got their tattoos.
This means that [tex]p = 0.24[/tex]
Six adults
This means that [tex]n = 6[/tex]
a. Find the probability that none of the selected adults say that they were too young to get tattoos.
This is P(X = 0). So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{6,0}.(0.24)^{0}.(0.76)^{6} = 0.1927[/tex]
0.1927 = 19.27% probability that none of the selected adults say that they were too young to get tattoos.
b. Find the probability that exactly one of the selected adults says that he or she was too young to get tattoos.
This is P(X = 1). So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 1) = C_{6,1}.(0.24)^{1}.(0.76)^{5} = 0.3651[/tex]
0.3651 = 36.51% probability that exactly one of the selected adults says that he or she was too young to get tattoos.
c. Find the probability that the number of selected adults saying they were too young is 0 or 1.
This is:
[tex]p = P(X = 0) + P(X = 1) = 0.1927 + 0.3651 = 0.5578[/tex]
0.5578 = 55.78% probability that the number of selected adults saying they were too young is 0 or 1.
which choice are equivalent to the expression below? Check all that apply
I could not get the expressions to type correctly because I am new so I am sending a picture. I am having trouble working backwards to figure out which once to choose.
Answer:
A, B, and E apply
Step-by-step explanation:
One thing we can do is to make everything in the same format, under one square root, with no non-square roots.
First, we can say that 6 is equal to √36 as 6² =36, and 6 ≥ 0. Therefore, 6√3 = √36 * √3 = √108
For A, √3 * √36 = √108, so this applies
For B, √18 * √6 = √108, so this applies
For C, 108² = √something bigger than 108 = √11664, so this does not apply
For D, √54 ≠ √108, so this does not apply
For E, √108 = √108, so this applies
For F, √3 * √6 = √18, so this does not apply
PLEASE HELP ANSWER THISS!!! I NEED THIS PLEASE!!! AND NO LINKS EITHER PLSS!!
It doesn't change because to add fractions, you need a common denominator. To find it, they multiplied 1/3 by 2 to make 2/6, to add to the 3/6.
A recipe calls for 2 1/2 tablespoons of oil and 3/4 tablespoons of vinegar. What is the ratio of oil to vinegar in this recipe?
Answer:
10:3
Step-by-step explanation:
Make 2 1/2 an improper fraction, you will get 5/2. You dont have to do anything to the 3/4.
For you to find the ratio of an fraction, you have to take the numerator but the denominator has to be the same.
So make 5/2 to a 10/4.
Take the numerator 10 & 3.
Your answer will be 10:3
No problem.
You are dividing a rectangular garden into 2 equal sections by
placing a wooden plank diagonally across it, from one corner to
the opposite comer. The garden measures 4 feet by 6 feet. What
length diagonal plank should you buy, and why?
Diagonal planks are available in 1-foot increments (you can
buy a 1-foot board, or a 2-foot board, or a 3-foot board, and
so on...)
• You can cut the plank down from the size you buy to the
exact size, but you want to waste as little wood as possible.
Answer:
You can cut the plank down from the size you buy to the
exact size, but you want to waste as little wood as possible.
factor 9-x^2 completely
Answer:
-(x + 3)(x - 3)
Step-by-step explanation:
Using the difference of squares we can factor this expression.
[tex](9 - x^2)\\= (3^2 - x^2)\\= (3 + x)(3 - x)\\= -(3 + x)(-3 + x)\\= -(x + 3)(x - 3)[/tex]
Simplificar expresiones algebraicas
Solve the following system of equations by using the inverse of a matrix.
Give your answer as an ordered triple (x , y , z)
Answer:
(x, y, z) = (-8,4,-2)
Step-by-step explanation:
.......................................
Find the missing side length, and enter your answer in the box below. If
necessary, round your answer to 2 decimal places.
6
8
The missing side length is 10 unit.
What is Pythagoras theorem?The relationship between the three sides of a right-angled triangle is explained by the Pythagoras theorem, commonly known as the Pythagorean theorem. The Pythagorean theorem states that the square of a triangle's hypotenuse is equal to the sum of its other two sides' squares.
We have,
Perpendicular = 6
Base = 8
Using Pythagoras theorem
c² = P² + B²
c² = 6² + 8²
c²= 36 + 64
c² = 100
c= 10 unit.
Thus, the missing length is 10 unit.
Learn more about Pythagoras theorem here:
https://brainly.com/question/343682
#SPJ7
What are the zeros of f(x) = (x - 2)(x + 7)? Select all that apply.
A. X= -7
B. X = -2
C. X = 2
D. X = 7
Answer:
2 = x -7 = x
Step-by-step explanation:
f(x) = (x - 2)(x + 7)
y = (x - 2)(x + 7)
Set y = 0
0 = (x - 2)(x + 7)
Using the zero product property
0 = x-2 0 = x+7
2 = x -7 = x
Answer:
Zeros happen when f(x) = 0. There are two zeros in the given function:
when (x - 2) = 0when (x + 7) = 0Therefore solve both equations above and you'll get:
Zero #1 = 2Zero #2 = -7How many spaces does it move over
Answer:
The point at the bottom has to move over 2 to the left to be aligned with the point at the top however they will have a 3 space in between the 2 same for the point at the top, the top point moves over 2 to the right to be aligned with the bottom point, then they will have a 3 square space between each other.
Answer:Around 3 spaces between?
Step-by-step explanation:
What is the chance of getting 3 of the same cards in a row in a 52 cards deck?
Answer:
1/425
Step-by-step explanation:
The first card can be any card, so we don’t have to evaluate the probability.
Now we can suppose that the exit card is a two
- For the second card we have 3/51 of possibilities that is a 2 = 1/17
- For the third card we have 2/50 of possibilities that is a 2 = 1/25
1/17 * 1/25 = 1/425
Kenji simplifies 3^5 x 4^ 5and gets the result 12^10, but Darlene is not sure. Is Kenji correct? Justify your answer.
That's a question about exponentiation.
Answer:
Kenji is wrong because he does not aply the porperty correctly.
Step-by-step explanation:
A exponetiation has this form:
[tex]\boxed{a^b}[/tex]
a is the base
b is the power or exponent
To understand that situation it's important to know a property about exponentiation. When we have a multiplication with the same exponent and diferent bases, the result is the multiplication of the bases with the same exponent. Let's see this above, in mathematical language:
[tex]\boxed{a^b \cdot c^b = (a\cdot c) ^b}[/tex]
Examples:
[tex]2^3 \cdot 8^3 = (2 \cdot 8) ^3 = 16^3[/tex][tex]10^9 \cdot 23^9 = (10 \cdot 23) ^9 = 230^9[/tex]Now, we can say why Kenji is wrong. It's easy simplify [tex]3^5 \cdot 4^5[/tex]! We know that the result is [tex](3 \cdot 4) ^5 = 12^5[/tex], but Kenji multiplied the bases and added the exponents, that's why he is wrong.
I hope I've helped. ^^
Enjoy your studies! \o/
Which statement is true about the parts of this expression?
StartFraction 5 over 6 EndFraction + one-fourth x minus y
The constant is StartFraction 5 over 6 EndFraction.
The only coefficient is One-fourth.
The only variable is y.
The terms StartFraction 5 over 6 EndFraction and One-fourth x are like terms.
Answer:
The constant is StartFraction 5 over 6 EndFraction
Step-by-step explanation:
StartFraction 5 over 6 EndFraction + one-fourth x minus y
5/6 + 1/4x - y
A. The constant is StartFraction 5 over 6 EndFraction.
True
B. The only coefficient is One-fourth.
False
There are two coefficients: the coefficient of x which is 1/4 and the coefficient of y which is 1
C. The only variable is y
False
There are 2 variables: variable x and variable y
D. The terms StartFraction 5 over 6 EndFraction and One-fourth x are like terms.
False
5/6 and 1/4x are not like terms
The only true statement is: The constant is StartFraction 5 over 6 EndFraction
Answer:
It's A if you don't want to read. A). The constant is 5/6
Step-by-step explanation:
help please! i'm in class and i have 10 mins left. :)
Answer:
3:8
Step-by-step explanation:
i will gadit
that only
Find the total surface area of this square based pyramid. 10ft 10ft (in the image)
Find the solution(s) of the system of equations. y = x2 + 4x y + x2 = –4x Question 7 options: A) (–4, 0) and (0, 0) B) (0, 0) C) (–4, 0) and (4, 0) D) (0, 0) and (4, 0)
Answer:
Hello,
Answer A (-4,0) and (0,0)
Step-by-step explanation:
[tex]\left\{\begin{array}{ccc}y&=&x^2+4x\\y+x^2&=&-4x\\\end{array} \right.\\\\\\\left\{\begin{array}{ccc}y&=&x^2+4x\\y&=&-x^2-4x\\\end{array} \right.\\\\\\\left\{\begin{array}{ccc}y&=&x^2+4x\\x^2+4x&=&-x^2-4x\\\end{array} \right.\\\\\\\left\{\begin{array}{ccc}2*x^2+8*x&=&0\\y&=&x^2+4x\\\end{array} \right.\\\\\\\left\{\begin{array}{ccc}x(x+4)&=&0\\y&=&x^2+4x\\\end{array} \right.\\\\\\[/tex]
[tex]\left\{\begin{array}{ccc}x&=&0 \\y&=&0\\\end{array} \right. \ or\ \left\{\begin{array}{ccc}x&=&-4 \\y&=&0\\\end{array} \right.[/tex]
Which function below has the following domain and range?
Domain: {-7, - 5,2, 6, 7}
Range: {0, 1,8}
Answer:
{(2,0),(-5,1),(7,8),(6,0),(-7,1)
Choose the correct solution for the given equation x^2-6x=40
Answer:
10,-4
Step-by-step explanation:
not sure where the options are but if you were to solve this equation first bring everything to one side.
x^2 - 6x - 40 = 0
factor it
(x-10)(x+4) = 0
set each part to 0
x-10 = 0 and x+4 = 0
solutions are 10 and -4
Translate To An Algebraic Expression:
S% of 1/r
Answer:
S/100r
Step-by-step explanation:
S% of 1/r = (1/r x S) : 100
(1/r x S) : 100
S/r : 100
S/100r
Given the following formula, solve for y.
Answer:
b) y=x -2(w+z)
Step-by-step explanation:
multiply both sides, move the terms and write on parametric form
Bob's truck averages 23 miles per gallon. If Bob is driving to his mother's house, 72 miles away, how many gallons of gas are needed? Round to the nearest tenth.
Answer:
3.1 gallons
Step-by-step explanation:
To solve this, we need to figure out how many gallons of gas go into 72 miles. We know 23 miles is equal to one gallon of gas, and given that the ratio of miles to gas stays the same, we can say that
miles of gas / gallons = miles of gas / gallons
23 miles / 1 gallon = 72 miles / gallons needed to go to Bob's mother's house
If we write the gallons needed to go to Bob's mother's house as g, we can say
23 miles / 1 gallon = 72 miles/g
multiply both sides by 1 gallon to remove a denominator
23 miles = 72 miles * 1 gallon /g
multiply both sides by g to remove the other denominator
23 miles * g = 72 miles * 1 gallon
divide both sides by 23 miles to isolate the g
g = 72 miles * 1 gallon/23 miles
= 72 / 23 gallons
≈ 3.1 gallons
Consider the function z(x,y) describing the paraboloid \[z = (2x - y)^2 - 2y^2 - 3y.\]Archimedes and Brahmagupta are playing a game. Archimedes first chooses $x.$ Afterwards, Brahmagupta chooses $y.$ Archimedes wishes to minimize $z$ while Brahmagupta wishes to maximize $z.$ Assuming that Brahmagupta will play optimally, what value of $x$ should Archimedes choose?
Answer: -3/8
Step-by-step explanation:
Expanding z we get
z = 4x^2 - 4xy + y^2 - 2y^2 - 3y
= -y^2 - (4x + 3) y + 4x^2.
After Archimedes chooses x, Brahmagupta will choose
y=-(4x+3/2) in order to maximize z
Then
z=-((-4x+3)/2)^2 -(4x+3)(-4x+3)/2)^2)+4x^2
z=8x^2+6x+9/4
To minimize this expression, Archimedes should choose x=-3/8