Answer: Volatile compounds present in the fresh sage leaf or mint leaf evaporate on rubbing.
Explanation:
When fresh sage or mint is rubbed on the skin or any other surface the volatile chemicals associated with the integral structure of the plant part get evaporated in the surrounding air and the vapors can be detected by the olfactory receptors present in the nose. These receptors take the smell or fragrance stimulus and generate impulses or signals which goes to brain and brain interprets the smell or fragrance.
Draw the structure for :
3,3,4-trimethylhex-2-ene
Answer:
answer is in the picture.
Is the graph more accurate with more atoms or less atoms?
Answer:
I would guess more atoms? but there is no graph attached
which type of reaction this would be: 2KNO₃+ H₂CO₃ → K₂CO₃ + HNO₃
Answer:
It's a double displacement reaction.
phosphorus react with carbon
Answer:
Phosphorus atoms can bond with oxygen atoms to form ester groups. These can bond with carbon atoms, yielding a large number of organic phosphorus chemicals. These are found in many important biological processes
Which equation is balanced?
2Al+3O2→Al2O3
2Na+F2→2NaF
Mg+O2→2MgO
2Al+F2→2AlF3
the 1st one is balanced, the 2nd isn't (the number of Mg differs from left 1 to right 2).
The third is also not balanced, 2 F left,2*3=6 on the right
Element 'X' forms a chloride with the formula XCl2, which is a solid with high melting point. X would most likely be in the same group of the periodic table as:
I) Si
2) Al
3) Mg
4) Na
pls pls answer fast
Answer:
Mg
Explanation:
Mg forms 2+ ions and mgcl2 has a melting point over 700°C I believe.
Hii pls helpnme to write out the ionic equation
Answer:
CO32-(aq) + 2H+(aq) → CO2(g) + H2O(l)
Explanation:
According to this question, sodium carbonate reacts with sulfuric acid to form aqueous sodium sulfate, carbon dioxide and water. The balanced chemical equation is as follows:
Na2CO3(aq) + H2SO4(aq) → Na2SO4(aq) + CO2(g) + H2O(l)
- Next, split compounds that are aqueous into ions.
2Na+(aq) + CO32-(aq) + 2H+(aq) + SO42-(aq) → 2Na+(aq) + SO42-(aq) + CO2(g) + H2O(l)
- Next, we cancel out the spectator ions, which are ions that remain the same in the reactants and products side of a chemical reaction. The spectator ions in this equation are 2Na+(aq) and SO42-(aq).
CO32-(aq) + 2H+(aq) → CO2(g) + H2O(l)
- Hence, the balanced ionic equation is as follows:
CO32-(aq) + 2H+(aq) → CO2(g) + H2O(l)
Which of the following is an oxide which is strongly acidic?
(a) Na2O.
(b) MgO
(c) SiO2.
(d) P2O5.
Answer:
answer of your question is 4th
Explanation:
P205
movement of water molecules without the use of energy
The answer is ‘Passive Transport’
movement of molecules without the use of energy is due to the shrinkage of water
Can someone help me with this question ASAP
please help asap!!!!!!!!
The two waves in the diagram are occupying the same place at the same time. At what time will the interfering waves have an amplitude of zero? 1.0 3.0 4.0 7.0 Mark this and return
Answer: It’s 4.0
Explanation: I just took the test and got it right:)
Which letter in the diagram represents the transition from liquid to gas?
A
B
C
D
Answer:
D
Explanation:
B is solid and liquid while D is liquid and gas
Answer:
Option ( D) is correct
The phase transition occurs at 100o C (the normal boiling point of water). Liquid water becomes water vapor or steam when it enters the gaseous phase.
Explanation:
A heating curve graphically represents the phase transitions that a substance undergoes as heat is added to it.
The liquid will begin to boil when enough heat has been absorbed by the solution that the temperature reaches the boiling point, where again, the temperature remains constant until all of the liquid has become gaseous water. At the atmospheric pressure of 1 atm, this phase transition occurs at 100o C (the normal boiling point of water). Liquid water becomes water vapor or steam when it enters the gaseous phase. Use the heat of vaporization ([latex]\Delta H_{vap}[/latex] ) to calculate how much heat was absorbed in this process: [latex]q=m\cdot C_{H_2O(g)}\cdot \Delta T[/latex], where m is the mass of the sample of water.
After all of the liquid has been converted to gas, the temperature will continue to increase as heat as added. Again, the heat added that results in a certain change temperature is given by: [latex]q=m\cdot C_{H_2O(g)}\cdot \Delta T[/latex] . Note that the specific heat capacity of gaseous water is different than that of ice or liquid water.
please help me with this
Answer:
a. B
b. C
c. A
d. A
e. B
f. -266
g. B and D
Which of the following elements would have the largest electronegativity value?
O cesium
Olithium
O carbon
O sodium
write electronic configuration of chlorine in its ionic state?
Answer:
1s2 2s2 2p6 3s2 3p6
Explanation:
Chlorine is a groups 17 element. The halogens for ions by accepting one electron to form univalent negative ions.
Since chlorine normally contains seventeen electrons, the chloride ion consists of eighteen electrons.
Hence the electronic configuration of chlorine ion is; 1s2 2s2 2p6 3s2 3p6.
hii pls help me to balance chemical equation
calcium hydroxide + hydrochloric acid ------> calcium chloride + water
Answer:
1 Ca(OH)2 + 2 HCl ---> 1 CaCl2 + 2 H2O
Explain the steps you would follow to make 500 mL of a 0.3 M solution of sucrose
(C12H22011) in the lab.
Answer:
see explanation
Explanation:
Solutions are prepared from one of three solute sources ...
- solid solute from manufacturer,
-liquid solute from manufacturer,
-stock concentrate of solute for dilution to lower concentrations.
In this problem, sucrose is a stock solid with a formula mass of 342.3 grams/mol. The amount of solid needed can be determined using the formula:
mass of solute needed (grams) = (Molarity needed x Volume needed in Liters x formula weight) / (decimal fraction purity of stock solid)
Molarity needed = 0.3M
Volume needed = 500 ml = 0.500 liters
Formula weight = 342.3 grams/mole
Purity factor (assumed) = 100% = 1.00 (should be posted on stock bottle label) For example, a 95% pure stock solid => purity factor of 0.95.
∴ grams of sucrose needed = (0.3M*)(0.500L)(342.3g/mole)/(1.00) =51.345 grams sucrose.
Measure 51.345 grams of sucrose into mixing vessel and add solvent water up to, but not to exceed 500 ml total volume. Mix until homogeneous.
Pls help!!!
You are given a type of element by a teacher and she asks you to identify it.What should you do?Explain your answer
Answer:
NAO SRESONDEPORR PQUEOU BUOBRRRA IGAD THCAAUSEI
Explanation:
what is the atomicity of Sulphur?
Answer:
the atomicity of sulphur is 8
Explanation:
hope it helps
What is an air mass? Where on Earth might you find a hot and dry air mass?
An air mass is a volume of air whose temperature and humidity are specified. Many hundreds or thousands of square miles are covered by air masses, which adjust to the properties of the land underneath them.
What is an air mass ?An air mass is a volume of air whose temperature and humidity are specified. Many hundreds or thousands of square miles are covered by air masses, which adjust to the properties of the land underneath them. Latitude and their continental or marine source regions are used to categorize them.
There is a temperature and air pressure differential. Storms are caused by abrupt changes in the weather. Two natural wind patterns come into conflict.
The hot and dry continental tropical (cT) air mass is prevalent over subtropical and tropical continents. The world's largest deserts, such the Sahara, Arabian, and Australian, are important source areas.
Thus, Latitude and their continental or marine source regions are used to categorize them. An air mass is a volume of air whose temperature and humidity are specified.
To learn more about an air mass, follow the link;
https://brainly.com/question/28709357
#SPJ2
If a quantity of this substance existed as a solid at a pressure of 0.75 atm and a temperature of 50°C, what phase
change(s) would occur if the temperature increased to 500°C?
a. Freezing and deposition
b. Melting and freezing
c. Condensation and sublimation
d. Melting and vaporization
A 2.50 L container is filled with 175 g of argon; a. If the pressure is 10 atm, what is the temperature ? b if the temperature is 22K, what is the pressure ?
Answer:
A. 70 K
B. 3.16 atm
Explanation:
We'll begin by calculating the number of mole in 175 g of Ar. This can be obtained as follow:
Mass of Ar = 175 g
Molar mass of Ar = 40 g/mol
Mole of Ar =?
Mole = mass / molar mass
Mole of Ar = 175 / 40
Mole of Ar = 4.375 moles
A. Determination of the temperature.
Mole of Ar (n) = 4.375 moles
Volume (V) = 2.50 L
Pressure (P) = 10 atm
Gas constant (R) = 0.0821 atm.L/Kmol
Temperature (T) =?
PV = nRT
10 × 2.5 = 4.375 × 0.0821 × T
25 = 4.375 × 0.0821 × T
Divide both side by (4.375 × 0.0821)
T = 25 / (4.375 × 0.0821)
T ≈ 70 K
B. Determination of the pressure.
Mole of Ar (n) = 4.375 moles
Volume (V) = 2.50 L
Temperature (T) = 22 K
Gas constant (R) = 0.0821 atm.L/Kmol
Pressure (P) =?
PV = nRT
P × 2.5 = 4.375 × 0.0821 × 22
Divide both side by 2.5
P = (4.375 × 0.0821 × 22) / 2.5
P = 3.16 atm.
The acid dissociation constant, Ka, of HSO4- is 1.2 × 10-2. What does the Ka value indicate about this compound?
A.
HSO4- is a weak base.
B.
HSO4- is a strong acid.
C.
HSO4- is a weak acid.
D.
HSO4- is a strong base.
Answer:
The answer is HSO4- is a weak acid which will be C
The acid dissociation constant, ka, of HSO4- indicates that it is a strong acid. Details about acid dissociation constant can be found below.
What is acid dissociation constant?The acid dissociation constant denoted by Ka is the measure of the strength of an acid.
The dissociation constant of an acid is used to identify strong acids from their weak counterparts. Strong acids have high Ka values while weak acids have low Ka values.
According to this question, the Ka of HSO4- is 1.2 × 10-², which is quite high.
Therefore, the dissociation constant, ka, of HSO4- suggests that it is a strong acid.
Learn more about acid dissociation constant at: https://brainly.com/question/4363472
#SPJ9
Which of the following about a balanced chemical reactions is
NOT true?
O A properly written chemical equation will include the states of matter
for every substance in the reaction.
O The number of atoms of each element must be the same for both
reactants and products.
A balanced chemical equation must follow the Law of Conservation
of Matter
A balanced chemical equation must always include coefficients on
every reactant and product.
Answer:
A balanced chemical equation must always include coefficients on every reactant and product.
Explanation:
A balanced chemical equation does not need to include coefficients on every reactant and product.
For example, below is a balanced chemical equation in which the reactants and the products have no coefficients whatsoever:
NaOH(aq) + HCl (aq) -----> NaCl (s) + H2O (l)
Of course, a properly written chemical equation must include the states of matter of all the substances in the reaction and the number of atoms of each element must balance both in the reactant and product sides of the equation. Generally, a balanced chemical equation must obey the law of conservation of matter which opines that matter can neither be created nor destroyed but can only be converted from one form to another.
Hence, that a balanced chemical equation must always include coefficients on every reactant and product is not true.
mendeleev's periodic table is studied even though it is considered to be defective
Answer:
This is because Mendeleev arranged the elements in order of increasing relative atomic mass.
Explanation:
Dmitri Mendeleev is one of the scientists that contributed to the development of periodic table in chemistry. He was able to organise elements into rows according to their atomic mass and into columns based on chemical and physical properties. This is the main reason why his periodic table is still studied even though it has some defects which include:
--> Grouping of elements that are not similar chemically: For example Copper and Silver bear no resemblance with the alkali metals, but they have been placed together in the first group.
--> Position of isotopes: According to his periodic table: Isotopes of an element must be given separate places in the periodic table because they have different atomic masses.
--> Electronic arrangement of elements: It failed to explain the electronic arrangement of elements.
--> Separation of chemically similar elements:
Elements that are chemically similar such as Gold and Platinum have been placed in separate groups.
Help me please
The options are
A. Translation
B. Rotation
C. Enlargement
D.reduction
Answer:
C. Enlargement
Explanation:
describe one displacement reaction that is useful and explain why it is useful
Answer:
carbon reaction with iron from its oxide. Why?? Because it is largely used in extraction of metals. It is used in acid indigestion.
Which of the following are true for an element? (i)Atomic number= number of protons + number of electrons (ii)Mass number = number of protons+ number of neutrons (iii)Atomic mass= number of protons= number of neutrons (iv)Atomic number = number of protons = number of electrons
Answer:
ii and iv
Explanation:
atomic mass is the sum of protons and neutrons
protons ( postively charged) usually have the same number like electrons( negatively charged)
Can someone help with this
Answer:
I think option (d) is right answer
Answer:
I think that the answer is option(C)
Consider the half reactions below for a chemical reaction.
ZnZn2+ (aq) + 2e
Cu?" (aq) + 2e → Cu(s)
What is the overall equation for this chemical reaction?
Zn(s)+ Cu?* (aq) —>Zn2+ (aq) + Cu(s)
O Zn(s) + Cu2+ (aq) — Cu2+ (aq) + 2e-
O Zn2*(aq) + Cu(s) —> Cu2* (aq) + Zn(s)
O Zn2+ (aq) + 22 —> Cu2(aq) + 2e
Answer:
Option A:
Zn(s) + Cu^(2+) (aq) → Cu(s) + Zn^(2+)(aq)
Explanation:
The half reactions given are:
Zn(s) → Zn^(2+)(aq) + 2e^(-)
Cu^(2+) (aq) + 2e^(-) → Cu(s)
From the given half reactions, we can see that in the first one, Zn undergoes oxidation to produce Zn^(2+).
While in the second half reaction, Cu^(2+) is reduced to Cu.
Thus, for the overall reaction, we will add both half reactions to get;
Zn(s) + Cu^(2+) (aq) + 2e^(-) → Cu(s) + Zn^(2+)(aq) + 2e^(-)
2e^(-) will cancel out to give us;
Zn(s) + Cu^(2+) (aq) → Cu(s) + Zn^(2+)(aq)