[tex]\implies {\blue {\boxed {\boxed {\purple {\sf { A. \:2 \sqrt{30} }}}}}}[/tex]
[tex]\sf \bf {\boxed {\mathbb {STEP-BY-STEP\:EXPLANATION:}}}[/tex]
[tex] = \sqrt{3} \times \sqrt{8} \times \sqrt{5} [/tex]
[tex] = \sqrt{3 \times 2 \times 2 \times 2 \times 5} [/tex]
[tex] = \sqrt{ ({2})^{2} \times 2 \times 3 \times 5} [/tex]
[tex] = 2 \sqrt{2 \times 3\times 5} [/tex]
[tex] = 2 \sqrt{30} [/tex]
Note:[tex] \sqrt{ ({a})^{2} } = a[/tex]
[tex]\bold{ \green{ \star{ \orange{Mystique35}}}}⋆[/tex]
Answer:
A. 2√30
Step-by-step explanation:
[tex] \small \sf \: \sqrt{3} \times \sqrt{8} \times \sqrt{5} \\ [/tex]
split √8
[tex] \small \sf \leadsto \sqrt{3 × 2 × 2 × 2 × 5} [/tex]
[tex] \small \sf \leadsto \: 2 \sqrt{2 \times 3 \times 5} [/tex]
[tex] \small \sf \leadsto \: 2 \sqrt{30} [/tex]
Solve the initial-value problem using the method of undetermined coefficients.
y'' − y' = xe^x, y(0) = 6, y'(0) = 5
First check the characteristic solution. The characteristic equation to this DE is
r ² - r = r (r - 1) = 0
with roots r = 0 and r = 1, so the characteristic solution is
y (char.) = C₁ exp(0x) + C₂ exp(1x)
y (char.) = C₁ + C₂ exp(x)
For the particular solution, we try the ansatz
y (part.) = (ax + b) exp(x)
but exp(x) is already accounted for in the second term of y (char.), so we multiply each term here by x :
y (part.) = (ax ² + bx) exp(x)
Differentiate this twice and substitute the derivatives into the DE.
y' (part.) = (2ax + b) exp(x) + (ax ² + bx) exp(x)
… = (ax ² + (2a + b)x + b) exp(x)
y'' (part.) = (2ax + 2a + b) exp(x) + (ax ² + (2a + b)x + b) exp(x)
… = (ax ² + (4a + b)x + 2a + 2b) exp(x)
(ax ² + (4a + b)x + 2a + 2b) exp(x) - (ax ² + (2a + b)x + b) exp(x)
= x exp(x)
The factor of exp(x) on both sides is never zero, so we can cancel them:
(ax ² + (4a + b)x + 2a + 2b) - (ax ² + (2a + b)x + b) = x
Collect all the terms on the left side to reduce it to
2ax + 2a + b = x
Matching coefficients gives the system
2a = 1
2a + b = 0
and solving this yields
a = 1/2, b = -1
Then the general solution to this DE is
y(x) = C₁ + C₂ exp(x) + (1/2 x ² - x) exp(x)
For the given initial conditions, we have
y (0) = C₁ + C₂ = 6
y' (0) = C₂ - 1 = 5
and solving for the constants here gives
C₁ = 0, C₂ = 6
so that the particular solution to the IVP is
y(x) = 6 exp(x) + (1/2 x ² - x) exp(x)
look at the image below
Answer:
288 cubic ft look at explanation, please give me a thanks if this answer helped!
Step-by-step explanation:
The volume of a pyramid is equal to to 1/3 bh
so first you would find the base which is the rectangle at the bottom
Base= 9 x 8= 72
height has already been given- 12
now your equation is 12 x 1/3 x 72
you can simplify 12 and 1/3 to 4
so now you would have 72 times 4
which is 288
QUESTION 9
Convert 0.85 decimal to a fraction (do not reduce)
Answer:
85/100
Step-by-step explanation:
0.85 from a decimal is equal to 85/100 in fractions
a cubical water tank is 80 CM broad how many CC of water does it hold
Answer:
I think: vol of h20 inside = side³ = (80cm)³ =512000 cm³
Please refer!
Step-by-step explanation:
I'm not sure but hope it helps.
Solve for
x. Round to the nearest tenth of a degree, if necessary.
Answer:
[tex]\displaystyle x \approx 30.8[/tex]
Step-by-step explanation:
Note that the figure is a right triangle, and that we are given the length of the side adjacent to x and the hypotenuse of the triangle.
Therefore, we can use the cosine ratio. Recall that:
[tex]\displaystyle \cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}[/tex]
The adjacent side is 8.5 and the hypotenuse is 9.9. Therefore:
[tex]\displaystyle \cos x = \frac{8.5}{9.9}[/tex]
We can take the inverse cosine of both sides:
[tex]\displaystyle x = \cos^{-1} \frac{8.5}{9.9}[/tex]
Use a calculator. Hence:
[tex]\displaystyle x \approx 30.8[/tex]
the sum of (a-b)^2 and (a+b)^2
Answer:
sum is 2(a² + b²)
Step-by-step explanation:
[tex] {(a - b)}^{2} + {(a + b)}^{2} \\ = ( {a}^{2} - 2ab + {b}^{2} ) + ( {a}^{2} + 2ab + {b}^{2} ) \\ = 2 {a}^{2} + 2 {b}^{2} \\ = 2( {a}^{2} + {b}^{2} )[/tex]
An internet provider states that, on average, the daily amount of time an adult spends on the internet is 4.5 hours. A sociologist studying the behaviors of internet consumers believes the average daily amount an adult spends on the internet is different than the amount stated by the internet provider. After completing a study, the sociologist found that the average daily amount of time an adult spends on the internet is 5.9 hours, on average. As the sociologist sets up a hypothesis test to determine if their belief is correct, what is their claim?
a. The average daily amount of time an adult spends on the internet is different than 4.5 hours.
b. The average daily amount of time an adult spends on the internet is different than 5.9 hours.
c. Adults spend a majority of their time on the internet.
d. The average daily amount of time an adult spends on the internet is 4.5 hours.
Answer:
a. The average daily amount of time an adult spends on the internet is different than 4.5 hours.
Step-by-step explanation:
An internet provider states that, on average, the daily amount of time an adult spends on the internet is 4.5 hours.
At the null hypothesis, it is claimed that the mean is of 4.5 hours, that is:
[tex]H_0: \mu = 4.5[/tex]
A sociologist studying the behaviors of internet consumers believes the average daily amount an adult spends on the internet is different than the amount stated by the internet provider.
At the alternative hypothesis, the sociologist claim, is that the mean is different of 4.5, that is:
[tex]H_1: \mu \neq 4.5[/tex]
Thus, the correct answer is given by option a.
What is the equation
Answer:
D.) y = 2x + 2
Step-by-step explanation:
First, we need to find the slope.
Lets use the points (0, 2) and (-2, -2).
Using the formula for calculating slope, we get 2 as our slope.
Since the equation should be in slope-intercept form, we use this formula.
y = mx + b
We'll use our first point (0, 2) to substitute for x and y and use 2 to substitute for m (slope):
2 = 2(0) + b
2 x 0 = 0
2 = 0 + b
-0 = -0
= 2 = b
Now, substitute b for 2 for 2 for m.
= y = 2x + 2.
Hope this helps!
If there is something wrong, please let me know.
Help! Please? Dont understand
Help please, thanks as always in advance.
Which correlation coefficient indicates the data set with the strongest linear correlation?
0.41
−0.25
0.66
−0.83
Step-by-step explanation:
Which correlation coefficient indicates the data set with the strongest linear correlation?
0.66
The correlation coefficient indicates the data set with the strongest linear correlation is -0.83
What is correlation coefficient?"It measures the strength of the relationship between two relative variables."
What is linear correlation?"When the rate of change is constant between two variables then it is said to be linear correlation."
For given example,
We have been given correlation coefficients.
We need to find the correlation coefficient that indicates the data set with the strongest linear correlation.
We know, the correlation coefficient lies between -1 to 1.
So, the strongest linear correlation is indicated by a correlation coefficient of -1 or 1.
From given correlation coefficients,
-0.83 is close to -1.
Therefore, the correlation coefficient indicates the data set with the strongest linear correlation is -0.83
Learn more about linear correlation coefficient here:
https://brainly.com/question/12400903
#SPJ2
The number of hearing aids that needs to be produced and sold is??
Answer:
14.36 AND 9.89 ===> 14 or 10
Step-by-step explanation:
Y = Ax2 Bx C
Enter coefficients here >>> -4 97 -568
Standard Form: y = -4x²+97x-568
-24.25 -12.125 147.015625 -588.0625 20.0625
Grouped Form: No valid Grouping
Graphing Form: y = -4(x-12.13)²+20.06
Factored Form: PRIME
Solution/X-Intercepts: 14.36 AND 9.89
Discriminate =321 is positive, two real solutions
VERTEX: (12.13,20.06) Directrix: Y=20.13
translate into a variable expression and then simplify. five times the sum of a number and four
Answer:
5(n+4)
5n+20
Step-by-step explanation:
Let n be the number
5* (n+4)
Distribute
5n+20
¿Cuál es la probabilidad de encontrar una persona que gane 6000 si en la empresa en donde trabaja el sueldo medio es de 3500 con una desviación de 1500?
Answer:
Question in English please I don't understand your language.
Mr jones rolls a 6 sided cube mumbered 1,2,3,4,5,6, what is the probability he rolls a three.
Answer:1.5
Step-by-step explanation:
Twelve different video games showing drug use were observed. The duration times of drug use were recorded, with the times (seconds) listed below. Assume that these sample data are used with a 0.05 significance level in a test of the claim that the population mean is greater than 85 sec. If we want to construct a confidence interval to be used for testing that claim, what confidence level should be used for a confidence interval? If the confidence interval is found to be −1.8 sec<μ<213.5 sec, what should we conclude about the claim? The given confidence interval ▼ does not contain contains the value of 85 sec, so there ▼ is is not sufficient evidence to support the claim that the mean is greater than 85 sec
Answer:
95% confidence level should be used for a confidence interval.
The given confidence interval contains the value of 85 sec, so there is not sufficient evidence to support the claim that the mean is greater than 85 sec.
Step-by-step explanation:
0.05 significance level
1 - 0.05 = 0.95
0.95*100% = 95%
This means that a 95% confidence level should be used for a confidence interval.
Confidence interval is found to be −1.8 sec<μ<213.5 sec, what should we conclude about the claim?
Contains the value of 85 sec, thus there is not sufficient evidence to support the claim that the mean is greater than 85 sec.
Graph the compound inequality on the number line. x > 7 or x < -4
OSEAMENTE no se la respuesta
Urgent need the answers plz help.
Answer:
(a) [tex]P" = (-4,-3)[/tex]
(b) [tex](x,y) \to (4,-8)[/tex]
Step-by-step explanation:
Given
[tex]P = (4,3)[/tex]
Solving (a): Reflect across x and y-axis.
Reflection across x-axis has the following rules
[tex](x,y) \to (x,-y)[/tex]
So, we have:
[tex]P' = (4,-3)[/tex]
Reflection across y-axis has the following rules
[tex](x,y) \to (-x,y)[/tex]
So, we have:
[tex]P" = (-4,-3)[/tex]
Hence, the new point is: (-4,-3)
Solving (b): Rx . Do,2 (2,4)
[tex]R_x \to[/tex] reflect across the x-axis
Reflection across x-axis has the following rules
[tex](x,y) \to (x,-y)[/tex]
So, we have:
[tex](2,4) = (2,-4)[/tex] ---- when P is reflected across the x-axis
[tex]D_{o,2} \to[/tex] dilate by a scale factor of 2
The rule is:
[tex](x,y) \to 2 * (x,y)[/tex]
So, we have
[tex](x,y) \to 2 * (2,-4)[/tex]
Open bracket
[tex](x,y) \to (4,-8)[/tex]
a shopkeeper gains #1.75 by selling an article for #6.25. what is the percentage gain.
Answer:
≈ 38.89%Step-by-step explanation:
The cost is:
6.25 - 1.75 = 4.50Percentage gain:
1.75/4.50*100% ≈ 38.89%Susan's haircut was $18 if she gave a 20% tip what will her total cost be
Answer:
21.60
Step-by-step explanation:
First find the tip
18 * 20%
18 *.2
3.60
Then add it to the cost of the haircut
18 + 3.60
21.60
(Kind of urgent!) Using the figure below, find the value of a. Enter your answer as a simplified radical or improper fraction (if necessary)
Answer:
15/4
Step-by-step explanation:
sin60 =z/15
z=15sin60 =(15√3)/2
cos30 =b/z
b = zcos30 = (15√3)/2 * √3/2 = 45/4
a = 15-b = 15-45/4 = 15/4
The value of a is 15/4
What is the right triangle?A right triangle is defined as a triangle in which one angle is a right angle or two sides are perpendicular.
According to the given figure,
Here is a right triangle
Let, The hypotenuse = 15
perpendicular = z and base = 15 = a + b
⇒ sin60 = perpendicular/hypotenuse = z/15
⇒ z = 15sin60 = (15√3)/2
⇒ cos30 = base/hypotenuse = b/z
⇒ b = zcos30 = (15√3)/2 * √3/2 = 45/4
⇒ a + b = 15
Substitute the value of b in the above equation,
⇒ a = 15-b = 15-45/4 = 15/4
Hence, the value of a is 15/4.
Learn more about the right triangle here:
brainly.com/question/6322314
#SPJ6
What is the volume of the prism below?
19.80 cubic units
553.02 cubic units
84.17 cubic units
42.09 cubic units
The volume of prism is,
⇒ V = 42.09 cubic units
What is Multiplication?To multiply means to add a number to itself a particular number of times. Multiplication can be viewed as a process of repeated addition.
Given that;
Base = 5.12
height = 4.11
Lenght = 4
Now, We can formulate;
The value of volume of prism is,
⇒ V = 1/2 (b x h) l
⇒ V = 1/2 (5.12 x 4.11) 4
⇒ V = 42.09 cubic units
Thus, The volume of prism is,
⇒ V = 42.09 cubic units
Learn more about the multiplication visit:
https://brainly.com/question/10873737
#SPJ2
A projectile is fired from a cliff feet above the water at an inclination of 45° to the horizontal, with a muzzle velocity of feet per second. The height h of the projectile above the water is given by
where x is the horizontal distance of the projectile from the face of the cliff. Use this information to answer the following.
(a) At what horizontal distance from the face of the cliff is the height of the projectile a maximum?
(Simplify your answer.)
(b) Find the maximum height of the projectile.
(Simplify your answer.)
(c) At what horizontal distance from the face of the cliff will the projectile strike the water?
(d) Using a graphing utility, graph the function h, Which of the following shows the graph of h(x)?
In all graphs, the window is by
A.
A coordinate system has a horizontal axis labeled from 0 to 230 in increments of 20 and a vertical axis labeled from 0 to 260 in increments of 50. From left to right, a curve starts at (0, 180), rises to a maximum at (74, 230), and then falls to (230, 10). All coordinates are approximate.
B.
A coordinate system has a horizontal axis labeled from 0 to 230 in increments of 20 and a vertical axis labeled from 0 to 260 in increments of 50. From left to right, a curve starts at (0, 210), rises to a maximum at (40, 230), and then falls to (176, 0). All coordinates are approximate.
C.
A coordinate system has a horizontal axis labeled from 0 to 230 in increments of 20 and a vertical axis labeled from 0 to 260 in increments of 50. From left to right, a curve starts at (0, 210), rises to a maximum at (56, 240), and then falls to (220, 0). All coordinates are approximate.
D.
A coordinate system has a horizontal axis labeled from 0 to 230 in increments of 20 and a vertical axis labeled from 0 to 260 in increments of 50. From left to right, a curve starts at (0, 240), rises to a maximum at (28, 245), and then falls to (194, 0). All coordinates are approximate.
(e) When the height of the projectile is 100 feet above the water, how far is it from the cliff?
Answer:
$170 Feet
Step-by-step explanation:
It is very long process
Please helpppppp I need to pass
Answer:
x = -1.4 and x=2
Step-by-step explanation:
The solutions are where the graphs intersect
The graphs appear to intersect at x = -1.4 and x=2
Factorise 24e^2-28e-12
Answer:
4(2e - 3)(3e + 1)
Step-by-step explanation:
Given
24e² - 28e - 12 ← factor out 4 from each term
= 4(6e² - 7e - 3) ← factor the quadratic
Consider the factors of the product of the e² term and the constant term which sum to give the coefficient of the e- term.
product = 6 × - 3 = - 18 and sum = - 7
The factors are - 9 and + 2
Use these factors to split the e- term
6e² - 9e + 2e - 3 ( factor the first/second and third/fourth terms )
= 3e(2e - 3) + 1 (2e - 3) ← factor out (2e - 3) from each term
= (2e - 3)(3e + 1)
Then
24e² - 28e - 12 = 4(2e - 3)(3e + 1) ← in factored form
Which graph matches the exponential function f(x) = (3)x?
a new automobile cause 11300 which is 100 more than 25 times a certain number what is the number
Answer:
25x + 100 = 11300
25x = 11200
448 = x
Step-by-step explanation:
the certain number is 448
Business/multivariable calc question
help needed asap!!!!
Answer:
There is a min value of 376 located at (x,y) = (9,7)
============================================================
Explanation:
Solve the second equation for y
x+y = 16
y = 16-x
Then plug it into the first equation
f(x,y) = 3x^2+4y^2 - xy
g(x) = 3x^2+4(16-x)^2 - x(16-x)
g(x) = 3x^2+4(256 - 32x + x^2) - 16x + x^2
g(x) = 3x^2+1024 - 128x + 4x^2 - 16x + x^2
g(x) = 8x^2-144x+1024
The positive leading coefficient 8 tells us we have a parabola that opens upward, and produces a minimum value (aka lowest point) at the vertex.
Let's compute the derivative and set it equal to zero to solve for x.
g(x) = 8x^2-144x+1024
g ' (x) = 16x-144
16x-144 = 0
16x = 144
x = 144/16
x = 9
The min value occurs when x = 9. Let's find its paired y value.
y = 16-x
y = 16-9
y = 7
The min value occurs at (x,y) = (9,7)
Lastly, let's find the actual min value of f(x,y).
f(x,y) = 3x^2+4y^2 - xy
f(9,7) = 3(9)^2+4(7)^2 - 9*7
f(9,7) = 376
The smallest f(x,y) value is 376.
Any help is appreciated. Not sure how to get to the answer.
No links pls
Answer:
Hello,
Answer D
Step-by-step explanation:
Each value of the graph, y=f(x) is multiplied by 2
Red graph has for eqution y=2*f(x) or y/2=f(x)
represent 21/14 and -20/8 on the number line
Step-by-step explanation:
SEE THE IMAGE FOR SOLUTION
HOPE IT HELPS
HAVE A GREAT DAY
calculate the effective yearly rate if an investment offers a nominal interest rate of 9.5% compounded quarterly
Answer:
9.725%
Step-by-step explanation:
(1.0475)^2 =1.09725
one year 2 periods 4.75% per period