Which defines a line segment?
two rays with a common endpoint
O a piece of a line with two endpoints
O a piece of a line with one endpoint
all points equidistant from a given point

Answers

Answer 1

Answer:

O a piece of a line with two endpoints

Step-by-step explanation:

O a piece of a line with two endpoints

Answer 2

A piece of a line with two endpoints.

What is a line segment?

In geometry, a line segment is a part of a line this is bounded by distinct end points and includes every point on the line this is between its endpoints.

What are the examples of line segments in real life?

A ruler, a scale, a stick, a boundary line.

Learn more about line segments here https://brainly.com/question/2437195

#SPJ2


Related Questions

please help with this

Answers

Answer:

[tex]\sin \left(\theta \right)-\frac{1}{2}\cos \left(2\theta \rightt)+C[/tex]

Step-by-step explanation:

We are given the graph of r = cos( θ ) + sin( 2θ ) so that we are being asked to determine the integral. Remember that [tex]\:r=cos\left(\theta \right)+sin\left(2\theta \right)[/tex] can also be rewritten as [tex]\int \cos \left(\theta \right)+\sin \left(2\theta \right)d\theta \right[/tex].

Let's apply the functional rule [tex]\int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx[/tex],

[tex]\int \cos \left(\theta \right)+\sin \left(2\theta \right)d\theta \right[/tex] = [tex]\int \cos \left(\theta \right)d\theta \right+\int \sin \left(2\theta \right)d\theta \right[/tex]

At the same time [tex]\int \cos \left(\theta \right)d\theta \right=\sin \left(\theta \right)[/tex] = [tex]sin( \theta \right ))[/tex], and [tex]\int \sin \left(2\theta \right)d\theta \right[/tex] = [tex]-\frac{1}{2}\cos \left(2\theta \right)[/tex]. Let's substitute,

[tex]\int \cos \left(\theta \right)d\theta \right+\int \sin \left(2\theta \right)d\theta \right[/tex] = [tex]\sin \left(\theta \right)-\frac{1}{2}\cos \left(2\theta \right)[/tex]

And adding a constant C, we receive our final solution.

[tex]\sin \left(\theta \right)-\frac{1}{2}\cos \left(2\theta \rightt)+C[/tex] - this is our integral

Express the quotient of z1 and z2 in standard form given that [tex]z_{1} = -3[cos(\frac{-\pi }{4} )+isin(\frac{-\pi }{4} )][/tex] and [tex]z_{2} = 2\sqrt{2} [cos(\frac{-\pi }{2} )+isin(\frac{-\pi }{2} )][/tex]

Answers

Answer:

Solution : [tex]-\frac{3}{4}-\frac{3}{4}i[/tex]

Step-by-step explanation:

[tex]-3\left[\cos \left(\frac{-\pi }{4}\right)+i\sin \left(\frac{-\pi \:}{4}\right)\right]\:\div \:2\sqrt{2}\left[\cos \left(\frac{-\pi \:\:}{2}\right)+i\sin \left(\frac{-\pi \:\:\:}{2}\right)\right][/tex]

Let's apply trivial identities here. We know that cos(-π / 4) = √2 / 2, sin(-π / 4) = - √2 / 2, cos(-π / 2) = 0, sin(-π / 2) = - 1. Let's substitute those values,

[tex]\frac{-3\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i\right)}{2\sqrt{2}\left(0-1\right)i}[/tex]

=[tex]-3\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i\right)[/tex] ÷ [tex]2\sqrt{2}\left(0-1\right)i[/tex]

= [tex]3\left(-\frac{\sqrt{2}i}{2}+\frac{\sqrt{2}}{2}\right)[/tex] ÷ [tex]-2\sqrt{2}i[/tex]

= [tex]\frac{3\left(1-i\right)}{\sqrt{2}}[/tex]÷ [tex]2\sqrt{2}i[/tex] = [tex]-3-3i[/tex] ÷ [tex]4[/tex] = [tex]-\frac{3}{4}-\frac{3}{4}i[/tex]

As you can see your solution is the last option.

The balances in two separate bank accounts that grow each month at different rales are represented by the functions f(x) and gix) In what month do the funds in the f(x) bank account exceed those in the glx)
bank account?
Month (x) f(x) = 2* g(x) = 4x + 12
1
2
16
2.
4
20
O Month 3
O Month 4
O Month 5
O Month 6​

Answers

Answer:

The balance in two separate bank accounts grows each month at different rates. the growth rates for both accounts are represented by the functions f(x) = 2x and g(x) = 4x 12. in what month is the f(x) balance greater than the g(x) balance?

Answer:

6 months

function is a relationship between inputs where each input is related to exactly one output.

x = 5,

f(5) = [tex]2^5\\[/tex] = 32

g(5) = 4 x 5 + 12 = 20 + 12 = 32

x = 6,

f(6) = [tex]2^6[/tex] = 64

g(6) = 4 x 6 + 12 = 24 + 12 = 36

At month 6 the funds in the f(x) bank account exceed those in the g(x) bank account.

What is a function?

function is a relationship between inputs where each input is related to exactly one output.

Example:

f(x) = 2x + 1

f(1) = 2 + 1 = 3

f(2) = 2 x 2 + 1 = 4 + 1 = 5

The outputs of the functions are 3 and 5

The inputs of the function are 1 and 2.

We have,

f(x) = [tex]2^{x}[/tex]

g(x) = 4x + 12

x = number of months

Now,

x = 3,

f(3) = 2³ = 8

g(3) = 4 x 3 + 12 = 12 + 12 = 24

x = 4,

f(4) = [tex]2^4[/tex] = 16

g(4) = 4 x 4 + 12 = 16 + 12 = 28

x = 5,

f(5) = [tex]2^5\\[/tex] = 32

g(5) = 4 x 5 + 12 = 20 + 12 = 32

x = 6,

f(6) = [tex]2^6[/tex] = 64

g(6) = 4 x 6 + 12 = 24 + 12 = 36

We see that,

At x = 6,

f(5) = 64

g(5) = 36

Thus,

At month 6 the funds in the f(x) bank account exceed those in the g(x) bank account.

Learn more about functions here:

https://brainly.com/question/28533782

#SPJ2

Simplify to create an equivalent expression.
-k-(-8k+7)
a=7k−7
b=-7k-7
c=7k+7
d=-7k+7
choose one

Answers

Answer:

a. 7k - 7

Step-by-step explanation:

Step 1: Write out expression

-k - (-8k + 7)

Step 2: Distribute negative

-k + 8k - 7

Step 3: Combine like terms

7k - 7

And we have our answer!

Can somebody please solve this problem for me!

Answers

Answer:

x = 200.674

Step-by-step explanation:

tan∅ = opposite/adjacent

Step 1: Find length of z

tan70° = 119/z

ztan70° = 119

z = 119/tan70°

z = 43.3125

Step 2: Find length z + x (denoted as y)

tan26° = 119/y

ytan26° = 119

y = 119/tan26°

y = 243.986

Step 3: Find x

y - z = x

243.986 - 43.3125 = x

x = 200.674

Suppose the radius of a circle is 5 units. What is its circumference?​

Answers

Answer:

C≈31.42

Step-by-step explanation:

C=2πr

C=2xπx5

C≈31.42

pls mark as brainliest

Identify each x-value at which the slope of the tangent line to the function f(x) = 0.2x^2 + 5x − 12 belongs to the interval (-1, 1).

Answers

Answer:

Step-by-step explanation:

Hello, the slope of the tangent is the value of the derivative.

f'(x) = 2*0.2x + 5 = 0.4x + 5

So we are looking for

[tex]-1\leq f'(x) \leq 1 \\ \\<=> -1\leq 0.4x+5 \leq 1 \\ \\<=> -1-5=-6\leq 0.4x \leq 1-5=-4 \\ \\<=> \dfrac{-6}{0.4}\leq 0.4x \leq \dfrac{-4}{0.4} \\\\<=> \boxed{-15 \leq x\leq -10}[/tex]

Hope this helps.

Do not hesitate if you need further explanation.

Thank you

Using derivatives, it is found that the x-values in which the slope belong to the interval (-1,1) are in the following interval is (-15,-10).

What is the slope of the tangent line to a function f(x) at point x = x_0?

It is given by the derivative at x = x_0, that is:

m = f'(x_0)

In this problem, the function is:

f(x) = 0.2x^2 + 5x − 12

Hence the derivative is:

f'(x) = 0.4x + 5

For a slope of -1, we have that,

0.4x + 5 = -1

0.4x = -6

x = -15.

For a slope of 1, we have that,

0.4x + 5 = 1.

0.4x = -4

x = -10

Hence it is found that the x-values in which the slope belong to the interval (-1,1) are in the following interval is (-15,-10).

More can be learned about derivatives and tangent lines at;

brainly.com/question/8174665

#SPJ2

what is the distance between the first and third quartiles of a data set called?

Answers

Answer:

Interquartile range is the distance between the first and third of a data.

Step-by-step explanation:

Hope it will help you :)

Write an expression to represent the given statement. Use n for the variable. Three times the absolute value of the sum of a number and 6

Answers

Answer:

3 · |x+6|

Step-by-step explanation:

Write out what you see. "Three times" is 3 · something; "the absolute value of the sum of a number and 6" is |number + 6|. We'll use x for our number. Put it all together and you get 3 · |x+6|

The expression of the statement, Three times the absolute value of the sum of a number and 6 is  [tex]\[3\left| n+6 \right|\][/tex] .

Representation of statement:Let n be the number.The sum of the numbers n and 6 is n+6.The absolute value of the sum of the numbers n and 6 is  [tex]\[\left| n+6 \right|\][/tex].Hence, three times the absolute value of the sum of a number and 6 is [tex]\[3\left| n+6 \right|\][/tex].

 

Learn more about the representation of an expression:

https://brainly.com/question/10905086?referrer=searchResults

#SPJ2

Question 2 Rewrite in simplest radical form 1 x −3 6 . Show each step of your process.

Answers

Answer:

√(x)

Step-by-step explanation:

(1)/(x^-(1/2)) that's 3 goes into -3 leaving 1 and goes into 6 leaving 2

1/2 is same as 2^-1

so therefore we can simplify the above as

x^-(-1/2)

x^(1/2)

and 4^(1/2)

is same as √(4)

so we conclude as

√(x)

When proving a statement using mathematical induction, part of the process is assuming that the statement is true for the nth case. (True or False).

Answers

Answer:

True

Step-by-step explanation:

We assume that is true for the nth case and prove it for the n+1 case

and show that it is true for the case when n=1

Determine the number of degrees of freedom for the two-sample t test or CI in each of the following situations. (Round your answers down to the nearest whole number.)a. m = 12, n = 15, s1 = 4.0, s2 = 6.0b. m = 12, n = 21, s1 = 4.0, s2 = 6.0c. m = 12, n = 21, s1 = 3.0, s2 = 6.0d. m = 10, n = 24, s1 = 4.0, s2 = 6.0

Answers

Answer:

Part a ) The degrees of freedom for the given two sample non-pooled t test is 24

Part b ) The degrees of freedom for the given two sample non-pooled t test is 30

Part c ) The degrees of freedom for the given two sample non-pooled t test is 30

Part d ) The degrees of freedom for the given two sample non-pooled t test is 25

Step-by-step explanation:

Degrees of freedom for a non-pooled two sample t-test is given by;

Δf = {[ s₁²/m + s₂²/n ]²} / {[( s₁²/m)²/m-1] + [(s₂²/n)²/n-1]}

Now given the information;

a) :- m = 12, n = 15, s₁ = 4.0, s₂ = 6.0

we substitute

Δf =  {[ 4²/12 + 6²/15 ]²} / {[( 4²/12)²/12-1] + [(6²/15)²/15-1]}

Δf  = 30184 / 1241

Δf  = 24.3223 ≈ 24 (down to the nearest whole number)

b) :- m = 12, n = 21, s₁ = 4.0, s₂ = 6.0

we substitute using same formula

Δf = {[ s₁²/m + s₂²/n ]²} / {[( s₁²/m)²/m-1] + [(s₂²/n)²/n-1]}

Δf = {[ 4²/12 + 6²/21 ]²} / {[( 4²/12)²/12-1] + [(6²/21)²/21-1]}

Δf = 56320 / 1871

Δf = 30.1015 ≈ 30 (down to the nearest whole number)

c) :- m = 12, n = 21, s₁ = 3.0, s₂ = 6.0

we substitute using same formula

Δf = {[ s₁²/m + s₂²/n ]²} / {[( s₁²/m)²/m-1] + [(s₂²/n)²/n-1]}

Δf = {[ 3²/12 + 6²/21 ]²} / {[( 3²/12)²/12-1] + [(6²/21)²/21-1]}

Δf = 29095 / 949

Δf = 30.6585 ≈ 30 (down to the nearest whole number)

d) :- m = 10, n = 24, s₁ = 4.0, s₂ = 6.0

we substitute using same formula

Δf = {[ s₁²/m + s₂²/n ]²} / {[( s₁²/m)²/m-1] + [(s₂²/n)²/n-1]}

Δf = {[ 4²/10 + 6²/24 ]²} / {[( 4²/10)²/10-1] + [(6²/24)²/24-1]}

Δf = 1044 / 41  

Δf = 25.4634 ≈ 25 (down to the nearest whole number).

the fourth term of an AP is 5 while the sum of the first 6 terms is 10. Find the sum of the first 19 terms​

Answers

Answer: S₁₉ = 855

Step-by-step explanation:

T₄ = a + ( n - 1 )d  = 5 , from the statement above , but n = 4

       a + 3d  = 5 -------------------------1

S₆ = ⁿ/₂[(2a + ( n - 1 )d]  =  10, where n = 6

    = ⁶/₂( 2a + 5d )         = 10

    = 3( 2a + 5d ) = 10

    = 6a + 15d      = 10 -----------------2

Now solve the two equation together simultaneously to get the values of a and d

   a + 3d     = 5

   6a + 15d = 10

from 1,

a = 5 - 3d -------------------------------3

Now put (3) in equation 2 and open the brackets

6( 5 - 3d )  + 15d = 10

30 - 18d + 15d      = 10

30 - 3d                 = 10

            3d            = 30 - 10

             3d           = 20

                         d = ²⁰/₃.

Now substitute for d to get a in equation 3

           a = 5 - 3( ²⁰/₃)

           a = 5 - 3 ₓ ²⁰/₃

              = 5 - 20

          a  = -15.

Now to find the sum of the first 19 terms,

we use the formula

S₁₉ = ⁿ/₂( 2a + ( n - 1 )d )

     = ¹⁹/₂( 2 x -15 + 18 x ²⁰/₃ )

     = ¹⁹/₂( -30 + 6 x 20 )

     = ¹⁹/₂( -30 + 120 )

     = ¹⁹/₂( 90 )

     = ¹⁹/₂ x 90

     = 19 x 45

     = 855

Therefore,

S₁₉ = 855

 

20 points!
Please help.

Answers

Man this is a hard one!

The areas of two similar octagons are 4 m² and 9 m². What is the scale factor of their side lengths? PLZ PLZ HELP PLZ

Answers

Answer:

[tex] \frac{2}{3} [/tex]

Step-by-step explanation:

Area of Octagon A = 4 m²

Side length of Octagon A = a

Area of Octagon B = 9 m²

Side length of Octagon B = b

The scale factor of their side lengths = [tex] \frac{a}{b} [/tex]

According to the area of similar polygons theorem, [tex] \frac{4}{9} = (\frac{a}{b})^2 [/tex]

Thus,

[tex] \sqrt{\frac{4}{9}} = \frac{a}{b} [/tex]

[tex] \frac{\sqrt{4}}{\sqrt{9}} = \frac{a}{b} [/tex]

[tex] \frac{2}{3} = \frac{a}{b} [/tex]

Scale factor of their sides = [tex] \frac{2}{3} [/tex]

Answer:

3:5

Step-by-step explanation:

square root of 9 is 3.

square root if 25 is 5.

therefore, 3:5.

The size of a television is the length of the diagonal of its screen in inches. The aspect ratio of the screens of older televisions is 4:3, while the aspect ratio of newer wide-screen televisions is 16:9. Find the width and height of an older 35-inch television whose screen has an aspect ratio of 4:3.

Answers

Answer:

The Width = 28 inches

The Height = 21 inches

Step-by-step explanation:

We are told in the question that:

The width and height of an older 35-inch television whose screen has an aspect ratio of 4:3

Using Pythagoras Theorem

Width² + Height² = Diagonal²

Since we known that the size of a television is the length of the diagonal of its screen in inches.

Hence, for this new TV

Width² + Height² = 35²

We are given ratio: 4:3 as aspect ratio

Width = 4x

Height = 3x

(4x)² +(3x)² = 35²

= 16x² + 9x² = 35²

25x² = 1225

x² = 1225/25

x² = 49

x = √49

x = 7

Hence, for the 35 inch tv set

The Width = 4x

= 4 × 7

= 28 inches.

The Height = 3x

= 3 × 7

= 21 inches

You drive 15 miles in 0.1hours . How fast did you travel if 8=d/t

Answers

Answer:

150

Step-by-step explanation:

[tex]distance = 15 miles\\time = 0.1 hours\\\\Speed = \frac{Distance}{time}\\ Speed = \frac{15}{0.1}\\ Speed =150[/tex]

Answer:

[tex]150mph[/tex]

Step-by-step explanation:

Given:

s=15miles

t=0.1hours

Required:

v=?

Formula:

[tex]v = \frac{s}{t} [/tex]

Solution:

[tex]v = \frac{s}{t} = \frac{15m}{0.1h} = \frac{150m}{1h} = 150mph[/tex]

Hope this helps ;) ❤❤❤

5 STARS IF CORRECT! In general, Can you translate a phrase or sentence into symbols? Explain the answer.

Answers

Answer:

Step-by-step explanation:

I answered this already a few minutes ago.

Answer:

yes you can

Step-by-step explanation:

you can write algebraic expressions and use variables for the unknown

Each student in a school was asked, "What is your favorite color?" The circle graph below shows how they answered

Which color was chosen by approximately one fourth of the students?

Approximately what percentage of the students chose purple or green?

Answers

Answer:

a). BLUE color

b). 20%

Step-by-step explanation:

a). "Which color was chosen by approximately one fourth of the students?"

  Since one fourth of the students will be represented by one fourth area of the circle given.

That means color of choice represented by the quarter of the circle will be the color liked by one fourth students.

In the figure attached, BLUE color is the choice of one fourth students in the class.

b). Area represented by purple, green and other colors is a quarter of the circle.

If we divide this quarter into five equal sections, then the total of purple and green will be  [tex]4\times \frac{1}{5}[/tex] of the the quarter of the circle.

Measure of the angle defined by purple or green sections = [tex]\frac{4}{5}\times 90[/tex]

                                                                                                     = 72°

Percentage of the students who preferred purple or green = [tex]\frac{72}{360}\times 100[/tex]

                                                                                                     = 20%

Answer:

blue

20%

Step-by-step explanation:

I need help on this question, can someone please answer it correctly?

Answers

Answer:the one area < with line underneath then -4

St-by-step explanation: I’m pretty sure this is correct

Answer:

[tex] \boxed{x \leqslant - 4}[/tex]

Step-by-step explanation:

[tex] \mathrm{16x - 7 \leqslant - 71}[/tex]

Move constant to Right hand side and change its sign

[tex] \mathrm{16x \leqslant - 71 + 7}[/tex]

Calculate

[tex] \mathrm{16x \leqslant - 64}[/tex]

Divide both sides of the equation by 16

[tex] \mathrm{ \frac{16x}{16} \leqslant \frac{ - 64}{16} }[/tex]

Calculate

[tex] \mathrm{x \leqslant - 4}[/tex]

Hope I helped!

Best regards!

What is the value of 20 + 3 (7 + 4) + 5 + 2 (7 + 9)?

Answers

Answer:

90

Step-by-step explanation:

Answer:

90

Step-by-step explanation:

Here is the equation

[tex]20+3\times(7+4)+5+2\times(7+9)[/tex]

In the order of operations parentheses go first so we get

[tex]20+3\times11+5+2\times16[/tex]

Next we do the multiplication

[tex]20+33+5+32\\[/tex]

And finally we add them all up

[tex]20+33+5+32=90\\[/tex]

Thus, 90 is the answer of [tex]20+3\times(7+4)+5+2\times(7+9)[/tex] or [tex]20+3(7+4)+5+2(7+9)[/tex]

Of the three properties, reflexive, symmetric, and transitive that define the relation "is equal to," which one could also apply to "is less than" and "is greater than?" transitive reflexive symmetric

Answers

Answer: Transitive property.

Step-by-step explanation:

First, for the equality we have:

Reflexive:

  For all real numbers x, x = x.

Symmetric:  

 For all real numbers x, y

 if x= y, then y = x.

Transitive:

 For reals x, y and z.

 if x = y, and y = z, then x = z.

Now, let's talk about inequalities.

first, the reflexive property will say that:

x > x.

This has no sense, so this property does not work for inequalities.

Now, the reflexive.

If x > y, then y > x.

Again, this has no sense, if x is larger than y, then we can never have that y is larger than x. This property does not work for inequalities.

Not, the transitive property.

if x > y, and y > z, then x > z.

This is true.

x is bigger than y, and y is bigger than z, then x should also be bigger than z.

x > y > z.

And this also works for the inverse case:

x < y and y < z, then x < z.

So the correct option is transitive property.

Emily made a pot of cream of pumpkin soup for thanksgiving dinner. She put 5
cups of cream in the soup. She poured the soup into 24 small soup bowls. How
much cream (measured in oz.) is used for each small bowl of soup?

Answers

Answer:

1 2/3 ounces in each bowl

Step-by-step explanation:

We need to convert 5 cups to ounces

1 cup = 8 ounces

5 cups = 5*8 = 40 ounces

We divide the 40 ounces into 24 bowls

40 ounces / 24 bowl

5/3 ounces per bowl

1 2/3 ounces in each bowl

Answer:

each bowl can contain 5/3 oz. of soup.

Step-by-step explanation:

1 cup = 8 oz.

                   8 oz.

5 cups x --------------  =  40 oz.

                    1 cup

to get the measurement of each bowl,

40 oz. divided into 24 bowls.

therefore, each bowl can contain 5/3 oz. of soup.

Find the equation of a parabola that has a vertex (3,5) and passes through the point (1,13).
Oy= -27 - 3)' +5
Oy=2(x + 3) - 5
Oy=2(0 - 3)' + 5
Oy= -3(2 – 3) + 5
PLEASE HELP ME!!

Answers

Answer:

y = 2(x - 3)² + 5

Step-by-step explanation:

The equation of a parabola in vertex form is

y = a(x - h)² + k

where (h, k) are the coordinates of the vertex and a is a multiplier

Here (h, k) = (3, 5), thus

y = a(x - 3)² + 5

To find a substitute (1, 13) into the equation

13 = a(1 - 3)² + 5 ( subtract 5 from both sides )

8 = 4a ( divide both sides by 4 )

a = 2, then

y = 2(x - 3)² + 5 ← equation of parabola in vertex form

what is the domain of f(x)=(1/4)^x

Answers

Answer:

B All real numbers

hope you wil understand

Answer:

[tex]\boxed{\sf B. \ All \ real \ numbers}[/tex]

Step-by-step explanation:

The domain is all possible values for x.

[tex]f(x)=(\frac{1}{4} )^x[/tex]

There are no restrictions on the value of x.

The domain is all real numbers.

Use spherical coordinates. Evaluate e x2 + y2 + z2 dV, E where E is enclosed by the sphere x2 + y2 + z2 = 25 in the first octant.

Answers

Answer:

[tex]\displaystyle \iiint_E {e^{\sqrt{x^2 + y^2 + z^2}}} \, dV = \frac{\pi (17e^5 - 2)}{2}[/tex]

General Formulas and Concepts:
Calculus

Integration

Integrals

Integration Rule [Reverse Power Rule]:
[tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]

Integration Rule [Fundamental Theorem of Calculus 1]:
[tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]

Integration Property [Multiplied Constant]:
[tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

Integration Property [Addition/Subtraction]:
[tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]

Integration Method [Integration by Parts]:
[tex]\displaystyle \int {u} \, dv = uv - \int {v} \, du[/tex]

[IBP] LIPET: Logs, Inverses, Polynomials, Exponentials, Trig

Multivariable Calculus

Triple Integrals

Cylindrical Coordinate Conversions:

[tex]\displaystyle x = r \cos \theta[/tex][tex]\displaystyle y = r \sin \theta[/tex][tex]\displaystyle z = z[/tex][tex]\displaystyle r^2 = x^2 + y^2[/tex][tex]\displaystyle \tan \theta = \frac{y}{x}[/tex]

Spherical Coordinate Conversions:

[tex]\displaystyle r = \rho \sin \phi[/tex][tex]\displaystyle x = \rho \sin \phi \cos \theta[/tex][tex]\displaystyle z = \rho \cos \phi[/tex][tex]\displaystyle y = \rho \sin \phi \sin \theta[/tex][tex]\displaystyle \rho = \sqrt{x^2 + y^2 + z^2}[/tex]

Integral Conversion [Spherical Coordinates]:
[tex]\displaystyle \iiint_T {f( \rho, \phi, \theta )} \, dV = \iiint_T {\rho^2 \sin \phi} \, d\rho \, d\phi \, d\theta[/tex]

Step-by-step explanation:

*Note:

Recall that φ is bounded by 0 ≤ φ ≤ 0.5π from the z-axis to the x-axis.

I will not show/explain any intermediate calculus steps as there isn't enough space.

Step 1: Define

Identify given.

[tex]\displaystyle \iiint_E {e^{\sqrt{x^2 + y^2 + z^2}}} \, dV[/tex]

[tex]\displaystyle \text{Region E:} \ x^2 + y^2 + z^2 = 25 \ \text{bounded by first octant}[/tex]

Step 2: Integrate Pt. 1

Find ρ bounds.

[Sphere] Substitute in Spherical Coordinate Conversions:
[tex]\displaystyle \rho^2 = 25[/tex]Solve:
[tex]\displaystyle \rho = 5[/tex]Define limits:
[tex]\displaystyle 0 \leq \rho \leq 5[/tex]

Find θ bounds.

[Sphere] Substitute in z = 0:
[tex]\displaystyle x^2 + y^2 = 25[/tex][Circle] Graph [See 2nd Attachment][Graph] Identify limits [Unit Circle]:
[tex]\displaystyle 0 \leq \theta \leq \frac{\pi}{2}[/tex]

Find φ bounds.

[Circle] Substitute in Cylindrical Coordinate Conversions:
[tex]\displaystyle r^2 = 25[/tex]Solve:
[tex]\displaystyle r = 5[/tex]Substitute in Spherical Coordinate Conversions:
[tex]\displaystyle \rho \sin \phi = 5[/tex]Solve:
[tex]\displaystyle \phi = \frac{\pi}{2}[/tex]Define limits:
[tex]\displaystyle 0 \leq \phi \leq \frac{\pi}{2}[/tex]

Step 3: Integrate Pt. 2

[Integrals] Convert [Integral Conversion - Spherical Coordinates]:
[tex]\displaystyle \iiint_E {e^{\sqrt{x^2 + y^2 + z^2}}} \, dV = \iiint_E {e^{\sqrt{x^2 + y^2 + z^2}} \rho^2 \sin \phi} \, d\rho \, d\phi \, d\theta[/tex][dρ Integrand] Rewrite [Spherical Coordinate Conversions]:
[tex]\displaystyle \iiint_E {e^{\sqrt{x^2 + y^2 + z^2}}} \, dV = \iiint_E {e^{\rho} \rho^2 \sin \phi} \, d\rho \, d\phi \, d\theta[/tex][Integrals] Substitute in region E:
[tex]\displaystyle \iiint_E {e^{\sqrt{x^2 + y^2 + z^2}}} \, dV = \int\limits^{\frac{\pi}{2}}_0 \int\limits^{\frac{\pi}{2}}_0 \int\limits^5_0 {e^{\rho} \rho^2 \sin \phi} \, d\rho \, d\phi \, d\theta[/tex]

We evaluate this spherical integral by using the integration rules, properties, and methods listed above:

[tex]\displaystyle \begin{aligned} \iiint_E {e^{\sqrt{x^2 + y^2 + z^2}}} \, dV & = \int\limits^{\frac{\pi}{2}}_0 \int\limits^{\frac{\pi}{2}}_0 \int\limits^5_0 {e^{\rho} \rho^2 \sin \phi} \, d\rho \, d\phi \, d\theta \\ & = \int\limits^{\frac{\pi}{2}}_0 \int\limits^{\frac{\pi}{2}}_0 {\bigg[ (\rho^2 - 2 \rho + 2) e^{\rho} \sin \phi \bigg] \bigg| \limits^{\rho = 5}_{\rho = 0}} \, d\phi \, d\theta\end{aligned}[/tex]

[tex]\displaystyle \begin{aligned}\iiint_E {e^{\sqrt{x^2 + y^2 + z^2}}} \, dV & = \int\limits^{\frac{\pi}{2}}_0 \int\limits^{\frac{\pi}{2}}_0 {(17e^5 - 2) \sin \phi} \, d\phi \, d\theta \\& = \int\limits^{\frac{\pi}{2}}_0 {\bigg[ -(17e^5 - 2) \cos \phi \bigg] \bigg| \limits^{\phi = \frac{\pi}{2}}_{\phi = 0}} \, d\theta \\& = \int\limits^{\frac{\pi}{2}}_0 {17e^5 - 2} \, d\theta \\& = (17e^5 - 2) \theta \bigg| \limits^{\theta = \frac{\pi}{2}}_{\theta = 0} \\& = \frac{\pi (17e^5 - 2)}{2}\end{aligned}[/tex]

∴ the given integral equals [tex]\displaystyle \bold{\frac{\pi (17e^5 - 2)}{2}}[/tex].

---

Learn more about spherical coordinates: https://brainly.com/question/16415822

Learn more about multivariable calculus: https://brainly.com/question/4746216

---

Topic: Multivariable Calculus

Unit: Triple Integrals Applications

For a certain casino slot machine, the odds in favor of a win are given as 17 to 83. Express the indicated degree of likelihood as a probability value between 0 and 1 inclusive.

Answers

Step-by-step explanation:

83P (E)=17-17P (E),

P (E)=17/100=0.17

A hot metal bar is submerged in a large reservoir of water whose temperature is 60°F. The temperature of the bar 20 s after submersion is 120°F. After 1 min submerged, the temperature has cooled to 100°F. (Let y be measured in degrees Fahrenheit, and t be measured in seconds.) (a) Determine the cooling constant k. k = s−1 (b) What is the differential equation satisfied by the temperature y(t)? (Use y for y(t).) y'(t) = (c) What is the formula for y(t)? y(t) = (d) Determine the temperature of the bar at the moment it is submerged. (Round your answer to one decimal place.)

Answers

Answer:

a.  k = -0.01014 s⁻¹

b.  [tex]\mathbf{\dfrac{dy}{dt} = - \dfrac{In(\dfrac{3}{2})}{40}(y-60)}[/tex]

c.  [tex]\mathbf{y(t) = 60+ \dfrac{60 \sqrt{3}}{\sqrt{2}} \ e^{\dfrac{-In(\dfrac{3}{2})\ t}{40}}}[/tex]

d.  y(t) = 130.485°F

Step-by-step explanation:

A hot metal bar is submerged in a large reservoir of water whose temperature is 60°F. The temperature of the bar 20 s after submersion is 120°F. After 1 min submerged, the temperature has cooled to 100°F.

(Let y be measured in degrees Fahrenheit, and t be measured in seconds.)

We are to determine :

a.  Determine the cooling constant k. k = s−1

By applying the new law of cooling

[tex]\dfrac{dT}{dt} = k \Delta T[/tex]

[tex]\dfrac{dT}{dt} = k(T_1-T_2)[/tex]

[tex]\dfrac{dT}{dt} = k (T - 60)[/tex]

Taking the integral.

[tex]\int \dfrac{dT}{T-60} = \int kdt[/tex]

㏑ (T -60) = kt + C

T - 60 = [tex]e^{kt+C}[/tex]

[tex]T = 60+ C_1 e^{kt} ---- (1)[/tex]

After 20 seconds, the temperature of the bar submersion is 120°F

T(20) = 120

From equation (1) ,replace t = 20s and T = 120

[tex]120 = 60 + C_1 e^{20 \ k}[/tex]

[tex]120 - 60 = C_1 e^{20 \ k}[/tex]

[tex]60 = C_1 e^{20 \ k} --- (2)[/tex]

After 1 min i.e 60 sec , the temperature  = 100

T(60) = 100

From equation (1) ; replace t = 60 s and T = 100

[tex]100 = 60 + c_1 e^{60 \ t}[/tex]

[tex]100 - 60 =c_1 e^{60 \ t}[/tex]

[tex]40 =c_1 e^{60 \ t} --- (3)[/tex]

Dividing equation (2) by (3) , we have:

[tex]\dfrac{60}{40} = \dfrac{C_1e^{20 \ k } }{C_1 e^{60 \ k}}[/tex]

[tex]\dfrac{3}{2} = e^{-40 \ k}[/tex]

[tex]-40 \ k = In (\dfrac{3}{2})[/tex]

- 40 k = 0.4054651

[tex]k = - \dfrac{0.4054651}{ 40}[/tex]

k = -0.01014 s⁻¹

 

b. What is the differential equation satisfied by the temperature y(t)?

Recall that :

[tex]\dfrac{dT}{dt} = k \Delta T[/tex]

[tex]\dfrac{dT}{dt} = \dfrac{- In (\dfrac{3}{2})}{40}(T-60)[/tex]

Since y is the temperature of the body , then :

[tex]\mathbf{\dfrac{dy}{dt} = - \dfrac{In(\dfrac{3}{2})}{40}(y-60)}[/tex]

(c) What is the formula for y(t)?

From equation (1) ;

where;

[tex]T = 60+ C_1 e^{kt} ---- (1)[/tex]

Let y be measured in degrees Fahrenheit

[tex]y(t) = 60 + C_1 e^{-\dfrac{In (\dfrac{3}{2})}{40}t}[/tex]

From equation (2)

[tex]C_1 = \dfrac{60}{e^{20 \times \dfrac{-In(\dfrac{3}{2})}{40}}}[/tex]

[tex]C_1 = \dfrac{60}{e^{-\dfrac{1}{2} {In(\dfrac{3}{2})}}}[/tex]

[tex]C_1 = \dfrac{60}{e^ {In(\dfrac{3}{2})^{-1/2}}}}[/tex]

[tex]C_1 = \dfrac{60}{\sqrt{\dfrac{2}{3}}}[/tex]

[tex]C_1 = \dfrac{60 \times \sqrt{3}}{\sqrt{2}}}[/tex]

[tex]\mathbf{y(t) = 60+ \dfrac{60 \sqrt{3}}{\sqrt{2}} \ e^{\dfrac{-In(\dfrac{3}{2})\ t}{40}}}[/tex]

(d) Determine the temperature of the bar at the moment it is submerged.

At the moment it is submerged t = 0

[tex]\mathbf{y(0) = 60+ \dfrac{60 \sqrt{3}}{\sqrt{2}} \ e^{\dfrac{-In(\dfrac{3}{2})\ 0}{40}}}[/tex]

[tex]\mathbf{y(t) = 60+ \dfrac{60 \sqrt{3}}{\sqrt{2}} }[/tex]

y(t) = 60 + 70.485

y(t) = 130.485°F

The double number lines show the ratio of cups to gallons. How many cups are in 333 gallons? _____ cups

Answers

Answer:

5328 cups.

Step-by-step explanation:

Given that 333 gallons

We know that

1 gallons = 16 cups

1 cups = 0.0625 gallons

Therefore,from the above conversion we can say that

Now by putting the values in the above conversion

333 gallons = 16 x 333 cups

333 gallons = 5328 cups

So , we can say that 333 gallons is equal to 5328 cups.

Thus the answer will be 5328 cups.

Answer:

48 cups(BTW he meant 33 galons, IVE had this before). lol you need to put the double number line image. first u have to divide 64/4 to get 16, Then it says "How many cups are in 3 gallons". There fore, U multiply 16 to 3 to get ur answer "48".

What word phrase can you use to represent the algebraic expression 7x?

A. 7 more than a number x
B. the product of 7 and a number x
C. the quotient of 7 and a number x
D. 7 less than a number x

Answers

Answer:

B. the product of 7 and a number x

Step-by-step explanation:

7x is 7 multiplied by x.

Answer:

b is the product

Step-by-step explanation:

Other Questions
Nosotros queremos alquilar un apartamento. Vamos a ver un apartamento en la ciudad. El dueo de la casa nos da las llaves y entramos al departamento. A mi __________ gusta la decoracin del apartamento. __________ gusta el jardn tambin porque que es bastante amplio y all podra jugar tenis. Estoy contento porque soy atltico y mi amigo Fernando __________ compr una raqueta de tenis hace poco. A mis amigos no __________ gustan los cuartos de la casa porque son pequeos. Adems, a Vctor __________ aburre el barrio. NEED IT ASAPTony is shopping for new tires for his 4-wheel-drive truck. In addition to the price of the tires, there is a 10% sales tax plus a state-mandated $45 fee for disposing of his old tires. If Tony has determined that he will spend less than $559.80 total, then what is the price range he can spend on the tire set? Which word best completes this sentence? Toms y Marta _________________ un regalo muy caro para Juanita. A. compramos B. compr C. compraron D. compr Find the perimeter of rectangle whose length is 40 and the diagonal is 41 cm Identify two prices indices? Sheffield Corp. determines that 53000 pounds of direct materials are needed for production in July. There are 3100 pounds of direct materials on hand at July 1 and the desired ending inventory is 2700 pounds. If the cost per unit of direct materials is $3, what is the budgeted total cost of direct materials purchases David is buying a cheese wheel priced at 650 before tax. The store charges 8%, percent sales tax.What is the total price, including tax, David pays for the cheese wheel? How did Ford first decide to stop inflation? by raising taxesby lowering pricesby hiring more people for jobs by creating new jobs in government x + y = 0y = 2x + 68Now graph y = 2x + 6 What are the graphing points (there needs to be 3 pairs) Radar is used to determine distances to various objects by measuring the round-trip time for an echo from the object. (a) How far away (in m) is the planet Venus if the echo time is 900 s? m (b) What is the echo time (in s) for a car 80.0 m from a Highway Patrol radar unit? s (c) How accurately (in nanoseconds) must you be able to measure the echo time to an airplane 12.0 km away to determine its distance within 11.5 m? ns The following information was available for the year ended December 31, 2013: Sales $ 520,000 Dividends per share $ 1.36 Net income 74,480 Earnings per share 3.00 Average total assets 820,000 Market price per share at year-end 28.50 Average total stockholders equity 380,000 Required: a. Calculate margin, turnover, and ROI for the year ended December 31, 2013. (Do not round intermediate calculations and ro Bioplastics made from corn grown using industrialized agricultural methods would have a smaller ecological footprint that bioplastics made from native prairie switchgrass.A. TrueB. False You are helping a customer who wants to purchase pavers and they have selecteda style and color they like. How should you proceed next?A. Thank the customer for shopping with usB. Ask the customer if they need the patio project installedC. Close the sale with the customerD. Ask the customer if they need any other products for the project. If a^b= b^a and a = 2b then find the value of a^2+b^2a) 20b) 30c) 28d) 24 At what altitude the value of g would become one fourth ()of the surface of the earth? How to do this question plz answer me step by step plzz plz George is designing ledges for the octagonal ( 8 side ) gazebo. All sides are equal length, and each ledge much be 18 inches shorter then the sides. a: what is the minimum length of wood he should purchase if the perimeter of the gazebo is 64 feet ?b : what as your solution process Den pushes a desk 400 cm across the floor. He exerts a force of 10 N for 8 s to move the desk. What is his power output? (Power: P = W/t) 1.25 W 5 W 40 W 500 W Which process involves monitoring identified and residual risks, identifying new risks, carrying out risk response plans, and evaluating the effectiveness of risk strategies throughout the life of the project To be responsible in financial planning you must set goals. To reach these goals you must create a plan. What is a specific financial goal that you have