Answer:
c = 468 / 13
Step-by-step explanation:
If c is the number of cans of soda in each case, we know that the number of cans in 13 cases is 13 * c = 13c, and since the number of cans in 13 cases is 468 and we know that "is" denotes that we need to use the "=" sign, the equation is 13c = 468. To get rid of the 13, we need to divide both sides of the equation by 13 because division is the opposite of multiplication, therefore the answer is c = 468 / 13.
Answer:
468/13 = c
Step-by-step explanation: Further explanation :
[tex]13 \:cases = 468\:cans\\1 \:case\:\:\:\:= c\: cans\\Cross\:Multiply \\\\13x = 468\\\\\frac{13x}{13} = \frac{468}{13} \\\\c = 36\: cans[/tex]
The hypotenuse of a right triangle is 5 inches long. One of the legs is 1 inch longer than the other. What is the length (in inches) of the longer leg?
Answer: 4 inches
Step-by-step explanation:
1. We gonna find the the length of the right triangle legs using Phitagor theorem.
c²=a²+b² (1) , where c is triangle's hypotenuse
a and b are the triangle's legs.
Let the leg a =x, so leg b=x+1 inches
Now we can write the equation using (1)
25=x²+(x+1)²
25=x²+x²+2*x+1
2*x²+2*x-24=0 ( divide by 2 both sides of the equation)
x²+x-12=0
Find the discriminant D=1+12*4=49
√D=7
x1= (-1+7)/2=3 x2=(-1-7)/2=-4 - x2=-4 not possible so length of the leg can not be negative.
So the shorter leg a=x= 3 inches
The longer leg b=x+1=4 inches
A parent increases a child’s monthly allowance by 20% each year. If the allowance is $8 per month now, in about how many years will it take to reach $20 per month? Use the equation 20 = 8(1.2)x to solve the problem. Round to the nearest year. 1 year 5 years 2 years 16 years
Answer:
6 years
Step-by-step explanation:
A parent increases a child’s monthly allowance by 20% each year. If the allowance is $8 per month now. This is an exponential function, An exponential function is given by:
[tex]y=ab^x[/tex]
Let x be the number of years and y be the allowance. The initial allowance is $8, this means at x = 0, y = 8
[tex]y=ab^x\\8=ab^0\\a=8[/tex]
Since it increases by 20% each year, i.e 100% + 20% = 1 + 0.2 = 1.2. This means that b = 1.2
Therefore:
[tex]y=ab^x\\y=8(1.2^x) \\[/tex]
To find the number of years will it take to reach $20 per month, we substitute y = 20 and find x
[tex]20=8(1.2)^x\\20/8=1.2^x\\1.2^x=2.5\\Taking \ natural\ log\ of \ both\ sides:\\ln(1.2^x)=ln2.5\\xln(1.2)=0.9163\\x=0.9163/ln(1.2)\\x=5.026[/tex]
x = 6 years to the nearest year
Answer:
5 years
Step-by-step explanation:444
The image of (-4,6) reflected along the y-axis is
a. (4, -6)
b. (-4,-6)
c. (4, 6)
d. (-4, 6)
Answer:
C(4,6)
Step-by-step explanation:
the x turns into its opposite when reflected across y same thing for y when reflected across x
Answer:
c. (4, 6)
Step-by-step explanation:
The rule of an reflection about the y-axis is: [tex]A(x,y)\rightarrow A'(-x,y)[/tex]
Apply the rule to point (-4, 6):
[tex]\frac{(-4,6)\rightarrow\boxed{(4,6)}}{(x,y)\rightarrow(-x,y)}[/tex]
Option C should be the correct answer.
Two balls are drawn in succession out of a box containing 5 red and 4 white balls. Find the probability that at least 1 ball was red, given that the first ball was (Upper A )Replaced before the second draw. (Upper B )Not replaced before the second draw. (A) Find the probability that at least 1 ball was red, given that the first ball was replaced before the second draw. StartFraction 24 Over 49 EndFraction (Simplify your answer. Type an integer or a fraction.) (B) Find the probability that at least 1 ball was red, given that the first ball was not replaced before the second draw.
Answer:
The answer is below
Step-by-step explanation:
The box contains 5 red and 4 white balls.
A) The probability that at least 1 ball was red = P(both are red) + P(first is red and second is white) + P(first is white second is red)
Given that the first ball was (Upper A )Replaced before the second draw:
P(both are red) = P(red) × P(red) = 5/9 × 5/9 = 25/81
P(first is red and second is white) = P(red) × P(white) = 5/9 × 4/9 = 20/81
P(first is white and second is red) = P(white) × P(red) = 4/9 × 5/9 = 20/81
The probability that at least 1 ball was red = 25/81 + 20/81 + 20/81 = 65/81
B) The probability that at least 1 ball was red = P(both are red) + P(first is red and second is white) + P(first is white second is red)
Given that the first ball was not Replaced before the second draw:
P(both are red) = P(red) × P(red) = 5/9 × 4/8 = 20/72 (since it was not replaced after the first draw the number of red ball remaining would be 4 and the total ball remaining would be 8)
P(first is red second is white) = P(red) × P(white) = 5/9 × 4/8 = 20/72
P(first is white and second is red) = P(white) × P(red) = 4/9 × 5/8 = 20/72
The probability that at least 1 ball was red = 20/72 + 20/72 + 20/72 = 60/72
Amira has 3/4 of a bag of cat food her cat eats 1/10 of a bag per week how many weeks will the food last
Find the domain and the range of the relation.
Find the domain of the relation. Select the correct choice below and fill in the answer box to
complete your choice.
O A. The domain is _
(Type your answer in interval notation.)
B. The domain is {_}
(Type an integer or a fraction. Use a comma to separate answers as needed.)
Find the range of the relation. Select the correct choice below and fill in the answer box to
complete your choice.
O A. The range is _
(Type an integer or a fraction. Use a comma to separate answers as needed.)
OB. The range is {_}
Answer:
1) the domain is all real numbers
2) the range is
[tex]y \geqslant 3[/tex]
4. Solve the system of equations. (6 points) Part I: Explain the steps you would take to solve the system by eliminating the x-terms. (1 point) Part II: Explain the steps you would take to solve the system by eliminating the y-terms. (2 points) Part III: Choose either of the methods described in parts I or II to solve the system of equations. Write your answer as an ordered pair. Show your work. (3 points)
Answer:
The system of equations you want to be solved is not given. I would however give an example with which the method of elimination will be shown, and can be used in solving problems of the nature.
Step-by-step explanation:
Consider the system of equations:
x + y = 7 ................................(1)
2x - y = 8 ..............................(2)
To eliminate x:
First multiply (1) by 2 to have
2x + 2y = 14 ...........................(3)
Next, subtract (2) from (3) to have
3y = 6
y = 6/3 = 2
To eliminate y:
Add (1) and (2) to have
3x = 15
x = 15/3 = 5
Therefore, (x, y) = (5, 2).
A sample of bacteria is decaying according to a half-life model. If the sample begins with 700 bacteria, and after 10 minutes there are 140 bacteria, after how many minutes will there be 40 bacteria remaining? Round your answer to the nearest whole number.
Answer:
18 minutes
Step-by-step explanation:
A = A₀ (½)^(t / T)
where A is the final amount,
A₀ is the initial amount,
t is the time,
and T is the half life.
A = 140 when t = 10. Solve for the half life:
140 = 700 (½)^(10 / T)
0.2 = ½^(10 / T)
log 0.2 = (10 / T) log 0.5
10 / T = 2.32
T = 4.31
When A = 40, t is:
40 = 700 (½)^(t / 4.31)
0.057 = ½^(t / 4.31)
log 0.057 = (t / 4.31) log 0.5
t / 4.31 = 4.13
t = 17.8
Rounded to the nearest whole number, it takes 18 minutes.
The time taken for bacteria to reach 40 according to the exponential half-life decay formula is 18 minutes.
What is an exponential function?In mathematics, an exponential function is a relationship of the type y = ax, where x is an independent variable that spans the entire real number line and is expressed as the exponent of a positive number.
The half-life decay formula is given as,
N(t) = N₀ [tex](1/2)^{(t / T)}[/tex]
Where T is half-life while t is the time taken.
N₀ is the initial amount,
As per the given,
N(t) = 140 when t = 10.
140 = 700 [tex](1/2)^{(t / T)}[/tex]
Take log both sides,
log 0.2 = (10 / T) log 0.5
10 / T = 2.32
T = 4.31 minutes
Put N(t) = 40
40 = 700[tex](1/2)^{(t / 4.31)}[/tex]
Take log both sides,
log 0.057 = (t / 4.31) log 0.5
t / 4.31 = 4.13
t = 17.8 ≈ 18 minutes
Hence "The time taken for bacteria to reach 40 according to the exponential half-life decay formula is 18 minutes".
For more about exponential function,
https://brainly.com/question/15352175
#SPJ2
At α = 0.001, is the overall model significant?Group of answer choicesNo, F* < FcThe test is inconclusive because 0.001 < p < 0.10Yes, F* < Fc, and p < 0.05.Yes, F* > Fc, and p < 0.001.Yes, F* > Fc, and p > 0.05.
Answer:
No, F* < Fc
Step-by-step explanation:
Significance level or alpha level is the probability of rejecting the null hypothesis when null hypothesis is true. It is considered as a probability of making a wrong decision. It is a statistical test which determines probability of type I error. If the obtained probability is equal of less than critical probability value then reject the null hypothesis .
A Prefeitura da Cidade Feliz doou um
terreno para a Comunidade Viver Bem
discutir projetos que deveriam ser
implantados no local. Após um planejamento
participativo, ficou acertado que 45% da área
total desse terreno serão destinados a uma
creche;
3%,
para banheiros públicos e 12%
para uma academia de ginástica comunitária.
A sobra da área, que é de 960m² será
utilizada para uma pequena praça com
parque de lazer. Qual é a área total ocupada
pela creche, banheiros públicos e academia
de ginástica comunitária?
Aqui temos a seguinte divisao de terreno:
creche + banheiros + academia = 45% + 3% + 12% = 60%
O que sobra: Fazendo a conta, 100 - 60 = 40, restará 40%
No enunciado informa que sobraram 960m².
Logo concluimos que 40% = 960m²
Sendo assim, regra de 3:
m² %
960 -------- 40
X -------- 60
40X = 960 . 60
X = 57600/40
X = 1440
Logo 1440m² é destinado para: creche, banheiros públicos e academia
de ginástica comunitária.
O terreno tem um total de 1440 + 960 = 2400m²
para cada espaço - novamente diversas regra de 3:
→ creche = 45%
m² %
2400 -------- 100
X -------- 45
X = 108000/100 = 1080
→ banheiros públicos = 3%
m² %
2400 -------- 100
X -------- 3
X = 7200/100 = 72
→ academia de ginástica comunitária = 12%
m² %
2400 -------- 100
X -------- 12
X = 28800/100 = 288
provando:
60% = 1440m² (visto acima)
creche - 1080
banheiros - 72
academia - 288
1080 + 72 + 288 = 1440 (60%)
Given a population with a mean of µ = 100 and a variance of σ2 = 1600, the central limit theorem applies when the sample size is n ≥ 25. A random sample of size n = 50 is obtained. • What are the mean and variance of the sampling distribution for the sample means? • What is the probability that ¯X > 110?
Answer:
The probability that the sample mean is more than 110 is 0.0384.
Step-by-step explanation:
According to the Central Limit Theorem if we have an unknown population with mean μ and standard deviation σ and appropriately huge random samples (n > 30) are selected from the population with replacement, then the sampling distribution of the sample mean will be approximately normally distributed.
Then, the mean of the sampling distribution of sample mean is given by:
[tex]\mu_{\bar x}=\mu[/tex]
And the variance of the sampling distribution of sample mean is given by:
[tex]\sigma^{2}_{\bar x}=\frac{\sigma^{2}}{n}[/tex]
The information provided is:
[tex]n=50\\\\\mu=100\\\\\sigma^{2}=1600[/tex]
Since n = 50 > 30, the central limit theorem can be applied to approximate the sampling distribution of sample mean by the normal distribution.
The mean variance of the sampling distribution for the sample mean are:
[tex]\mu_{\bar x}=\mu=100\\\\\sigma^{2}_{\bar x}=\frac{\sigma^{2}}{n}=\frac{1600}{50}=32[/tex]
That is, [tex]\bar X\sim N(100, 32)[/tex].
Compute the probability that the sample mean is more than 110 as follows:
[tex]P(\bar X>110)=P(\frac{\bar X-\mu_{\bar x}}{\sigma_{\bar x}}>\frac{110-100}{\sqrt{32}})[/tex]
[tex]=P(Z>1.77)\\=1-P(Z<1.77)\\=1-0.96164\\=0.03836\\\approx 0.0384[/tex]
*Use a z-table.
Thus, the probability that the sample mean is more than 110 is 0.0384.
If 2y = 6 - 3x, find y when x = 0
Answer:
2y= 6-3x when x=0
2y= 6-3(0)
2y= 6-0
2y= 6
y= 6/2
y= 3
#i'm indonesian
#hope it helps.
Answer:
[tex] \boxed{y = 3}[/tex]
Step-by-step explanation:
Given, x = 0
[tex] \mathsf{2y = 6 - 3x}[/tex]
plug the value of x
⇒[tex] \mathsf{2y = 6 - 3 \times 0}[/tex]
Multiply the numbers
⇒[tex] \mathsf{2y = 6 - 0}[/tex]
Calculate the difference
⇒[tex] \mathsf{2y = 6}[/tex]
Divide both sides of the equation by 2
⇒[tex] \mathsf{ \frac{2y}{2} = \frac{6}{2} }[/tex]
Calculate
⇒[tex] \mathsf{y = 3}[/tex]
Hope I helped!
Best regards!
a is less than or equal to 10
Lmk
Answer:
[tex]a \leqslant 10[/tex]
Step-by-step explanation:
a is less than or equal to 10
less than: <
equal: =
less than or equal to: ≤
Hope this helps ;) ❤❤❤
hope it helps you
imp=draw dark shaded point in thqt line and point towards left
Find X using the Angle Sum Theorem
Answer:
x = 20°
Step-by-step explanation:
So when I learned it we called it the exterior angle theorem not the angle sum theorem but here goes.
Since exterior angle = 110 Degrees,
--> The Inner 2 angles's sum = 110 Degrees
so, 70 + 2x = 110
=> 2x = 40
x = 20
x = 20°
Hope this helps!
If x = -1 then how much is 2x - 1
a) 1
b) -3
c) -2
hurry please need to turn in 10 min
Answer: -3
Step-by-step explanation: 2x = -2 then you subtract 1 from that which is the same as adding negative one so -2 - 1 or -2 + -1 = -3
Listed below are the commissions earned ($000) last year by a sample of 15 sales representatives at Furniture Patch Inc.
$4.0 $6.0 $7.4 $10.6 $12.5 $13.6 $15.4 $15.8 $16.8
$17.4 $19.1 $22.3 $37.1 $43.2 $81.4
a. Determine the mean, median, and the standard deviation. (Round your answers to 2 decimal places.)
Mean $
Median $
Standard deviation $
b. Determine the coefficient of skewness using Pearson
Answer:
Mean= $21.5067
Median = $15.8
Standard deviation= $19.02
Coefficient of skewness= $0.8991
Step-by-step explanation:
Mean =( $4.0 +$6.0 +$7.4+ $10.6 +$12.5+ $13.6+ $15.4+ $15.8 +$16.8
+$17.4+ $19.1 +$22.3+ $37.1 +$43.2 +$81.4)/15
Mean =$ 322.6/15
Mean= $21.5067
Median= middle number
Median = $15.8
Variance=( ($4.0-.$21.5)²+( $6.0. -.$21.5)²+( $7.4 -.$21.5)²+( $10.6 -.$21.5)²+( $12.5 -.$21.5)²+( $13.6. -.$21.5)²+ ($15.4 -.$21.5)²+( $15.8 -.$21.5)²+ ( $16.8 -.$21.5)²+ ($17.4-.$21.5)² +($19.1 -.$21.5)²+ ($22.3 -.$21.5)²+ ($37.1 -.$21.5)²+ ($43.2-.$21.5)²+( $81.4-.$21.5)²)/15
Variance=$ 5424.79/15
Variance=$ 361.65
Standard deviation= √ variance
Standard deviation= √361.65
Standard deviation= $19.02
Coefficient of skewness
=3( mean-median)/standard deviation
= 3(21.5-15.8)/19.02
= 3(5.7)/19.02
= 17.1/19.02
Coefficient of skewness= 0.8991
The product of a number and 3 is equal to 15 minutes twice the number, find the number.
Answer:
The answer is 3Step-by-step explanation:
Let the number to be found be x
The product of a number and 3 is written as
3 × x = 3x15 minus twice the number is written as
15 - 2xNow equate the two statements
That's
3x = 15 - 2x
Group like terms
3x + 2x = 15
5x = 15
Divide both sides by 5
the final answer is
x = 3Hope this helps you
The length of each side of a cubical wooden block is 16 inches. What is the volume of
the block
Hey there! I'm happy to help!
To find the volume of a cube, you simply take whatever the side length is and multiply it by itself 3 times, which is also known as cubing the number!
16×16×16=4096
You can also write it as 16³=4096
This is because the length is 16, the width is 16, and the height is 16, so you multiply them all together!
I hope that this helps! Have a wonderful day!
Find x . Round to the nearest tenth of a degree.
Answer:
36.9°
Step-by-step explanation:
Sin x = 9/15 = 3/5
x = sin^-1 3/5
x= 36.87
x= 36.9° to nearest tenth
There are three commercial tax-preparation offices in City A. The local Better Business Bureau has been receiving some complaints that one of the offices does not understand tax law well enough to provide expert advice. The Better Business Bureau has decided to invest several hundred dollars in grant money to test the claim. It has selected four people at random and has asked that they allow each of the offices to prepare their taxes using the same information. The following data show the tax bills ($1,000s) as figured by each office. The following data show the tax bills as figured by each office. The data are also located in the CD-ROM file Tax-test.Return Office 1 Office 2 Office 31 4376.20 5100.10 4988.032 5678.45 6234.23 5489.233 2341.78 2242.60 2121.904 9875.33 10300.30 9845.605 7650.20 8002.90 7590.886 1324.80 1450.90 1356.89Required:Use the ANOVA procedure on your calculator for completely randomized designs to determine whether there is a significant difference in the mean taxes due on tax returns?
Answer:
I have not answer
plz follow me....
A television screen has a length to width ratio of 8 to 5 and a perimeter of 117 inches. What is the diagonal measure of the screen (to the nearest tenth of an inch)?
Answer:
[tex]D = 42.5\ inch[/tex]
Step-by-step explanation:
Given
[tex]L = Length[/tex] and [tex]W = Width[/tex]
[tex]L:W = 8: 5[/tex]
[tex]Perimeter = 117[/tex]
Required
Determine the Diagonal
First, the dimension of the screen has to be calculated;
Recall that; [tex]L:W = 8: 5[/tex]
Convert to division
[tex]\frac{L}{W} = \frac{8}{5}[/tex]
Multiply both sides by W
[tex]W * \frac{L}{W} = \frac{8}{5} * W[/tex]
[tex]L = \frac{8W}{5}[/tex]
The perimeter of a rectangle:
[tex]Perimeter = 2(L+W)[/tex]
Substitute [tex]L = \frac{8W}{5}[/tex]
[tex]Perimeter = 2(\frac{8W}{5}+W)[/tex]
Take LCM
[tex]Perimeter = 2(\frac{8W + 5W}{5})[/tex]
[tex]Perimeter = 2(\frac{13W}{5})[/tex]
Substitute 117 for Perimeter
[tex]117 = 2(\frac{13W}{5})[/tex]
[tex]117 = \frac{26W}{5}[/tex]
Multiply both sides by [tex]\frac{5}{26}[/tex]
[tex]\frac{5}{26} * 117 = \frac{26W}{5} * \frac{5}{26}[/tex]
[tex]\frac{5 * 117}{26} = W[/tex]
[tex]\frac{585}{26} = W[/tex]
[tex]22.5 = W[/tex]
[tex]W = 22.5[/tex]
Recall that
[tex]L = \frac{8W}{5}[/tex]
[tex]L = \frac{8 * 22.5}{5}[/tex]
[tex]L = \frac{180}{5}[/tex]
[tex]L = 36[/tex]
The diagonal of a rectangle is calculated using Pythagoras theorem as thus;
[tex]D = \sqrt{L^2 + W^2}[/tex]
Substitute values for L and W
[tex]D = \sqrt{36^2 + 22.5^2}[/tex]
[tex]D = \sqrt{1296 + 506.25}[/tex]
[tex]D = \sqrt{1802.25}[/tex]
[tex]D = \sqrt{1802.25}[/tex]
[tex]D = 42.4529150943[/tex]
[tex]D = 42.5\ inch[/tex] (Approximated)
If you use a 5/8 inch drill bit instead of a 3/16 that the project called for ,your hole will be too . by inches
The amounts of nicotine in a certain brand of cigarette are normally distributed with a mean of 0.966 grams and a standard deviation of 0.315 grams. Find the probability of randomly selecting a cigarette with 0.305 grams of nicotine or less.
Answer:
The probability is [tex]P(X \le 0.305 ) = 0.01795[/tex]
Step-by-step explanation:
From the question we are told that
The population mean is [tex]\mu = 0.966 \ grams[/tex]
The standard deviation is [tex]\sigma = 0.315 \ grams[/tex]
Given that the amounts of nicotine in a certain brand of cigarette are normally distributed
Then the probability of randomly selecting a cigarette with 0.305 grams of nicotine or less is mathematically represented as
[tex]P(X \le 0.305 ) = 1 - P(X > 0.305) = 1 - P(\frac{X - \mu }{\sigma } > \frac{0.305 - \mu }{\sigma } )[/tex]
Generally
[tex]\frac{X - \mu }{\sigma } = Z (The \ standardized \ value \ of X )[/tex]
So
[tex]P(X \le 0.305 ) = 1 - P(X > 0.305) = 1 - P(Z > \frac{0.305 - 0.966 }{0.315} )[/tex]
[tex]P(X \le 0.305 ) = 1 - P(X > 0.305) = 1 - P(Z >-2.0984 )[/tex]
From the z-table(reference calculator dot net ) value of [tex]P(Z >-2.0984 ) =0.98205[/tex]
So
[tex]P(X \le 0.305 ) = 1 - P(X > 0.305) = 1 - 0.98205[/tex]
=> [tex]P(X \le 0.305 ) = 1 - P(X > 0.305) = 0.01795[/tex]
=> [tex]P(X \le 0.305 ) = 0.01795[/tex]
Solve for x: 3(x + 1)= -2(x - 1) + 6.
Answer:
x=1
Step-by-step explanation:
3(x + 1)= -2(x - 1) + 6.
Distribute
3x+3 = -2x+2+6
Combine like terms
3x+3 = -2x+8
Add 2x to each side
3x+3+2x = 8
5x+3 = 8
Subtract 3 from each side
5x =5
Divide by 5
x =1
The probability distribution of number of televisions per household in a small town is given below.
x 0 1 2 3
P(x) 0.05 0.15 0.25 0.55
a. Find the probability of randomly selecting a household that has one or two televisions.
b. Find probability of randomly selecting a household that has one or two televisions
Answer: 0.20
Step-by-step explanation:
The given probability distribution of number of televisions per household in a small town:
x 0 1 2 3
P(x) 0.05 0.15 0.25 0.55
To find : The probability of randomly selecting a household that has one or two televisions ( in both parts a. and b.).
The computations for this would be :
P( 1 or 2) = P(1)+P(2)
= 0.05+0.15
= 0.20
Hence, the required probability= 0.20
Answer:
Step-by-step explanation:
The graph of y = −4x2 + 13x + 12 is shown below. What are the zeros of the function (as exact values), the y-intercept, and the maximum or minimum value of the function?
Answer:
zeros: -3/4, 4y-intercept: 12maximum: 22 9/16Step-by-step explanation:
The graph tells you the zeros of the function are x=-3/4 and x=4.
The y-intercept is the constant in the function: 12.
The maximum is 22.5625 at x = 1.625.
A carpenter is making doors that are 20582058 millimeters tall. If the doors are too long they must be trimmed, and if they are too short they cannot be used. A sample of 1010 doors is made, and it is found that they have a mean of 20462046 millimeters with a standard deviation of 1515. Is there evidence at the 0.050.05 level that the doors are too short and unusable
Answer:
Z= 0.253
Z∝/2 = ± 1.96
Step-by-step explanation:
Formulate the null and alternative hypotheses as
H0 : u1= u2 against Ha : u1≠ u2 This is a two sided test
Here ∝= 0.005
For alpha by 2 for a two tailed test Z∝/2 = ± 1.96
Standard deviation = s= 15
n= 10
The test statistic used here is
Z = x- x`/ s/√n
Z= 2058- 2046 / 15 / √10
Z= 0.253
Since the calculated value of Z= 0.253 falls in the critical region we reject the null hypothesis.
There is evidence at the 0.05 level that the doors are too short and unusable.
in this diagram, bac~edf. if the area of bac= 6 in.², what is the area of edf? PLZ HELP PLZ PLZ PLZ
Answer:
2.7 in²
Step-by-step explanation:
Area of ∆BAC : ∆Area of EDF = BC² : EF² (based on the area of similar triangles theorem)
Thus:
[tex] 6 in^2 : x in^2 = (3 in)^2 : (2 in)^2 [/tex]
[tex]\frac{6}{x} = \frac{3^2}{2^2}[/tex]
[tex]\frac{6}{x} = 2.25[/tex]
[tex]\frac{6}{x}*x = 2.25*x[/tex]
[tex]6 = 2.25x[/tex]
[tex]\frac{6}{2.25} = \frac{2.25x}{2.25}[/tex]
[tex]2.67 = x[/tex]
Area of ∆EDF = 2.7 in²
Question 3: The gasoline gauge on a van initially read ⅛ full. When 15 gallons of gasoline were added to the tank, the gauge then read ¾ full. How many more gallons would be needed to fill the tank?
Answer:
hi
Step-by-step explanation:
Answer:
6
Step-by-step explanation:
3/4=6/8
6/8-1/8=5/8
So 5/8 of the tank is 15 gallons. This means each 1/8 of a tank is 3 gallons.
The van is currently 6/8 full. We need to add another 2/8 to completely fill the tank.
2x3=6
You’ll need 6 more gallons to fill the tank.
Find the odds in favor and the odds against a randomly selected person from Country X, age 25 and over, with the stated amount of education. four years (or more) of college
Answer:
25 : 63 and 63 : 25
Step-by-step explanation:
This is a complete question
The table shows the educational attainment of the population of Country X, ages 25 and over. Use the data in the table, expressed in millions, to solve the problem. of 10 questions ge 1: Ages 25 and Over, in Miltions 4 Years igh College 4 Years High School (Less than College School Only 4years) Cor Moce) Total Male 29 19 25 89 Female 11 28 23 Total 2 57 42 50 [176 Find the odds in favor and the odds against a randomty selected person from Country X.age 25 and over, with the stated amount of education. four years (or more) of college 21:67, 67:21 63:88, 88:63 25:63, 63:25 25:88, 88:25
According to the question, the relevant data provided in the question for the solution is as follows
Four years or more of college
Number of students = 50
Total = 176 students
Number of students does not belong = 126
So odds in favor is
= 50 : 126
= 25 : 63
And automatically out against the favor is 63 : 25