Answer: Its B
Explanation: took the quiz
[tex]\longrightarrow{\pink{ B. \:2\sqrt[3]{3} }}[/tex]
[tex]\sf \bf {\boxed {\mathbb {STEP-BY-STEP\:\:EXPLANATION:}}}[/tex]
[tex]= {24}^{ \frac{1}{3} } [/tex]
[tex] = \sqrt[3]{24} [/tex]
[tex] = \sqrt[3]{2 \times 2 \times 2 \times 3} [/tex]
[tex] = \sqrt[3]{ ({2})^{3} \times 3} [/tex]
[tex] = 2\sqrt[3]{3} [/tex]
[tex]\red{\large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese \: \: Mystique35♛}}}}}[/tex]
In the figure, .
∠AEB and ∠CED are congruent
.
∠AEC and ∠
are congruent by the Vertical Angles Theorem.
Answer:
∠AEC ≅ ∠BED by vertical angles theorem
Answer:
Answer:
∠AEC ≅ ∠BED by vertical angles theorem
Step-by-step explanation:
Can somebody help plz help me with this?
Answer:
N-8
Step-by-step explanation:
Please help don’t understand at all.
Answer:
tringlae mixed witha football goal take the fool goal out and go from there
Step-by-step explanation:
Put the following equation of a line into slope-intercept form, simplifying al
fractions.
2y - 3x = 18
Answer:
Step-by-step explanation:
Simplifying
2y + -3x = 18
Reorder the terms:
-3x + 2y = 18
Solving
-3x + 2y = 18
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Add '-2y' to each side of the equation.
-3x + 2y + -2y = 18 + -2y
Combine like terms: 2y + -2y = 0
-3x + 0 = 18 + -2y
-3x = 18 + -2y
Divide each side by '-3'.
x = -6 + 0.6666666667y
Simplifying
x = -6 + 0.6666666667y
I need help in this zzzzzzz
Answer:
[tex]7[/tex]
Solution:
This is a linear function. This means means that r is our rate of change.
To find r recal following formula
[tex]r=\frac{\Delta y}{\Delta x} = \frac{y_2-y_1}{x_2-x_1}[/tex]
Since this is a linear function we can choose any two points. I will choose the first two for simplicity
[tex]\Displaystyle \therefore r = \frac{42-14}{6-2}=\frac{28}{4}=7[/tex]
Can someone help I don’t understand the question
Answer:
36x
Step-by-step explanation:
OF= 6x (given radius of circle)
OB=OF+FB
= 6x +6x(given OF=FB)
= 12x
Angle D= angle B and angle O= 60°( given arc EF is 60°)
D + B + O= 180° ( sum of angles in a triangle)
x + x + 60= 180° ( let the value of remaining angles be x and D= B)
2x= 180 -60
x = 120/2
x= 60°
now, triangle DOB is a equilateral triangle because all angles are equal.
so, OB=DB=OD= 12x ( all sides are equal in equilateral triangle)
so,
perimeter of DOB= OB+DB+OD
= 12x+12x+12x
= 36x
follow me if this was helpful
Pls help will mark brainliest and 30 points
1. Answer is option 3
2. Answer is option 3
Answer:
for #1 it's the 3rd one and for #2 it's the 4th one (2.8 meters)
The area of a rectangle is expressed as (15x + 20) square feet. If the width of the rectangle is 5 feet, what is an expression to represent the length of the rectangle.
(No picture)
Answer: Length = (15x + 20) / 5
Step-by-step explanation:
The area of a rectangle is calculated as length × width. Since the area of the rectangle is expressed as (15x + 20) square feet while the width of the rectangle is 5 feet, then the expression to represent the length of the rectangle will be:
Area = length × width
(15x + 20) = length × 5
Length = (15x + 20) / 5
Therefore, the expression is Length = (15x + 20) / 5.
Solving further, the length will be:
= (15x + 20) / 5
= 3x + 4
someone please help me!! will mark brainliest :)
Answer:
hi
Step-by-step explanation:
i'll happy to help you but there isn't question
have a nice day
Answer:
If you make another question, with the picture, i will help you!
Step-by-step explanation:
Have a nice day/night!
1011+1111=in binary answer, anyone that answer me first I will follow u
Answer:
Step-by-step explanation:
answer is [tex](11010)_{2}[/tex]
please help me out here. I know the answer but I don't know what the radical is
Answer:
9
Step-by-step explanation:
There is no radical it's just 9
Element X is a radioactive isotope such that every 69 years, its mass decreases by half. Given that the initial mass of a sample of Element X is 20 grams, how much of the element would remain after 30 years, to the nearest whole number?
Answer:
[tex]15\text{ grams}[/tex]
Step-by-step explanation:
Since the mass of the radioactive isotope is halved every 69 years, we want to multiply its initial mass by [tex]1/2[/tex] every 69 years.
We can model this using the following equation:
The remaining mass, [tex]f(x)[/tex], is equal to the initial mass multiplied by [tex]\frac{1}{2}^{(\frac{t}{69})}[/tex], where [tex]t[/tex] is the number of years that have passed from the initial mass. The reason why the exponent is [tex]\frac{t}{69}[/tex] is because we only want to half the mass every 69 years, so [tex]\frac{69}{69}=1[/tex] and [tex]\frac{1}{2}^1=\frac{1}{2}[/tex].
Thus, we have:
[tex]f(x)=20\cdot \frac{1}{2}^{(t/69)}[/tex]
Substituting [tex]t=30[/tex], we get:
[tex]f(x)=20\cdot \frac{1}{2}^{(30/69)}=20\cdot 0.73980522316=14.7961044632\approx \boxed{15\text{ grams}}[/tex]
in an isosceles triangle KLM, ∠K is congruent to ∠M and m ∠M=55°. find the m ∠L
Answer:
70°
Step-by-step explanation:
m ∠L = 180-(55+55)
= 180-110
=70°
A rectangular vegetable farm measures 45 m by 15 m. It has also a path of 1m wide. What is the area of the path?
[tex]\underline \bold{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }[/tex]
[tex]\huge\underline{\sf{\red{Problem:}}}[/tex]
A rectangular vegetable farm measures 45 m by 15 m. It has also a path of 1m wide. What is the area of the path?[tex]\underline{\sf{\red{Formula\:for\: area\: of \:rectangular\: form:}}}[/tex]
[tex]\quad\quad\quad\quad\boxed{\sf{\red{➢} \: \sf{a=l×b}} }[/tex]
[tex]\underline{\sf{\red{Given:}}}[/tex]
[tex]\quad\quad\quad\quad\sf{\red{➢} \: \sf{Length\:of\:rectangular\:form = 45m} }[/tex]
[tex]\quad\quad\quad\quad\sf{\red{➢} \: \sf{Breadth\:of\:rectangular\:form = 15m} }[/tex]
[tex]\underline{\sf{\red{Solution:}}}[/tex]
[tex]\quad\quad\quad\quad\sf{\red{➢} \: \sf{a=l×b} }[/tex]
[tex]\quad\quad\quad\quad\sf{\red{➢} \: \sf{a=45m×15m} }[/tex]
[tex]\quad\quad\quad\quad\sf{\red{➢} \: \sf{a=\boxed{\sf{{675m}^{2}}}} }[/tex]
[tex]\underline{\sf{\red{For\:rectangular\: form\:with\:path:}}}[/tex]
[tex]\quad\quad\quad\quad\sf{\red{➢} \: \sf{Length\:of\:rectangular\:form = 45m+2=47m} }[/tex]
[tex]\quad\quad\quad\quad\sf{\red{➢} \: \sf{Breadth\:of\:rectangular\:form = 15m+2=17m} }[/tex]
[tex]\quad\quad\quad\quad\sf{\red{➢} \: \sf{a=l×b} }[/tex]
[tex]\quad\quad\quad\quad\sf{\red{➢} \: \sf{a=47m×17m} }[/tex]
[tex]\quad\quad\quad\quad\sf{\red{➢} \: \sf{a=\boxed{\sf{{799m}^{2}}}} }[/tex]
[tex]\huge\underline{\sf{\red{Area\:of\:path:}}}[/tex]
[tex]\quad\quad\quad\quad\sf{\red{➢} \: \sf{a={799m}^{2}-{675m}^{2}} }[/tex]
[tex]\quad\quad\quad\quad\boxed{\sf{\red{➢} \: \sf{a={124m}^{2}} }}[/tex]
[tex]\huge\underline{\sf{\red{Answer:}}}[/tex]
[tex]\huge\quad\quad\underline{\boxed{\sf{\red{a={124m}^{2}} }}}[/tex]
[tex]\underline \bold{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }[/tex]
[tex]\sf{\red{︎✰}ShineBrighter\red{︎✰}}[/tex]
[tex]\sf{✍︎ C.Rose\red{❀}}[/tex]
ฅ^•ﻌ•^ฅ
f(x)=x^2-5 find f(7)
Answer:
44
Step-by-step explanation:
substitute the 7 into the equation for x
f(x) = [tex]x^{2}[/tex] - 5
f(7) = [tex]7^{2}[/tex] - 5
f(7) = 49 - 5
f(7) = 44
Answer:
f(7) = 44
Step-by-step explanation:
To evaluate the function f(x)=x^2-5 at x = 7, replace each instance of 'x' in this function by 7:
f(7) = 7^2 - 5 = 49 - 5 = 44
So: f(7) = 44
Please help I wanna pass
Answer:
Everything is correct except for the second one and the ones you checkmarked.
Step-by-step explanation:
WILL GIVE U BRAINLIEST ♡ Rationalize the denominator of fraction with numerator square root of -36 divided by (2-3i)+(3+2i)
Answer:
[tex] - \frac{3}{13} + \frac{15i}{13} [/tex]
Step-by-step explanation:
[tex] \frac{ \sqrt{ - 36} }{(2 - 3i) + (3 + 2i)} [/tex]
Set up equation
Step 1: Simplify
[tex] \frac{6i}{5 - i} [/tex]
Step 2:Multiply by conjugate
[tex] \frac{6i}{5 - i} \times \frac{5 + i}{5 + i} [/tex]
Step 3:Simplify
[tex] \frac{30i + 6 {i}^{2} }{ {i}^{2} - 5 {}^{2} } [/tex]
We can reduce this and we must make the imaginary number and real number serpate equations.
[tex] - \frac{6}{26} + \frac{30i}{26} [/tex]
Reduce each by 2
[tex] - \frac{3}{13} + \frac{15i}{13} [/tex]
the question is on the image
Answer:
70
Step-by-step explanation:
the fraction 7/10 turns into 70% which means 70 out of 100 tickets were sold.
Answer:
70 tickets sold
Step-by-step explanation:
Multiply the number of tickets by the fraction of tickets sold
100 *7/10
Rewriting
100/10 * 7
10*7
70
Hi can anyone help me with this Q ? It’s for my final. I would appreciate it a lot !!
-
The angle of elevation from a boat to the top of a 125ft hotel is 22°
How far is the boat from the base of the hotel ? ( round to the nearest TENTH )
Answer: B
Step-by-step explanation:
Bc said so
A 28 foot ladder leans up against a building and reaches the base of a window that is 20 feet high. How far is the base of the ladder from the base of the building? Round your answer to the nearest whole foot
A 16 feet
B 20 feet
C 24 feet
D 34 feet
Answer:
20 feet
Step-by-step explanation:
The distance between base of the ladder from the base of the building is given by option B) 20 feet.
Use the Pythagorean theorem to solve this problem.
The Pythagorean theorem states that in a right-angled triangle,
The square of the length of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides.
Length of the ladder = 28 foot
Here, the ladder forms the hypotenuse, and the height of the window (20 feet)
And the distance from the base of the ladder to the base of the building (let's call it x feet) are the other two sides.
So, we have:
Ladder² = Height² + Distance²
28² = 20² + x²
Now, let's solve for x:
x² = 28²- 20²
x² = 784 - 400
x² = 384
Now, take the square root of both sides to find x:
x = √384
x ≈ 19.6 feet
Rounding to the nearest whole foot, the distance from the base of the ladder to the base of the building is 20 feet.
Therefore, the distance between base of the ladder and building is equal to option B) 20 feet.
learn more about distance here
brainly.com/question/15256256
#SPJ4
An object is thrown from a platform. Its height (in meters), x seconds after launch, is modeled by h (x) = -5 (x + 1) (x -9)
Answer:
Step-by-step explanation:
This is already factored for us, which is really nice, so now all we need to do is apply the Zero Product Property to the sets of parenthesis and solve for x, which will give us the 2 times that the object is on the ground.
x + 1 = 0 so
x = -1
x - 9 = 0 so
x = 9
We all know that time cannot ever be negative, so the time that the object is on the ground is 9 seconds after it's launched (which was from an initial height of 45 meters).
What is the following sum?
4.5+2V5
O 6.10
O 8/10
O ENG
O ONE
Answer:
[tex]6 \sqrt{5} [/tex]
Step-by-step explanation:
Take out Square root 5 as common and then add numbers
[tex]4 \sqrt{5} + 2 \sqrt{5} \\ 6 \sqrt{5} [/tex]
I really, REALLY need help. I will give brainliest to whoever figures it out.
Answer:
79.5 + 5.5x = Y
Step-by-step explanation:
Sumo wrestler gained 5.5 kg per month
After 11 month, he weighed 140 kg.
Let x be his current weight.
Then x + 11(5.5) = 140
x = 140 - 60.5
x = 79.5
If Y is the weight of the wrestler after t months, then the linear equation would be:
79.5 + 5.5t = Y
Find the distance between two points (0, 3) and (-1,3).
Answer:
5
Step-by-step explanation: i used a calculator and it said 5.099 but just round it up to 5
Answer:
1
Step-by-step explanation:
even if it is going back-wards, it is still one, think of it as absolute value
also again, if brainly tries to delete this answer, this community really is going down the dump
What is the range of the given function?
{(–2, 0), (–4, –3), (2, –9), (0, 5), (–5, 7)}
A {x | x = –5, –4, –2, 0, 2}
B {y | y = –9, –3, 0, 5, 7}
C {x | x = –9, –5, –4, –3, –2, 0, 2, 5, 7}
D {y | y = –9, –5, –4, –3, –2, 0, 2, 5, 7}
[tex]\underline \bold{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }[/tex]
[tex]\huge\underline{\sf{\red{Problem:}}}[/tex]
What is the range of the given function?(–2, 0), (–4, –3), (2, –9), (0, 5), (–5, 7)[tex]\huge\underline{\sf{\red{Choices:}}}[/tex]
A {x | x = –5, –4, –2, 0, 2}B {y | y = –9, –3, 0, 5, 7}C {x | x = –9,–5,–4,–3,–2,0,2,5,7}D {y | y = –9,–5,–4,–3,–2,0,2,5,7}[tex]\huge\underline{\sf{\red{Answer:}}}[/tex]
[tex] \quad \quad \underline{ \boxed{\sf{ \red{ B.)\: {y | y = –9, –3, 0, 5, 7} }} }}[/tex]
What is range of a function?The range of a function is the complete set of all possible resulting values of the dependent variable (y, usually), after we have substituted the domain.The definition means:The range is the resulting y-values we get after substituting all the possible x-values.How to find the range?The range of a function is the spread of possible y-values (minimum y-value to maximum y-value)Substitute different x-values into the expression for y to see what is happening. (Ask yourself: Is y always positive? Always negative? Or maybe not equal to certain values?)Make sure you look for minimum and maximum values of y.[tex]\underline \bold{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }[/tex]
#CarryOnLearning
[tex]\sf{\red{✍︎ C.Rose❀}}[/tex]
Over which interval does f have an average rate of change zero?
A. -3≤x≤5
B. -5≤x≤3
C. 2≤x≤4
D. -3≤x≤-1
Answer:
Step-by-step explanation:
The average rate of change is the slope. Slope has a formula that is the change in y over the change in x, which is a fraction. The only time a fraction can have a vlue of 0 is where the numerator of the fraction is equal to 0 (since we are not allowed to have a denominator of 0). If the change in y is in the top of the slope fraction, then we have to find the interval where the y values are the same. I'll show you one where the y values are not the same so you can compare it to the slope where the y values are the same. We will find the slope of choice A.
When x = -3, y = 0 so the coordinate is (-3, 0).
When x = 5, y = 5 so the coordinate is (5,4). Now let's find the slope (aka average rate of change) between those 2 coordinates:
[tex]m=\frac{4-0}{5-(-3)}=\frac{4}{8}=\frac{1}{2}[/tex] and the top of the fraction is a 1, not a 0, so the average rate of change between these 2 points is 1/2, not 0. Now let's do D.
When x = -3, y = 0 so the coordinate is (-3, 0).
When x = -1, y = 0 so the coordinate is (-1, 0). The slope between these 2 points is
[tex]m=\frac{0-0}{-1-(-3)}=\frac{0}{2}=0[/tex] This fraction is equal to 0 because the numerator is 0. Choice D is the one you want.
Select all the correct answers.
Cineplex operates two movie theaters in a city. The profits from one theater can be represented by the expression t^3 - t^2 + 2t - 100, where
t is the number of tickets sold. The profits from the second theater can be represented by the expression t^2 - 2t - 300.
which statements are true about the expression representing Cineplex's total profits in that city?
Answers:
The total profit expression is a binomial.
The total profit expression is a polynomial.
The total profit expression has a constant term.
The total profit expression is a polynomial
The total profit expression is a binomial
The total profit expression has a constant term
The first step to determining which type of function it is, is to add the profits in both theatres together
(t³ - t² + 2t - 100) + (t² - 2t - 300) = t³ - 400
A polynomial function is a mathematical expression that is made up of different types of variables. They include non-zero coefficients, positive exponents, and constants.
Types of polynomials include :
1. Linear polynomial function : a linear function is a function that has a single variable raised to the power of 1.
An example is x + 2
The variable x is raised to the power of 1. 2 is the constant terms
2. Quadratic polynomial function - A quadratic function is a function that usually has a single variable and it is raised to the power of 2.
An example is 2x² + 10x + 25
3. Cubic polynomial function : this is a function that usually has a single variable raised to the power of 3.
An example is 5y³ + y²
4. Binominal function: this is a function that contains only two terms.
An example is t³ - 400
t³ - 400
The above equation of the total profit has a constant term which is -400
The above equation is a polynomial. This is because it has different types of variables.
The above equation is a binomial equation because it has only two terms t³ and 400
In order to determine the type of expression the total profit is, the first step is to add the two profit expressions provided in the question. Based on the expression derived, the type of expression it is can then be deduced.
To learn more about polynomials, please check: https://brainly.com/question/17822016?referrer=searchResults
i have no idea what to do can someone pls help me quick
Pls help. It’s quite late <3
Answer:
a) 120
Step-by-step explanation:
B is twice the size of A
Multiply the polynomials.
(8x2 + 6x + 8)(6x-5)
A. 48x3 - 4x2 + 18x + 40
B. 48x3 - 76x2 + 18% - 40
C. 48x3 - 4x2 + 78x - 40
D. 48x3 - 4x2 + 18x- 40