Which expression simplifies to 7W+5?
. – 2w + 3 + 5W – 2
C. -3w + 5(2W + 1)
Cual es la respuesta

Answers

Answer 1

Answer:

[tex]\large \boxed{\mathrm{-3w + 5(2w + 1)}}[/tex]

Step-by-step explanation:

-2w + 3 + 5w - 2

Combine like terms.

3w + 1

-3w + 5(2w + 1)

Expand brackets.

-3w + 10w + 5

Combine like terms.

7w + 5

Answer 2

Answer:

The answer is C.

-3w +5(2w +1)

Step-by-step explanation:


Related Questions

find the value of each variable and the measure of each angle​

Answers

Answer:

y = 90x = 302x° = 60°(y+x)° = 120°(y-x)° = 60°

Step-by-step explanation:

Adjacent angles are supplementary, so ...

  (y +x) +(y -x) = 180

  2y = 180 . . . . . . . . . simplify

  y = 90 . . . . . . . . . . . divide by 2

__

  2x +(y +x) = 180

  3x +90 = 180 . . . . substitute for y

  x + 30 = 60 . . . . . . divide by 3

  x = 30 . . . . . . . . . . subtract 30

__

With these values of x and y, the angle measures are ...

  2x° = 2(30)° = 60°

  (y+x)° = (90+30)° = 120°

  (y-x)° = (90-30)° = 60°

Algebra Review

Write an algebraic expression for each verbal expression.

1. the sum of one-third of a number and 27

2. the product of a number squared and 4

3. Write a verbal expression for 5n^3 +9.

Answers

Answer:

Step-by-step explanation:

1. The sum of one-third of a number and 27

= [tex]\frac{1}{3}\times x +27\\= 1/3x +27[/tex]

2. The product of a number squared and 4

[tex]Let\:the\:unknown\: number\: be \:x\\\\x^2\times4\\\\= 4x^2[/tex]

3.Write a verbal expression for 5n^3 +9.

The sum of the product and of 5 and a cubed number and 9

Evaluate the expression for q = -2. 8q=

Answers

Answer:

-16

Step-by-step explanation:

8q

Let q = -2

8*-2

-16

An architect is designing a gym for a new elementary
school. The gym will be 116 feet long and have an area of
6,960 square feet. What will be the width of the gym?

Answers

The width of the gym will be W=60 feet for the area of 6,960 square feet.

What is area?

Area is defines as the space covered by a surface in the two dimensional plane.

It is given that

Area of the gym =6960 square feet

Width of the gym = ?

Length of the gym=116 feet

The width of the gym will be calculated as

[tex]A=\L\times W\\\\\\6960=116\times W\\\\\\w=\dfrac{6960}{116}=60\ \ Feet[/tex]

hence the width of the gym will be W=60 feet for the area of 6,960 square feet.

To know more about Area follow

https://brainly.com/question/3948796

#SPJ2

Multiply the following complex numbers:
(7+2i)(2+3i)

Please don’t guess

Answers

Answer:

14 + 25l + 6l^2

Step-by-step explanation:

(7 + 2i) (2 + 3i)

=> 14 + 4l + 21l + 6l^2

=> 14 + 25l + 6l^2

This is the correct answer

14+ 25|+ 6|^2 is the correct answer

Evaluate 3h(2) + 2k(3) =

Answers

Answer:

6h + 6k

Step-by-step explanation:

[tex]3h\left(2\right)+2k\left(3\right)\\\\\mathrm{Remove\:parentheses}:\quad \left(a\right)=a\\\\=3h\times \:2+2k\times \:3\\\\\mathrm{Multiply\:the\:numbers:}\:3\times \:2=6\\\\=6h+2\times \:3k\\\\\mathrm{Multiply\:the\:numbers:}\:2\times \:3=6\\\\=6h+6k[/tex]

Answer:

Answers for E-dge-nuityyy

Step-by-step explanation:

(h + k)(2) = 5

(h – k)(3) = 9

Evaluate 3h(2) + 2k(3) = 17

In triangle ABC, ∠ABC=70° and ∠ACB=50°. Points M and N lie on sides AB and AC respectively such that ∠MCB=40° and ∠NBC=50°. Find m∠NMC.

Answers

Answer:

∠NMC  = 50°

Step-by-step explanation:

The interpretation of the information given in the question can be seen in the attached images below.

In ΔABC;

∠ A + ∠ B + ∠ C = 180°    (sum of angles in a triangle)

∠ A + 70°  + 50°  = 180°

∠ A = 180° - 70° - 50°

∠ A =  180° - 120°

∠ A =  60°

In ΔAMN ; the base angle are equal , let the base angles be x and y

So; x = y   (base angle of an equilateral  triangle)

Then;

x + x + 60° = 180°

2x +  60° = 180°

2x = 180° - 60°

2x = 120°

x = 120°/2

x = 60°

∴ x = 60° , y = 60°

In ΔBQC

∠a + ∠e + ∠b = 180°

50° + ∠e + 40° = 180°

∠e = 180° - 50° - 40°

∠e = 180° - 90°

∠e = 90°

At point Q , ∠e = ∠f = ∠g = ∠h = 90°  (angles at a point)

∠i  = 50° - 40° = 10°

In ΔNQC

∠f + ∠i   + ∠j = 180°

90° + 10° + ∠j = 180°

∠j  = 180° - 90°-10°

∠j  = 180° - 100°

∠j  = 80°

From  line AC , at point N , ∠y + ∠c + ∠j = 180°   (sum of angles on a straight line)

60° + ∠c + ∠80° = 180°

∠c  = 180° - 60°-80°

∠c  = 180° - 140°

∠c  = 40°

Recall that :

At point Q , ∠e = ∠f = ∠g = ∠h = 90°  (angles at a point)

Then In Δ NMC ;

∠d + ∠h + ∠c = 180°   (sum of angles in a triangle)

∠d + 90° + 40° = 180°

∠d  = 180° - 90° -40°

∠d  = 180° - 130°

∠d  = 50°

Therefore, ∠NMC = ∠d  = 50°

If 2 x 2 + 13 x − 7 = 0 , then x could equal which of the following?

Answers

Hi there! :)

Answer:

x = 1/2 or -7.

Step-by-step explanation:

(I'm assuming the expression is 2x² + 13x - 7 = 0)

Factor the equation to solve for the possible values of "x":

2x² + 13x - 7 = 0

When factored, we get:

(2x - 1) ( x + 7) = 0

Use the Zero-Product property to solve for the roots:

2x - 1 = 0

2x = 1

x = 1/2.

-----------

x + 7 = 0

x = -7.

Therefore, possible values of x are x = -1/2, 7.

Answer:

x = 1/2     x=-7

Step-by-step explanation:

2 x^2  + 13 x − 7 = 0

Factor

(2x-1)(x+7)=0

Using the zero product property

2x-1 =0   x+7=0

2x=1       x =-7

x = 1/2     x=-7

Sarah knows how important it is to budget her monthly expenses. She earns $3,120 every month and her monthly expenses total to $2,130. Sarah has summarized her monthly expenses using the pie chart below. What percent of Sarah's monthly income is left over after she pays her monthly bills? Round to the dollar​

Answers

Answer: 37.1%

Step-by-step explanation:

2130/3120×100% = 68.3%

100% - 68.3%

=31.7%

37.1%

which makes that $460

May I have brainliest please? :)

Also, the person above me smells like how a diaper tastes

Convert the following:
4 quarts is equivalent to
ao liters (rounded to the hundredth)

Answers

Answer:  3.79 litres

Step-by-step explanation:

1 litre is equivalent to about ‭1.05668821‬ American quarts.

4 quarts would therefore be;

= 4/‭1.05668821‬

= 3.78541178

= 3.79 litres

Use the following recursive formula to answer the question.
A1=-3/2
an=an-1+1/2
what’s is a9?

Answers

Step-by-step explanation:

a2=a1+1/2=-1

a3=a2+1/2=-1/2, then we have common difference 0.5

a9=a1+(n-1)d

a9=-3/2+(8)0.5=5/2

Express as a trinomial (3x+8) (x+10)

Answers

Answer:

[tex]3x^{2} +38x+80[/tex]

Step-by-step explanation:

Hello!

A trinomial is a expression consisting of three different terms

To turn this into a trinomial we multiply everything to each other

                    3x                    

3x * x = [tex]3x^{2}[/tex]

3x * 10 = 30x

                    8                      

8 * x = 8x

8 * 10 = 80

Now we put them all together in an equation

[tex]3x^{2} +30x+8x+80[/tex]

Combine like terms

[tex]3x^{2} +38x+80[/tex]

The answer is [tex]3x^{2} +38x+80[/tex]

Hope this helps!

4. The general population (Population 2) has a mean of 30 and a standard deviation of 5, and the cutoff Z score for significance in a study involving one participant is 1.96. If the raw score obtained by the participant is 45, what decisions should be made about the null and research hypotheses?

Answers

Answer:

The null hypothesis is rejected and  research hypotheses is supported

Step-by-step explanation:

From the question we are told that

    The population mean is  [tex]\mu = 30[/tex]

     The standard deviation is [tex]\sigma = 5[/tex]

      The sample size is  n =  1

      The  cutoff Z score for significance is  [tex]Z_{\alpha } = 1.96[/tex]

       The mean score is  [tex]\= x = 45[/tex]

Generally the test hypothesis is mathematically represented as

            [tex]t = \frac{\= x - \mu }{ \frac{ \sigma }{\sqrt{n} } }[/tex]

=>         [tex]t = \frac{45 - 30 }{ \frac{ 5}{\sqrt{1} } }[/tex]

=>         [tex]t = 3[/tex]

From the obtained value  we can see that [tex]t > Z_{\alpha }[/tex]

Hence the null hypothesis is rejected and  research hypotheses is supported

           

 

The Tran family and the Green family each used their sprinklers last summer. The water output rate for the Tran family's sprinkler was 35L per hour. The water output rate for the Green family's sprinkler was 40L per hour. The families used their sprinklers for a combined total of 50 hours, resulting in a total water output of 1900L. How long was each sprinkler used?

Answers

Answer:

Tran family's sprinkler was used for 20 hours

Green's  family's sprinkler was used for 30 hours

Step-by-step explanation:

Let the hours for which Tran family's sprinkler used is x hours

water output rate for the Tran family's sprinkler = 35L per hour

water output from  Tran family's sprinkler in x hours = 35*x L = 35x

Let the hours for which Green family's sprinkler used is y hours

water output rate for the Green family's sprinkler = 40L per hour

water output from  Green family's sprinkler in x hours = 40*y L = 40y

Given

The families used their sprinklers for a combined total of 50 hours

thus

x + y = 50 -------------------equation 1

y = 50-x

total water output of 1900L

35x+40y = 1900  -------------------equation 1

using  y = 50-x in equation 2, we have

35x + 40(50-x) = 1900

35x + 2000 - 40x = 1900

=> -5x = 1900 - 2000 = -100

=> x = -100/-5 = 20

y = 50-20 = 30

Thus,

Tran family's sprinkler was used for 20 hours

Green's  family's sprinkler was used for 30 hours

Find the product of
the sum of
3/5 and 1%
and​

Answers

Answer:

3/500

Step-by-step explanation:

3/5 x 1%

=> 3/5 x 1/100

=> 3/500

Hope it helps you

Suppose that the function g is defined, for all real numbers, as follows.
find g(-5) g(1) g(4)​

Answers

Answers:g(-5) = 9/4g(1) = 3g(4) = 0

=================================================

Explanation:

The piecewise function shows that we have two cases. Either x = 1 or [tex]x \ne 1[/tex].

If x = 1, then g(x) = 3 as shown in the bottom row. This is why g(1) = 3.

If [tex]x \ne 1[/tex], then g(x) = (1/4)x^2-4

Plug x = -5 into this second definition

g(x) = (1/4)x^2-4

g(-5) = (1/4)(-5)^2-4

g(-5) = (1/4)(25)-4

g(-5) = 25/4 - 4

g(-5) = 25/4 - 16/4

g(-5) = 9/4

Repeat for x = 4

g(x) = (1/4)x^2-4

g(4) = (1/4)(4)^2-4

g(4) = (1/4)(16)-4

g(4) = 4-4

g(4) = 0

The value of the function at x = -5, x = 1, and x = 4 will be 2.25, 3, and 0, respectively.

What is a function?

A function is an assertion, concept, or principle that establishes an association between two variables. Functions may be found throughout mathematics and are essential for the development of significant links.

The functions are given below.

g(x) = (1/4)x² - 4, x ≠ 1

g(x) = 3, x = 1

The value of the function at x = -5 will be given as,

g(-5) = (1/4)(-5)² - 4

g(-5) = 25 / 4 - 4

g(-5) = 6.25 - 4

g(-5) = 2.25

The value of the function at x = 4 will be given as,

g(4) = (1/4)(4)² - 4

g(4) = 16 / 4 - 4

g(4) = 4 - 4

g(4) = 0

The value of the function at x = 1 will be given as,

g(1) = 3

The value of the function at x = -5, x = 1, and x = 4 will be 2.25, 3, and 0, respectively.

More about the function link is given below.

https://brainly.com/question/5245372

#SPJ5

The lower edge of a 5 foot tall painting is 5 feet above your eye level. At what distance should you stand from the wall so your viewing angle of the painting is maximized?

Answers

Answer:

x = sqrt(50) = 5sqrt(2) = 7.071 ft (to 3 decimals)

Step-by-step explanation:

referring to the diagram

theta (x) = atan(10/x) - atan(5/x)

differentiate with respect to x

theta'(x) = 5/(x^2+25) - 10/(x^2+100)

For x to have an extremum (max. or min)

theta'(x) = 0  ="

5/(x^2+25) - 10/(x^2+100) = 0

transpose and cross multiply

10(x^2+25) -5(x^2+100) = 0

expand and simplify

10x^2+250 - 5x^2-500 = 0

5x^2 = 250

x^2=50

x = sqrt(50) = 5sqrt(2) = 7.071 ft (to 3 decimals)

Since we know that if x becomes large, theta will decrease, so

x = 5sqrt(2) is a maximum.

To the nearest tenth, what is the value of P(C|Y)? 0.4 0.5 0.7 0.8

Answers

Answer:

P(C|Y) = 0.5.

Step-by-step explanation:

We are given the following table below;

               X             Y               Z             Total

A             32           10             28              70

B              6             5              25              36

C             18            15              7                40

Total       56           30            60              146

Now, we have to find the probability of P(C/Y).

As we know that the conditional probability formula of P(A/B) is given by;

                    P(A/B) =  [tex]\frac{P(A \bigcap B)}{P(B)}[/tex]

So, according to our question;

P(C/Y) =  [tex]\frac{P(C \bigcap Y)}{P(Y)}[/tex]

Here, P(Y) = [tex]\frac{30}{146}[/tex] and P(C [tex]\bigcap[/tex] Y) =  [tex]\frac{15}{146}[/tex]  {by seeing third row and second column}

               

Hence, P(C/Y) =  [tex]\frac{\frac{15}{146} }{\frac{30}{146} }[/tex]

                       =  [tex]\frac{15}{30}[/tex]  = 0.5.

Answer: 0.5

Step-by-step explanation:

edge

Please answer this correctly without making mistakes

Answers

Answer:

so first convert to fraction so

9 3/4 = 39/4

so it was spread among 3

so this is division so you do 39/4 divided by 3

so you keep switch flip

which is  39/4 *1/3

answer is 13/4

Answer:

3 1/4 bags

Step-by-step explanation:

[tex]9\frac{3}{4}= \frac{(4 \times 9)+3}{4}= \frac{39}{4} \\\\\frac{39}{4} = 3 \:vegetable \: beds\\x \:\:\:= 1 \: vegetable \:bed\\\\3x = \frac{39}{4} \\\\\frac{3x}{3} = \frac{\frac{39}{4} }{3} \\\\x = \frac{13}{4} \\\\x = 3\frac{1}{4}[/tex]

23.24 divided by 2.8

Answers

Answer:

It's 8.3

Step-by-step explanation:

Answer:

8.3

Step-by-step explanation:

Write the function in terms of unit step functions. Find the Laplace transform of the given function. f(t) = 5, 0 ≤ t < 7 −3, t ≥ 7

Answers

Rewrite f in terms of the unit step function:

[tex]f(t)=\begin{cases}5&\text{for }0\le t<7\\-3&\text{for }t\ge7\end{cases}[/tex]

[tex]\implies f(t)=5(u(t)-u(t-7))-3u(t-7)=5u(t)-8u(t-7)[/tex]

where

[tex]u(t)=\begin{cases}1&\text{for }t\ge0\\0&\text{for }t<0\end{cases}[/tex]

Recall the time-shifting property of the Laplace transform:

[tex]L[u(t-c)f(t-c)]=e^{-cs}L[f(t)][/tex]

and the Laplace transform of a constant function,

[tex]L[k]=\dfrac ks[/tex]

So we have

[tex]L[f(t)]=L[5u(t)-8u(t-7)]=5L[1]-8e^{-7s}L[1]=\boxed{\dfrac{5-8e^{-7s}}s}[/tex]

In this exercise you have to find the laplace transform:

[tex]L[f(t)]=\frac{5-8e^{-7s}}{s}[/tex]

Rewrite f in terms of the unit step function:

[tex]f(t)=\left \{ {{5, for 0\leq t\leq 7} \atop {-3, for t\geq 7}} \right. \\f(t)= 5(u(t)-u(t-7)-3u(t-7)=5u(t)-8u(t-7)[/tex]

Where:

[tex]u(t)= \left \{ {{1, t\geq 0} \atop {0, t<0}} \right.[/tex]

Recall the time-shifting property of the Laplace transform:

[tex]L[u(t-c)f(t-c)]= e^{-cs}L[f(t)][/tex]

and the Laplace transform of a constant function,

[tex]L[k]=\frac{k}{s}[/tex]

So we have:

[tex]L[f(t)]= L[5u(t)-8u(t-7)]= 5L[1]-8e^{-7s}L[1]= \frac{5-8e^{-7s}}{s}[/tex]

See more about Laplace transform at : brainly.com/question/2088771

HELP ASAP ROCKY!!! will get branliest.​

Answers

Answer:

y = 8x + 70

Step-by-step explanation:

Start with the third line.

x = 3, y = 94

Subtract 1 from x and 8 from y:

x = 2, y = 86; this is the second line

Subtract 1 from x and 8 from y:

x = 1, y = 78; this is the first line

Subtract 1 from x and 8 from y:

x = 0; y = 70

For selling 0 games, she earns $70.

y = mx + b

y = mx + 70

For each game she sells, her commission is $8.

y = 8x + 70

i will rate you brainliest// What is the interquartile range (IQR) of {5.8, 8.5, 9.9, -0.8, -1.3, 2.3, 7.4, -1.9}?

Answers

Answer

arrange the element in increasing order

-1.9, -1.3, -0.8, 2.3, 5.8, 7.4, 8.5, 9.9

interquatile = Q3 - Q1

[tex] = \frac{7.4 + 8.5}{2} - \frac{ - 1.3 - 0.8}{2} [/tex]

[tex] = 7.95 + 1.05[/tex]

[tex] = 9[/tex]

Answer:

9.0

Step-by-step explanation:

i took the quiz

A soda bottling company’s manufacturing process is calibrated so that 99% of bottles are filled to within specifications, while 1% is not within specification. Every hour, 12 random bottles are taken from the assembly line and tested. If 2 or more bottles in the sample are not within specification, the assembly line is shut down for recalibration. What is the probability that the assembly line will be shut down, given that it is actually calibrated correctly? Use Excel to find the probability. Round your answer to three decimal places.

Answers

Answer:

The probability that the assembly line will be shut down is 0.00617.

Step-by-step explanation:

We are given that a soda bottling company’s manufacturing process is calibrated so that 99% of bottles are filled to within specifications, while 1% is not within specification.

Every hour, 12 random bottles are taken from the assembly line and tested. If 2 or more bottles in the sample are not within specification, the assembly line is shut down for recalibration.

Let X = Number of bottles in the sample that are not within specification.

The above situation can be represented through binomial distribution;

[tex]P(X=r)=\binom{n}{r} \times p^{r}\times (1-p)^{n-r};x=0,1,2,3,.....[/tex]

where, n = number of trials (samples) taken = 12 bottles

             x = number of success  = 2 or more bottles

            p = probabilitiy of success which in our question is probability that  

                 bottles are not within specification, i.e. p = 0.01

So, X ~ Binom (n = 12, p = 0.01)

Now, the probability that the assembly line will be shut down is given by = P(X [tex]\geq[/tex] 2)

  P(X [tex]\geq[/tex] 2) = 1 - P(X = 0) - P(X = 1)

                 = [tex]1-\binom{12}{0} \times 0.01^{0}\times (1-0.01)^{12-0}-\binom{12}{1} \times 0.01^{1}\times (1-0.01)^{12-1}[/tex]

                 = [tex]1-(1 \times 1\times 0.99^{12})-(12 \times 0.01^{1}\times 0.99^{11})[/tex]

                 = 0.00617

Construct a polynomial function with the following properties: fifth degree, 4 is a zero of multiplicity 3, −2 is the only other zero, leading coefficient is 2.

Answers

Answer:

[tex]\Large \boxed{\sf \bf \ \ 2(x-4)^3(x+2)^2 \ \ }[/tex]

Step-by-step explanation:

Hello, please consider the following.

Construct a polynomial function with the following properties...

... fifth degree

It means that the polynomial can be written as below.

[tex]a_5x^5+a_4x^4+a_3x^3+a_2x^2+a_1x+a_0 \ \text{ with }a_5\text{ different from 0}\\\\\text{ or } k(x-x_1)(x-x_2)(x-x_3)(x-x_4)(x-x_5) \\\\ \text{ with k different from 0 and } (x_i)_{1\leqi\leq 5 } \text { are the roots.}[/tex]

... 4 is a zero of multiplicity 3

We can write the polynomial as below.

[tex]k(x-4)(x-4)(x-4)(x-x_4)(x-x_5)=k(x-4)^3(x-x_4)(x-x_5)[/tex]

... −2 is the only other zero

Because this is the only other zero, we can deduce that -2 is a zero of multiplicity 2.

[tex]k(x-4)(x-4)(x-4)(x-x_4)(x-x_5)\\\\=k(x-4)^3(x-(-2))(x-(-2))\\\\=k(x-4)^3(x+2)^2[/tex]

... leading coefficient is 2.

Finally, it means that k = 2 and then the polynomial function is:

[tex]\large \boxed{2(x-4)^3(x+2)^2}[/tex]

Hope this helps.

Do not hesitate if you need further explanation.

Thank you

classify the following triangle

Answers

Where’s the picture?

if the sin 30 = 1/2, then which statement is true?

Answers

Answer:

cos 60° = 1/2 because the angles are complements.

Step-by-step explanation:

Which of the following best represents the average rate at which the human hair grows?

Answers

Answer:

1/2 inch per month

Step-by-step explanation:

The average rate hair grows is about half an inch per month which is 6 inches per year.

A half inch every month

Which of the functions below could have created this graph?
O A. F(x) = -x' +5x° +7
O B. F(x) = 2x2 - 4x2 +4
O C. F(x)=x2+x+3
O D. F(x) = -5x – 2x+5

Answers

Answer:

[tex] \boxed{f(x) = 2 {x}^{9} - 4 {x}^{2} + 4}[/tex]

Option B is the correct option

Step-by-step explanation:

By looking at the end behavior , we can say that the degree of the polynomial must be odd and leading coefficient will be positive.

Thus , the correct choice is B.

Hope I helped!

Best regards!

The polynomial function that could have created the given curve on the xy-plane is [tex]f(x)= 2x^9-4x^2+4[/tex]

What are polynomial function?

Polynomial functions aree function having a leading degrees of 3 and greater.

The nature of the curve on the xy-plane depends on its end behaviour. From the given graph, the end behaviour shows that the equivalnt function has a positive leading coefficient and an odd degree.

From the listed option, the function that satisfies both criteria is [tex]f(x)=2x^9-4x^2+4[/tex].

Learn more more polynomial graphs here: https://brainly.com/question/9696642

#SPJ5

The ages of some lectures are 42,54,50,54,50,42,46,46,48 and 48.Calculate the:
(a)Mean Age.
(b)Standard deviation.

Answers

Answer:

The mean age is 48

The standard deviation is 4

Step-by-step explanation:

The answer is, (a) mean age is 48.

                          (b)  standard deviation is 4.

What is a mean age?Average age of the population calculated as the arithmetic mean.Another parameter determining the average age of the population is the median age.

What does standard deviation of age mean?In general, the standard deviation tells us how far from the average the rest of the numbers tend to be, and it will have the same units as the numbers themselves. If, for example, the group {0, 6, 8, 14} is the ages of a group of four brothers in years, the average is 7 years and the standard deviation is 5 years.

How do you find the mean age?To find the mean add all the ages together and divide by the total number of children.

Learn more about mean age and standard deviation here:

https://brainly.com/question/475676

#SPJ2

Other Questions
Cost-push inflation is A. inflation caused by increases in aggregate demand that are not matched by increases in aggregate supply. B. inflation caused by decreases in aggregate supply that generate an even larger decrease in aggregate demand. C. inflation caused by decreases in aggregate supply that are not matched by decreases in aggregate demand. D. inflation caused by increases in aggregate demand that generate an even larger increase in aggregate supply. whatis good society write downany six essential elementsgood society and explain enplain any threebrief how do you run a function in python? Discuss the most significant landmarks of the Baroque Era. Were these landmarks products of religious (church) or secular (state) patronage? If the amount of radioactive iodine-123, used to treat thyroid cancer, in a sample decreases from 3.2 to 0.4 mg in 39.6 h, what is the half-life of iodine-123? 0.32 L is equal to how many mL A jar contains 8 pennies, 5 nickels and 7 dimes. A child selects 2 coins at random without replacement from the jar. Let X represent the amount in cents of the selected coins. Be very precise with your answers. a. Find the probability x = 2 cents. b. Find the probability x = 6 cents. c. Find the probability x = 10 cents. d. Find the probability x = 11 cents. e. Find the probability x = 15 cents. f. Find the probability x = 20 cents. g. Find the expected value of x. "When red light in vacuum is incident at the Brewster angle on a certain glass slab, the angle of refraction is" If Robert thinks that the only way in this world for a person to know whether God exists is to have some kind of sensory experience of God, along with an active mind that is able to process, structure and arrange ones experiences in a way that makes sense to him, then Robert would be following Kant in thinking that:__________ Ann. An employee in the payroll department, has contacted the help desk citing multiple issues with her device, including: Slow performance Word documents, PDFs, and images no longer opening A pop-up Ann states the issues began after she opened an invoice that a vendor emailed to her. Upon opening the invoice, she had to click several security warnings to view it in her word processor. With which of the following is the device MOST likely infected?a. Spyware b. Crypto-malware c. Rootkit d. Backdoor pls help. A granola mix sells for $8.99 a pound. Tung wants to buy a bag of granola mix that weighs 7.8 pounds. The bag of granola mix will cost about $16. $17. $63. $72. A 95% confidence interval for the mean number of television per American household is (1.15, 4.20). For each of the following statements about the above confidence interval, choose true or false. a. The probability that u is between 1.15 and 4.20 is .95. b. We are 95% confident that the true mean number of televisions per American household is between 1.15 and 4.20. c. 95% of all samples should have x-bars between 1.15 and 4.20 televisions. d. 95% of all American households have between 1.15 and 4.20 televisions e. Of 100 intervals calculated the same way (95%), we expect 95 of them to capture the population mean. f. Of 100 intervals calculated the same way (95%), we expect 100 of them to capture the sample mean. can some1 help me out with this problem A spherical balloon has a radius of 6.95m and is filled with helium. The density of helium is 0.179 kg/m3, and the density of air is 1.29 kg/m3. The skin and structure of the balloon has a mass of 960kg . Neglect the buoyant force on the cargo volume itself. Determine the largest mass of cargo the balloon can lift. This??? What is wrong with it? Simplify to create an equivalent expression. 7n-(4n-3) a=3n+3 b=3n3 c=11n+3 d=11n3 I will rate you brainliest. :) If sine theta equals one over three, what are the values of cos and tan ? Website reputation is an important part of page quality (PQ) rating. Reputation can justify the Highest rating and the Lowest rating. Exercise 10-2 Straight-Line: Amortization of bond discount LO P2 Tano issues bonds with a par value of $180,000 on January 1, 2017. The bonds' annual contract rate is 8%, and interest is paid semiannually on June 30 and December 31. The bonds mature in three years. The annual market rate at the date of issuance is 10%, and the bonds are sold for $170,862. 1. What is the amount of the discount on these bonds at issuance if you think about fat as old stuff,what new stuff can be made from it