Answer:
A.
[tex]{ \tt{f(x) = - 4 {x}^{2} + 9x }}[/tex]
Step-by-step explanation:
[tex]{ \tt{f(x) = x( - 4x + 9)}}[/tex]
Suppose that 25% of people own dogs If you pick three people at random, what
is the probability that they all three own a dog? (Let me add that we don’t know the
populations size so calculate the probability as if the population is infinite.)
Answer:
1/64
Step-by-step explanation:
25% own a dog, so picking one person has a probability of 1/4 (0.25) for that person to own a dog.
picking 3 people means combining (multiplying) the probabilities of the non-overlapping and non-depending events.
picking the third person has 1/4 chance of owning a dog (as the population is "infinite") combined with the chance that also the second pick owned a dog, which has to be combined with the chance of the first pick owning a dog.
so,
1/4 × 1/4 × 1/4 = 1/4³ = 1/64 = 0.015625
Suppose you choose a marble from a bag containing 4 red marbles, 2 white marbles, and 3 blue marbles. You return the first marble to the bag and then choose again. Find P(red then blue).
Answer:
4/27
Step-by-step explanation:
total number of marbles=9
probability of red=4/9
since you returned the first marble, the total number of marbles remains the same
prob(Blue)=(3/9)=1/3
P(red then blue)=(4/9)*(1/3)
=4/27
Stuck on this problem
9514 1404 393
Answer:
-8,257,536·u^5·v^10
Step-by-step explanation:
The expansion of (a +b)^n is ...
(c0)a^nb^0 +(c1)a^(n-1)b^1 +(c2)a^(n-2)b^2 +... +(ck)a^(n-k)b^k +... +(cn)a^0b^n
Then the k-th term is (ck)a^(n-k)b^k, where k is counted from 0 to n.
The value of ck can be found using Pascal's triangle, or by the formula ...
ck = n!/(k!(n-k)!) . . . . where x! is the factorial of x, the product of all positive integers less than or equal to x.
This expansion has 11 terms, so the middle one is the one for k=5. That term will be ...
5th term = (10!/(5!(10-5)!)(2u)^(10-5)(-4v^2)^5
= (252)(32u^5)(-1024v^10) = -8,257,536·u^5·v^10
In the Data Analysis portion of the article the authors report that they completed a power analysis to determine the power of their study with the sample size utilized. They report a power of 90%. What does this mean
Answer:
Kindly check explanation
Step-by-step explanation:
The power of a test simply gives the probability of Rejecting the Null hypothesis, H0 in a statistical analysis given that the the alternative hypothesis, H1 for the study is true. Hence, the power of a test can be referred to as the probability of a true positive outcome in an experiment.
Using this definition, a power of 90% simply means that ; there is a 90% probability that the a Pvalue less Than the α - value of an experiment is obtained if there is truly a significant difference. Hence, a 90% chance of Rejecting the Null hypothesis if truly the alternative hypothesis is true.
Yooooo HELPPP
with this question plz
Answer:
Step-by-step explanation:
(x-2)(x+4)=x^2+4x-2x-8=0=> x =2, x=0
Answer:
A
Step-by-step explanation:
I need help ASAP please please please
Answer:
n=39/5
Step-by-step explanation:
24=5(n-3)
24=5n-15
-5n= -15-24
-5n=39
n= 39/5
Can anyone please help me out?
1. (02.01)
Solve -4(x + 10) - 6 = -3(x - 2). (1 point)
-40
-46
-52
52
Answer:
-52
Step-by-step explanation:
-4(x + 10) - 6 = -3(x - 2)
Distribute the left side to get:
(-4x + -40) - 6
Now distribute the right side to get:
-3x + 6
Arrange the equation as the following:
-4x - 40 - 6 = -3x + 6
Add the like terms on each side:
-4x - 46 = -3x + 6
Do the inverse operation of each term:
-x = 52
Now we need to get x to become a positive, so we just divide -x by -1 to get x.
And 52/-1 to get our final answer of -52.
Answer: -52
Step-by-step explanation:
-4(x + 10) - 6 = -3(x - 2)
Distribute the left side to get:
(-4x + -40) - 6
Now distribute the right side to get:
-3x + 6
Arrange the equation as the following:
-4x - 40 - 6 = -3x + 6
Add the like terms on each side:
-4x - 46 = -3x + 6
Do the inverse operation of each term:
-x = 52
Now we need to get x to become a positive, so we just divide -x by -1 to get x.
And 52/-1 to get our final answer of -52.
14 cm 8 cm 10cm 5 cm.
find the area and the perimeter of the above figures
Perimeter = Sum of all sides
Perimeter = 14cm + 8cm + 10cm + 5cm
Perimeter = 22cm + 15cm
Perimeter = 37cm
Step-by-step explanation:
hope it helps you
...
........
How to do this question?
Answer:
40
Step-by-step explanation:
2x² - 5y + 7 when x = 2 and y = -5
2(2)² - 5(-5) + 7
= 2(4) -5(-5) + 7
= 8 + 25 + 7
= 40
the image is located at the bottom of the screen.
Answer:
..... surface area = 16 km^2.
Mila wants to buy a scooter for Rs 62,000 . She has only Rs 19,000 with her, so she decides to take a loan from a bank for the remaining amount. The bank offers Mini three loan schemes as shown below. Mini has to return the loan amount with interest in equal monthly instalments
1) How much money does mila take as loan from the bank?
a) Rs 62,000
b) Rs 44,000
c) Rs 45,000
d) Rs 43,000
Answer:
Scheme a 45000 is the answer
Carmen Martinez
What is the slope of the line that passes through the point 4,4 and 10,7 write your answer in simplest form
[tex]\boxed{\sf Slope(m)=\dfrac{y_2-y_1}{x_2-x_1}}[/tex]
[tex]\\ \sf\longmapsto m=\dfrac{7-4}{10-4}[/tex]
[tex]\\ \sf\longmapsto m=\dfrac{3}{6}[/tex]
[tex]\\ \sf\longmapsto m=\dfrac{1}{2}[/tex]
[tex]\\ \sf\longmapsto m\approx0.5[/tex]
Answer:
[tex]m=\frac{1}{2}[/tex]
Step-by-step explanation:
The slope of a line, also known as the change in the line or the ([tex]\frac{rise}{run}[/tex]) can be found using the following formula,
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
Where ([tex]x_1,y_1[/tex]) and ([tex]x_2,y_2[/tex]) are points on the line. Substitute the given information into the formula and solve for the slope.
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
Points on the line: [tex](4,4)\ \ \ (10, 7)[/tex]
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
[tex]m=\frac{7-4}{10-4}[/tex]
[tex]m=\frac{3}{6}[/tex]
[tex]m=\frac{1}{2}[/tex]
[tex]m=0.5[/tex]
Suppose that a local TV station conducts a survey of a random sample of 120 registered voters in order to predict the winner of a local election. The Democrat candidate was favored by 62 of the respondents.
Required:
a. Construct and interpret a 99% CI for the true proportion of voters who prefer the Republican candidate.
b. If a candidate needs a simple majority of the votes to win the election, can the Republican candidate be confident of victory? Justify your response with an appropriate statistical argument.
Answer:
a) The 99% CI for the true proportion of voters who prefer the Republican candidate is (0.3658, 0.6001). This means that we are 99% sure that the true population proportion of all voters who prefer the Republican candidate is (0.3658, 0.6001).
b) The upper bound of the confidence interval is above 0.5 = 50%, which meas that the candidate can be confidence of victory.
Step-by-step explanation:
Question a:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].
Sample of 120 registered voters in order to predict the winner of a local election. The Democrat candidate was favored by 62 of the respondents.
So 120 - 62 = 58 favored the Republican candidate, so:
[tex]n = 120, \pi = \frac{58}{120} = 0.4833[/tex]
99% confidence level
So [tex]\alpha = 0.01[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.01}{2} = 0.995[/tex], so [tex]Z = 2.575[/tex].
The lower limit of this interval is:
[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.4833 - 2.575\sqrt{\frac{0.4833*0.5167}{120}} = 0.3658[/tex]
The upper limit of this interval is:
[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.4833 + 2.575\sqrt{\frac{0.4833*0.5167}{120}} = 0.6001[/tex]
The 99% CI for the true proportion of voters who prefer the Republican candidate is (0.3658, 0.6001). This means that we are 99% sure that the true population proportion of all voters who prefer the Republican candidate is (0.3658, 0.6001).
b. If a candidate needs a simple majority of the votes to win the election, can the Republican candidate be confident of victory? Justify your response with an appropriate statistical argument.
The upper bound of the confidence interval is above 0.5 = 50%, which meas that the candidate can be confidence of victory.
look at the image below over 100000000 points brainly instructer
Answer:
~~314.16
Step-by-step explanation:
lol i dont have 100000000 points. anyways
you can find the area of a sphere with the formula 4πr^2 with r being the radius
this sphere's radius is 5 as shown in the image
so
4π*r^2
4π*(5)^2
=4π*25
=100π
put into calculator
~~314.16cm^3
hope this helps
Please help me!
14
33
46
60
200
Answer:
46
Step-by-step explanation:
200/2 = 100, and the x coordinate that line up with the y-coordinate of 100 is 46.
Most brainiest for the right answer on this problem!
Answer:
82.8
Step-by-step explanation:
mean = sum of all points, over the total given number of points
84 * 26 = 2184
2184 + 69 + 66 = 2319
Now the total number of tests is 26 + 2 or 28
So divide 2319 by 28
2319/28 = 82.82142
rounded to the nearest tenth is 82.8
If my answer is incorrect, pls correct me!
If you like my answer and explanation, mark me as brainliest!
-Chetan K
Intro to Translations
Acellus
Find the image of the given point
under the given translation.
P(-1,2)
T(x, y) = (x + 2, y - 4)
P' = ([?], [])
Enter the number that belongs
in the green box.
Answer:
(1,-2)
Step-by-step explanation:
P(-1,2) and (x, y) -> (x + 2, y - 4). Plugging in x and y in the transformation, the transformed points are (-1+2, 2-4) = (1,-2)
Consider the differential equation: 2y′′−13y′−7y = 0
a. Show that, for any constants A and B, the following is a solution to the above differential equation: y = Ae^(−9x)+Be^(x/3)
b. Find the values A and B that make the above general solution into a solution for the following initial value problem: 2y′′−13y′−7y = 0; y(0) = 3, y′(0) = −5
--------------------------------------------------
Just a correction, the characteristic roots of the equation are [tex]y = 7[/tex] and [tex]y = -\frac{1}{2}[/tex], thus, we should test for:
[tex]y = Ae^{7x} + Be^{-\frac{x}{2}}[/tex]
--------------------------------------------------
Question a:
First, we find the derivatives, thus:[tex]y = Ae^{7x} + Be^{-\frac{x}{2}}[/tex]
[tex]y^{\prime} = 7Ae^{-7x} - \frac{1}{2}Be^{-\frac{x}{2}}[/tex]
[tex]y^{\prime\prime} = 49Ae^{-7x} + \frac{1}{4}Be^{-\frac{x}{2}}[/tex]
Now, we replace into the equation:[tex]2y^{\prime\prime} - 13y^{\prime} - 7y = 0[/tex]
[tex]2(49Ae^{-7x} + \frac{1}{4}Be^{-\frac{x}{2}}) - 13(7Ae^{-7x} - \frac{1}{2}Be^{-\frac{x}{2}}) - 7(Ae^{7x} + Be^{-\frac{x}{2}}) = 0[/tex]
[tex]98Ae^{-7x} + \frac{1}{2}Be^{\frac{x}{2}} - 91Ae^{-7x} + \frac{13}{2}e^{-\frac{x}{2}} - 7Ae^{7x} - 7Be^{-\frac{x}{2}} = 0[/tex]
[tex]98Ae^{-7x} - 91Ae^{-7x} - 7Be^{-\frac{x}{2}} + \frac{1}{2}Be^{\frac{x}{2}} + \frac{13}{2}e^{-\frac{x}{2}} - 7Be^{-\frac{x}{2}} = 0[/tex]
[tex]0A + 0B = 0[/tex]
[tex]0 = 0[/tex], thus, we found the identity, and for each constant A and B, the following is a solution.
--------------------------------------------------
Question b:
[tex]y = Ae^{7x} + Be^{-\frac{x}{2}}[/tex]
Since [tex]y(0) = 3[/tex][tex]A + B = 3 \rightarrow B = 3 - A[/tex]
--------------------------------------------------
[tex]y^{\prime} = 7Ae^{-7x} - \frac{1}{2}Be^{-\frac{x}{2}}[/tex]
Since [tex]y^{\prime}(0) = -5[/tex][tex]7A - \frac{1}{2}B = -5[/tex]
Using [tex]B = 3 - A[/tex]
[tex]7A - \frac{3}{2} + \frac{A}{2} = -5[/tex]
[tex]\frac{14A}{2} + \frac{A}{2} = -\frac{10}{2} + \frac{3}{2}[/tex]
[tex]\frac{15A}{2} = -\frac{7}{2}[/tex]
[tex]15A = -7[/tex]
[tex]A = -\frac{7}{15}[/tex]
--------------------------------------------------
Then, B is given by:
[tex]B = 3 - A = 3 - (-\frac{7}{15}) = \frac{45}{15} + \frac{7}{15} = \frac{52}{15}[/tex]
Thus, the values are: [tex]A = -\frac{7}{15}, B = \frac{52}{15}[/tex]
A similar problem is given at https://brainly.com/question/2456414
solve for x please help (show ur work)
Answer:
x = -3
Step-by-step explanation:
12 -4x-5x = 39
Combine like terms
12 - 9x = 39
Subtract 12 from each side
12-9x-12 = 39-12
-9x = 27
Divide by -9
-9x/-9 = 27/-9
x = -3
Answer:
x = -3
Step-by-step explanation:
12 - 4x - 5x = 39
Combine like terms
12 - 9x = 39
Subtract 12 from both sides
12 - 12 - 9x = 39 - 12
-9x = 27
Divide both sides by -9
-9x/-9 = 27/-9
x = -3
Students at a virtual school are allowed to sign up for one math class each year. The numbers of students signing up for various math classes for the next school
year are given in the following table:
Grade Geometry Algebra II Pre-Calculus AP Statistics Total
10th
150
75
25
5
255
11th
50
100
75
20
245
12th
10
50
100
65
225
Total 210
225
200
90
725
Part A: What is the probability that a student will take AP Statistics? (2 points)
Part B: What is the probability that a 12th-grader will take either Pre-Calculus or AP Statistics? (2 points)
Part C: What is the probability that a student will take Algebra II given that he or she is in the 11th grade? (2 points)
Part D: Consider the events "A student takes Algebra II and "A student is a 10th-grader. Are these events independent? Justify your answer. (4 points)
A well formatted table of the distribution is attached below :
Answer:
0.124
0.733
0.408
Step-by-step explanation:
Using the table Given :
1.) P(AP Statistics) = 90 / 725 = 0.124
2.) P(12th grade ; Precalculus or AP Statistics) = (100 + 65) / 225 = 165 /225 = 0.733
3.) P(Algebra 11 | 11th grade) = P(Algebara11 n 11th grade) / P(11th grade) = 100 / 245 = 0.408
POUILO 11. For a bivariate frequency table having (p + q) classification the total number of cells is
(a) p (b) p +q (c) q (d) pq
Answer:
g
Step-by-step explanation:
f
Please help me with 9 I really need it
Answer:
605 boys.
Step-by-step explanation:
5:7 means 5 parts consists of boys and 7 parts consist of girls.
Since 7 parts = 847, 1 part = 121 and 5 parts = 605
Hence there are 605 boys.
Hope you have a nice day :)
If the areas of the given pairs of shapes are equal, find the value of x.
Answer:
X= 8cm
Step-by-step explanation:
area of the square = s×s = 16×16 = 256cm
area of the rectangle = l×b = 32×x = 32x
Given , area of triangle = area of square
32x = 256
x= 256/32
x= 8cm
Answer:
[tex]x = 8cm[/tex]
Step-by-step explanation:
we are given a square and rectangle.we want to figure out x which is the width of the rectangle. we are also given a condition i.e
the area of the square equal to the area of the rectangletherefore,
[tex] \displaystyle \rm A _{square } = A _{rect}[/tex]
recall the formula of the area of square and rectangle so,
[tex] \displaystyle {s}^{2} = lw[/tex]
now assign variables
[tex]s \implies16cm[/tex][tex]l \implies32cm[/tex][tex]w \implies x[/tex]thus substitute:
[tex] \displaystyle 32cmx = {16cm}^{2} [/tex]
simplify square:
[tex] \displaystyle 32cmx = 256cm^2[/tex]
divide both sides by 32:
[tex] \displaystyle \boxed{x = 8cm}[/tex]
and we're done!
Based on corresponding angles and vertical angles, which angles must always be congruent to the angles given? Complete the table.
Answer:
A and B must always be congruent
B and D
E and G
F and H
Step-by-step explanation:
I have to be honest. from the picture I cannot see the vertical angles. All I see is a straight blue line and red letters. But based on the vertical theorem
A and B must always be congruent
B and D
E and G
F and H
also if you want to make sure it's right try to include another picture.
Answer:
Step-by-step explanation:
edmentum :)
The fraction model below shows the steps that a student performed to find a quotient. Which statement best interprets the quotient? A: There are 5 1/5 five-sixths in 4 1/3. B: There 6 1/6 five sixths-in 4 1/3. C: There are 5 1/5 four and one-thirds in 5/6. D: There are 6 1/6 four and one-thirds in 5/6.
Answer:
The answer is D
Step-by-step explanation:
there are 8 1/6 five and one sixth in 2/3
PLSSS HELPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
Answer:
I believe its EG and NE but i might be wrong
Step-by-step explanation:
Agyappng is three times as old as Atsu .three years ago ,he was four times as old as Atsu ..how old is each boy now
9514 1404 393
Answer:
Atsu is 9Agyappng is 27Step-by-step explanation:
Let x represent Atsu's current age. Then Agyappng is 3x. Three years ago the relationship was ...
(3x -3) = 4(x -3)
9 = x . . . . . . . . . . . . add 12-3x
Atsu is 9; Agyappng is 27.
compute (-12)+(-8)+30
[tex]\huge\text{Hey there!}[/tex]
[tex]\large\textsf{-12 + (-8) + 30}\\\\\large\textsf{= -12 - 8 + 30}\\\\\large\textsf{-12 - 8 = \bf -20}\\\\\large\textsf{= -20 + 30}\\\\\large\textsf{= \bf 10}\\\\\\\boxed{\boxed{\huge\text{Therefore, your ANSWER is: \textsf{10}}}}\huge\checkmark\\\\\\\\\huge\textsf{Good luck on your assignment \& enjoy your day!}[/tex]
~[tex]\frak{Amphitrite1040:)}[/tex]
Select the correct answer.
What is the value of this expression when x = -6 and ?
4(x2 + 3) − 2y
Answer:
D. 157
Step-by-step explanation:
4(x^2+3)-2y
4(6^2+3)-2(-1/2) add in given values
4(39)+1. start with parentheses
156+1. combine like terms
157. answer
Answer:
D. 157
Step-by-step explanation:
Hi there!
We want to find the value of the expression 4(x²+3)-2y is when x=-6 and y=-1/2
Let's first simplify the expression, as that will likely make it easier
Distribute 4 to both x² and 3
4x²+12-2y
That's the expression
Substitute -6 as x into the expression
4(-6)²+12-2y
Raise (-6) to the second power
4*36+12-2y
Multiply 36 by 4
144+12-2y
Add 12 and 144 together
156-2y
Now the expression is 156-2y
But remember that we know that y=-1/2, and we haven't substituted it into the expression yet
Substitute -1/2 as y into the expression
156-2(-1/2)
Multiply
156+2/2
Simplify
156+1
Add
157
Hope this helps!