Answer:
A
Step-by-step explanation:
Number of suitcases on a plane is discrete because you can only have an integer amount. You can't have a fraction of a suitcase on a plane.
Prove that the square of an odd number is always 1 more than a multiple of 4
Answer:
By these examples you are able to see that the square of an odd number is always 1 more than a multiple of 4.
Step-by-step explanation:
For examples,
Let's consider squares of 3, 11, 25, 37 and 131.
[tex] {3}^{2} = 9[/tex]
8 is a multiple of 4, and 9 is more than 8.
[tex] {11}^{2} = 121[/tex]
120 is a multiple of 4 and 121 is one more than it.
[tex] {25}^{2} = 625[/tex]
624 is a multiple of 4 and 625 is one more than it.
[tex] {37}^{2} = 1369[/tex]
1368 is a multiple of 4 and 1369 is one more than 1368.
[tex] {131}^{2} = 17161[/tex]
17160 is a multiple of 4.
what is the difference between the products of the digits in 425 and the sum of the digits in the numeral 92784
Answer: 10
Step-by-step explanation:
4 x 2 x 5 = 40
9 + 2 + 7 + 8 + 4 = 30
40 - 30 = 10
= 10
simplify 6 x + 3y /3
Answer:
6x + y
Step-by-step explanation:
6x + 3y/3
6x + y
Answer:
6x + y
Step-by-step explanation:
6x + 3y / 3
cancel 3y by 3
6x + y
If m and n are positive integers and m^2 - n^2 = 9, which of the following could be the value of
n?
A) 1
B) 16
C) 9
D) 4
Answer:
4
Problem:
If m and n are positive integers and m^2 - n^2 = 9, which of the following could be the value of
n?
A) 1
B) 16
C) 9
D) 4
Step-by-step explanation:
One approach would be to plug in the choices and see.
If n=1, then we have m^2-1=9.
This would give m^2=10 after adding 1 on both sides. There is no integer m when squared would give us 10. ( Square root of 9 is a decimal )
If n=16, then we would have m^2-256=9.
This would give m^2=265 after adding 256 on both sides. There is no integer m when squared would give us 265. ( Square root of 265 is a decimal )
If n=9, then we would have m^2-81=9.
This would give m^2=90 after adding 81 on both sides. There is no integer m when squared would give us 90. ( Square root of 90 is a decimal )
If n=4, then we would have m^2-16=9.
This would give m^2=25 after adding 16 on both sides. There is an integer m when squared would give us 25. ( Square root of 25 is a 5)
Help please. I'm stuck
Answer:
The numbers are 65, 67, and 69
Step-by-step explanation:
Hi there!
We need to find 3 consecutive odd integers.
Consecutive numbers are numbers that follow each other (ex. 1, 2, 3, 4)
We're given that 5 times the first number + 4 times the second + 3 times the third = 800
Let's make the first number x
Since the second number is consecutive to the first and odd, it will be x+2 (Why? Well, let's say x is 5. In that case, x+1=6, which is even. However, x+2=7)
Therefore, the third number is x+4 (once again, if x is 5, x+3=8, but x+4=9)
5 times the first number is 5x
4 times the second is 4(x+2)
3 times the third is 3(x+4)
And of course, that equals 800
As an equation, it'll be:
5x+4(x+2)+3(x+4)=800
open the parenthesis
5x+4x+8+3x+12=800
combine like terms
12x+20=800
Subtract 20 from both sides
12x=780
Divide by 12 on both sides
x=65
The first number is x, so the first number is 65
The second number is x+2, or 65+2=67
The third number is x+4, or 65+4=69
Hope this helps!
SOMEONE PLS HELP ME I WILL MAKE U BRAINLIST ! In a survey sample of 83 respondents, about 30.1 percent of the samplework less than 40 hours per week. What is the estimated standard error for the group of respondents who work 40 hours or more per week?
(*round to two decimal places)
Answer:
Answer = √(0.301 × 0.699 / 83) ≈ 0.050
A 68 percent confidence interval for the proportion of persons who work less than 40 hours per week is (0.251, 0.351), or equivalently (25.1%, 35.1%)
Step-by-step explanation:
√(0.301 × 0.699 / 83) ≈ 0.050
We have a large sample size of n = 83 respondents. Let p be the true proportion of persons who work less than 40 hours per week. A point estimate of p is because about 30.1 percent of the sample work less than 40 hours per week. We can estimate the standard deviation of as . A confidence interval is given by , then, a 68% confidence interval is , i.e., , i.e., (0.251, 0.351). is the value that satisfies that there is an area of 0.16 above this and under the standard normal curve.The standard error for a proportion is √(pq/n), where q=1−p.
Hope this answer helps you :)
Have a great day
Mark brainliest
There are 200 blue balls and 10 red balls in an urn. Suppose that 10 balls are taken random;ly from the urn and let X denote the number of red balls selected.
a) The distribution of the random variable X is___.
i) Binomial.
ii) Hypergeometric.
iii) Poisson.
iv) Normal.
v) Exponential.
vi) Uniform
b) Find P(all 10 balls are red).
c) Which distribution from those listed in part (a) can be used as an approximation to the distribution of X? With this approximation find P(X = 10).
Answer:
Hypergeometric
Kindly check explanation
Step-by-step explanation:
For a hypergeometric distribution, the following conditions must be met :
1.) The total number of samples must be fixed.
2.) Sample size will be a portion of the population
3.) The probability of success changes per trial. This is because sampling is done without replacement
The above scenario meets the condition described:
Total number of samples = 210
Sample size, n = 10
Blue balls = 200 ; red balls = 10
P(10 red balls)
Using the hypergeometric distribution function and the calculator :
X ~ H(n, N, M)
X ~ (10, 200, 210) = 0.6072
g At a certain gas station, 30% of all customers use the restroom. What is the probability that, out of the next 10 customers, (a) exactly 4 will use the restroom
Answer:
[tex]P(x=4) = 0.200[/tex]
Step-by-step explanation:
Given
[tex]n=10[/tex] --- selected customers
[tex]x = 4[/tex] --- those that are expected to use the restroom
[tex]p =30\% = 0.30[/tex] --- proportion that uses the restroom
Required
[tex]P(x = 4)[/tex]
The question illustrates binomial probability and the formula is:
[tex]P(x) = ^nC_x * p^x * (1 - p)^{n - x}[/tex]
So, we have:
[tex]P(x=4) = ^{10}C_4 * (0.30)^4 * (1 - 0.30)^{10 - 4}[/tex]
[tex]P(x=4) = ^{10}C_4 * (0.30)^4 * (0.70)^6[/tex]
[tex]P(x=4) = 210* (0.30)^4 * (0.70)^6[/tex]
[tex]P(x=4) = 0.200[/tex]
Complete the following statement.
Answer:
Hello dude
[tex] - 1 \frac{21}{24} + 1 \frac{22}{24} = + \frac{1}{24} [/tex]
so it's positive
HAVE A NİCE DAY
Step-by-step explanation:
GREETİNGS FROM TURKEY ツ
Can someone help me out?
Answer:
Terms:
-5x4-x-1Like Terms:
-5x and -x4 and -1Coefficients:
The coefficient of -5x is -5.The coefficient of -x is -1.Constants:
4-1You simplify the expression by combining like terms:
-5x + 4 - x - 1 = -6x + 5
(7b - 4) + (-2b + a + 1) = 7b - 4 - 2b + a + 1 = 5b + a - 3
Marla scored 70% on her last unit exam in her statistics class. When Marla took the SAT exam, she scored at the 70th percentile in mathematics. Explain the difference in these two scores.
Answer:
The difference is that Marla's exam in her statistics class was graded by percent of correct answers, in her case 70%, while the SAT is graded into a curve, taking other students' grades also into account, and since she scored in the 70th percentile, Marla scored better than 70% of the students.
Step-by-step explanation:
Marla scored 70% on her last unit exam in her statistics class.
This means that in her statistics class, Marla got 70% of her test correct.
When Marla took the SAT exam, she scored at the 70th percentile in mathematics.
This means that on the SAT exam, graded on a curve, Marla scored better than 70% of the students.
Explain the difference in these two scores.
The difference is that Marla's exam in her statistics class was graded by percent of correct answers, in her case 70%, while the SAT is graded into a curve, taking other students' grades also into account, and since she scored in the 70th percentile, Marla scored better than 70% of the students.
A certain list of movies were chosen from lists of recent Academy Award Best Picture winners, highest grossing movies, series movies (e.g. the Harry Potter series, the Spiderman series), and from the Sundance Film Festival and are being analyzed. The mean box office gross was $138.64 million with a standard deviation of $11.2526 million. Given this information, 98.49% of movies grossed greater than how much money (in millions)
Young invested GH150,000 and 2.5% per annum simple interest. how long will it take this amount to. yield an interest of GH11,250,00
Answer: 3 years
Step-by-step explanation:
Interest is calculated as:
= (P × R × T) / 100
where
P = principal = 150,000
R = rate = 2.5%.
I = interest = 11250
T = time = unknown.
I = (P × R × T) / 100
11250 = (150000 × 2.5 × T)/100
Cross multiply
1125000 = 375000T
T = 1125000/375000
T = 3
The time taken will be 3 years
Can you help me answer this question? Screenshot is added.
9514 1404 393
Answer:
(c)
Step-by-step explanation:
[tex]\displaystyle\sqrt[3]{xy^5}\sqrt[3]{x^7y^{17}}=\sqrt[3]{x^{1+7}y^{5+17}}=\sqrt[3]{x^6x^2y^{21}y}=\sqrt[3]{x^6y^{21}}\sqrt[3]{x^2y}\\\\=\boxed{x^2y^7\sqrt[3]{x^2y}}[/tex]
How would I solve the question below? In what order would I solve it?
4 ⋅ 3 + 2 ⋅ 9 − 40
Step-by-step explanation:
You would multiply 4 and 3, and 2 and 9 separately, then add them, then subtract 40. Remember PEMDAS.
(4*3) + (2*9) - 40
12 + 18 - 40
-10
Hope that helps
Help asap!!!!!!
A.
B.
C.
D.
Answer:
Function has a minimum value
So, f(x)=0 and f(4)=-3
f(x)= - 1/2x^2+4x-11f(4)=-3 and f(x)=-x+4
f(4)=0
OAmalOHopeO
Agan Interior Design provides home and office decorating assistance to its customers. In normal operation, an average of 2.5 customers arrive each hour. One design consultant is available to answer customer questions and make product recommendations. The consultant averages 10 minutes with each customer. Compute the operating characteristics of the customer waiting line, assuming Poisson arrivals and exponential service times. Round your answers to four decimal places. Do not round intermediate calculations.
Answer:
the operating characteristics have been solved below
Step-by-step explanation:
we have an average of 10 minutes per customers
μ = mean service rate = 60/10 = 6 customers in one hr
the average number of customers that are waiting in line
mean arrival λ = 2.5
μ = 6
[tex]Lq = \frac{2.5^{2} }{6(6-2.5)} \\[/tex]
= 6.25/21
= 0.2976
we calculate the average number of customers that are in the system
[tex]L=Lq+\frac{2.5}{6}[/tex]
= 0.2976+0.4167
= 0.7143
we find the average time that a customer spends in waiting
[tex]Wq=\frac{0.2976}{2.5}[/tex]
= 0.1190 hours
when converted to minutes = 0.1190*60 = 7.1424 minutes
[tex]0.1190+\frac{1}{6}[/tex]
=0.2857
probability that arriving customers would wait for the service
= 2.5÷6 = 0.4167
A field book is a private notepad used by a surveyor to transcribe notes and is not considered a legal document True False
Answer:
False
Step-by-step explanation:
A field book is a private notepad used by a surveyor to record measurements and notes.
Basically, the size of a field book is 200 millimeters × 120 millimeters (20 centimeters × 12 centimeters) and it's typically opened lengthwise. There are two (2) main types of field book and these includes;
I. Double-line field book.
II. Single-line field book.
As a general rule, it's best that all findings, entries (notes) and observations are recorded or made into a field book after each and every measurement have been taken by a surveyor.
In conclusion, a field book is considered to be a legal document used by surveyors to keep records of accomplished field work or work done in the field. Thus, it's not a private notepad used by a surveyor to transcribe notes.
Answer:
False
Step-by-step explanation:
A field book is a private notepad used by a surveyor to transcribe notes and is not considered a legal document is False.
What is the rate of change of the line on the graph
Answer:
A. ¼
Step-by-step explanation:
Rate of change (m) = [tex] \frac{y_2 - y_1}{x_2 - x_1} [/tex]
Using two points on the line, (4, 1) and (-4, -1), find the rate of change using the formula stated above:
Where,
[tex] (4, 1) = (x_1, y_1) [/tex]
[tex] (-4, -1) = (x_2, y_2) [/tex]
Plug in the values
Rate of change (m) = [tex] \frac{-1 - 1}{-4 - 4} [/tex]
= [tex] \frac{-2}{-8} [/tex]
= [tex] \frac{1}{4} [/tex]
Rate of change = ¼
One number is 1/4 of another number. The sum of the two numbers is 5. Find the two numbers. Use a comma to separate your answer
Answer: 1, 4
Step-by-step explanation:
Number #1 = xNumber #2 = [tex]\frac{1}{4} x[/tex][tex]\frac{1}{4} x+x=5\\\\\frac{1}{4} x+\frac{4}{4} x=5\\\\\frac{5}{4} x=5\\\\5x=4*5\\5x=20\\x=4[/tex]
Number #1 = x = 4Number #2 = [tex]\frac{1}{4} x[/tex] = [tex]\frac{1}{4} *4=\frac{4}{4} =1[/tex]Cathy is planning to take the Certified Public Accountant Examination (CPA exam). Records kept by the college of business from which she graduated indicate that 73% of students who graduated pass the CPA exam. Assume that the exam is changed each time it is given. Let n = 1, 2, 3, ... represent the number of times a person takes the CPA test until the first pass. (Assume the trials are independent).
(a) What is the probability that Cathy passes the CPA test on the first try?
(b) What is the probability that Cathy passes the CPA test on the second or third try?
Answer:
The responses to these question can be defined as follows:
Step-by-step explanation:
For point a:
[tex]\to P(1) = 0.73[/tex]
For point b:
[tex]\to P(2\ or\ 3) = P(2) + P(3)[/tex]
[tex]= 0.27 \times 0.73 + 0.27\times 0.27\times0.73\\\\=0.1971+0.1971\times 0.27\\\\=0.1971+0.053217\\\\=0.250317[/tex]
Which of the following equations describes this graph?
A. y=(x-1)^2-
B. y=(x-3)^2+2
C. y=(x+1)^2-2
D. y=(x-2)^2+3
Answer:
The choose (A)
y=(x-1)²-2
Find the value of x in each case
The answer is 36 degrees
Step 1
Angle GEH=180-2x (angles on a a straight line are supplementary)
Step 2
4x= G^+GE^H(sum of exterior angle)
4x=x+(180-2x)
4x=180-x
4x+x=180
5x=180
x=36 degrees
In a random sample of students at a university, stated that they were nonsmokers. Based on this sample, compute a confidence interval for the proportion of all students at the university who are nonsmokers. Then find the lower limit and upper limit of the confidence interval.
Answer:
(0.8165 ; 0.8819)
Lower boundary = 0.8165
Upper boundary = 0.8819
Step-by-step explanation:
Given :
Sample proportion. Phat = x/ n = 276/ 325 = 0.8492
Confidence interval :
Phat ± margin of error
Margin of Error = Zα/2* [√Phat(1 - Phat) / n]
Phat ± Zα/2* [√Phat(1 - Phat) / n]
The 90% Z critical value is = 1.645
0.8492 ± 1.645*[√0.8492(1 - 0.8492) / 325)
0.8492 ± 1.645*[√0.8492(0.1508) / 325]
0.8492 ± 1.645*√0.0003940288
0.8492 ± 0.0326535
Lower boundary = 0.8492 - 0.0326535 = 0.8165
Upper boundary = 0.8492 + 0.0326535 = 0.8819
Confidence interval = (0.8165 ; 0.8819)
it's tooooo easy who wants brain list
Answer:
1) Isosceles
2) Acute
3) Right angled
4( Obtuse
5) Equilateral
Let f(x) = (x − 1)2, g(x) = e−2x, and h(x) = 1 + ln(1 − 2x). (a) Find the linearizations of f, g, and h at a = 0. What do you notice? How do you explain what happened?
Answer:
Lf(x) = Lg(x) = Lh(x) = 1 - 2x
value of the functions and their derivative are the same at x = 0
Step-by-step explanation:
Given :
f(x) = (x − 1)^2,
g(x) = e^−2x ,
h(x) = 1 + ln(1 − 2x).
a) Determine Linearization of f, g and h at a = 0
L(x) = f (a) + f'(a) (x-a) ( linearization of f at a )
for f(x) = (x − 1)^2
f'(x ) = 2( x - 1 )
at x = 0
f' = -2
hence the Linearization at a = 0
Lf (x) = f(0) + f'(0) ( x - 0 )
Lf (x) = 1 -2 ( x - 0 ) = 1 - 2x
For g(x) = e^−2x
g'(x) = -2e^-2x
at x = 0
g(0) = 1
g'(0) = -2e^0 = -2
hence linearization at a = 0
Lg(x) = g ( 0 ) + g' (0) (x - 0 )
Lg(x) = 1 - 2x
For h(x) = 1 + ln(1 − 2x).
h'(x) = -2 / ( 1 - 2x )
at x = 0
h(0) = 1
h'(0) = -2
hence linearization at a = 0
Lh(x) = h(0) + h'(0) (x-0)
= 1 - 2x
Observation and reason
The Linearization is the same in every function i.e. Lf(x) = Lg(x) = Lh(x) this is because the value of the functions and their derivative are the same at x = 0
Donald and Sara are surveying their neighbors about the community playground. Their questions, written on the survey, are below:
Donald: How many times do you visit the playground in a month?
Sara: Did you visit the playground this month?
Who wrote a statistical question and why?
Sara, because there will be variability in the responses collected
Donald, because every neighbor can give a different answer
Sara, because there can be only one answer to the question
Donald, because every neighbor will give the same answer
Answer:
B
Step-by-step explanation: Because Donald asks a more broad and open question which people could give different answers too
hello can anyone help with this?
Answer:
<2 and <13 are alternate exterior angles.
In simple form, alternate exterior angles are the opposite angle on the opposing parallel line. So, to make you understand better, <4 and <15 are alternate exterior angles.
Hope this helps :D
26.3 times 1.2 please do with explanation worth 15 points
Answer - It’s 31.56
Step-by-step explanation: You just do regular multiplication and then add the decimal point
We roll a pair dice 10,000 times. Estimate the probability that the number of times we get snake eyes (two ones) is between 280 and 300.
Answer:
0.3573 = 35.7%
Step-by-step explanation:
We roll a pair of dice 10,000 times so the mean and standard deviation is,
μ = 10000/36 =277.7 σ = [tex]\sqrt{10000*\frac{35}{36^{2} } } =16.4[/tex]
[tex]z_{1}[/tex] = (280 - 277.7)/16.4 = .14
[tex]z_{2}[/tex] = (300 - 277.7)/16.4 = 1.35
Probablity (range)
0.3573
Z(low)=0.14 0.555766357
Z(upper)=1.36 0.91304644