Answer:
The last one. 4.
Step-by-step explanation:
The square root of a positive or negative number can't be negative. so it's positive 4.
can anybody help me with this?
Answer:
Option (a)
Step-by-step explanation:
[tex]\sqrt[6]{1000m^{3} n^{12} } = \sqrt[6]{10^{3} } \sqrt[6]{m^{3} } \sqrt[6]{n^{12} } =\\\sqrt{10} \sqrt{m} n^{2} = n^{2} \sqrt{10m}[/tex]
I need help answering this ASAP
Answer:
x=13
Step-by-step explanation:
f(x) = sqrt(x-11)
The square root must be greater than or equal to zero
sqrt(x-11)≥0
Square each side
x-11≥0
x ≥11
The only answer that is greater than or equal to 11 is
x=13
a) An orange weighs 155 grams.
What's the weight of the orange in kilograms?
Answer: 0.155
Step-by-step explanation:
g / 1000 = kilograms
155 / 1000 = 0.155
Put the following equation of a line into slope-intercept form, simplifying all
fractions.
18x + 3y = -18
Answer:
y = -6x -6
Step-by-step explanation:
The general form of the equation of a line in the slope-intercept form may be given as
y = mx + c where
m is the slope and c is the intercept
Hence given the equation
18x + 3y = -18
subtract 18x from both sides
3y = -18x - 18
Divide both sides of the equation by 3
y = -6x -6
This is the equation in the slope - intercept form with -6 as the slope and -6 as the intercept
?????????????please help
Answer:
ok so you take m time h then like you count to h like a b c d e f g h and tgen with that you count 1 2 3 4 5 6 7 till h than you multiply that with 3
Write seventy-one and one hundred sixty-four thousandths as a decimal number.
Answer:
0.0071164
Step-by-step explanation:
Determine if the table below represents a linear function. If so, what's the rate of change?
A) No; it's a non-linear function.
B) Yes; rate of change = 4
C) Yes; rate of change = 2
D) Yes; rate of change = 3
Answer:
A
Step-by-step explanation:
Its not a linear function; there is no consistent rate of change between each of the points.
Wayne has a rectangular painting. The width of the painting is
5/6
of a foot, and the length is
3/4
of a foot. What is the area of the painting?
Answer:
5/8 ft^2
Step-by-step explanation:
The area of a rectangle is given by
A = l*w where l is the length and w is the width
A = 5/6 * 3/4
A = 3/6 * 5/4
A = 1/2 * 5/4
A = 5/8 ft^2
Find the measure of x. X=8, x=7, x=9, x=11
Answer:
[tex]\frac{135}{15} =\frac{15(x+2)}{15}[/tex]
[tex]9=x+2[/tex]
[tex]x=7[/tex]
OAmalOHopeO
y = −1 / 4 (x + 4) 2 −1 on a coordinate plane using its vertex, focus, and directrix.
Answer:
Hello,
Step-by-step explanation:
do I remind you of the formula :
where (a,b) is the vertex and y=k the directrix
[tex]y=\dfrac{(x-a)^2}{2(b-k)} +\dfrac{b+k}{2} \\\\\\y=-\dfrac{(x+4)^2}{4} -1 \\\\Using\ identification:\\a=-4\\2(b-k)=-4\\b+k=-2\\\\\left\{\begin{array}{ccc}b-k&=&-2\\b+k&=&-2\\\end{array}\right.\\\\\\\left\{\begin{array}{ccc}2b&=&-4\\2k&=&0\\\end{array}\right.\\\\\\\left\{\begin{array}{ccc}b&=&-2\\k&=&0\\\end{array}\right.\\[/tex]
Focus=(-4,-2)
Directrix: y=0
Vertex=(-4,-1)
A product is introduced into the market. Suppose a product's sales quantity per month q ( t ) is a function of time t in months is given by q ( t ) = 1000 t − 150 t 2 And suppose the price in dollars of that product, p ( t ) , is also a function of time t in months and is given by p ( t ) = 150 − t 2 A. Find, R ' ( t ) , the rate of change of revenue as a function of time t
Answer:
[tex]r'(t) = 298t -850[/tex]
Step-by-step explanation:
Given
[tex]q(t) = 1000t - 150t^2[/tex]
[tex]p(t) = 150t - t^2[/tex]
Required
[tex]r'(t)[/tex]
First, we calculate the revenue
[tex]r(t) = p(t) - q(t)[/tex]
So, we have:
[tex]r(t) = 150t - t^2 - (1000t - 150t^2)[/tex]
Open bracket
[tex]r(t) = 150t - t^2 - 1000t + 150t^2[/tex]
Collect like terms
[tex]r(t) = 150t^2 - t^2 + 150t - 1000t[/tex]
[tex]r(t) = 149t^2 -850t[/tex]
Differentiate to get the revenue change with time
[tex]r'(t) = 2 * 149t -850[/tex]
[tex]r'(t) = 298t -850[/tex]
WHAT IS X³-27 SIMPLIFIED
Answer:
It is (x - 3)³ - 9x(3 - x)
Step-by-step explanation:
Express 27 in terms of cubes, 27 = 3³:
[tex] = {x}^{3} - {3}^{3} [/tex]
From trinomial expansion:
[tex] {(x - y)}^{3} = (x - y)(x - y)(x - y) \\ [/tex]
open first two brackets to get a quadratic equation:
[tex] {(x - y)}^{3} = ( {x}^{2} - 2xy + {y}^{2} )(x - y)[/tex]
expand further:
[tex] {(x - y)}^{3} = {x}^{3} - y {x}^{2} - 2y {x}^{2} + 2x {y}^{2} + x {y}^{2} - {y}^{3} \\ {(x - y)}^{3} = {x}^{3} - {y}^{3} + 3x {y}^{2} - 3y {x}^{2} \\ {(x - y)}^{3} = {x}^{3} - {y}^{3} + 3xy(y - x) \\ \\ { \boxed{( {x}^{3} - {y}^{3} ) = {(x - y)}^{3} - 3xy(y - x)}}[/tex]
take y to be 3, then substitute:
[tex]( {x}^{3} - 3^3) = {(x - 3)}^{3} - 9x(3 - x)[/tex]
The circle graph above shows the distribution of utility expenses for the Hierra family last year. If the family’s total utility expenses last year were $3,600, what were their expensive go water and sewer.
Water and sewer=X%
Electric=30%
Heating and gas=50%
Answer:
The correct answer is - $720 or 20%.
Step-by-step explanation:
Given:
Total expense = 3600
Electric=30%
Heating and gas=50%
Water and sewer=X%
Solution:
For electric: 3600*30/100 = 1080
for heating and gas: 3600*50/100 = 1800
Left money for expense of water and shower = total - (electric and heating)
= 3600-1880
= 720
Percentage of water and shower = 720*100/3600
= 20%
Answer:
Correct!
Step-by-step explanation:
Thank you this is correct :) I took the test
A particle is moving with the given data. Find the position of the particle.
a(t) = [tex]t^{2}[/tex] − 4t + 5, s(0) = 0, s(1) = 20
How do I find s(t)=?
Recall that
[tex]\dfrac{dv(t)}{dt} = a(t) \Rightarrow dv(t) = a(t)dt[/tex]
Integrating this expression, we get
[tex]\displaystyle v(t) = \int a(t)dt = \int(t^2 - 4t + 5)dt[/tex]
[tex]\:\:\:\:\:\:\:= \frac{1}{3}t^3 - 2t^2 + 5t + C_1[/tex]
Also, recall that
[tex]\dfrac{ds(t)}{dt} = v(t)[/tex] or
[tex]\displaystyle s(t) = \int v(t)dt = \int (\frac{1}{3}t^3 - 2t^2 + 5t + C_1)dt[/tex]
[tex]\:\:\:\:\:\:\:= \frac{1}{12}t^4 - \frac{2}{3}t^3 + \frac{5}{2}t^2 + C_1t + C_2[/tex]
Next step is to find [tex]C_1\:\text{and}\:C_2[/tex]. We know that at t = 0, s = 0, which gives us [tex]C_2 = 0[/tex]. At t = 1, s = 20, which gives us
[tex]s(1) = \frac{1}{12}(1)^4 - \frac{2}{3}(1)^3 + \frac{5}{2}(1)^2 + C_1(1)[/tex]
[tex]= \frac{1}{12} - \frac{2}{3} + \frac{5}{2} + C_1 = \frac{23}{12} + C_1 = 20[/tex]
or
[tex]C_1 = \dfrac{217}{12}[/tex]
Therefore, s(t) can be written as
[tex]s(t) = \frac{1}{12}t^4 - \frac{2}{3}t^3 + \frac{5}{2}t^2 + \frac{217}{12}t[/tex]
Solve this question:Зх <-24
Answer:
x< - 8
Step-by-step explanation:
3x <-24
x < - 24
3
x< - 8
x < - 8
Step-by-step explanation:
3x < - 24
Divide 3 on both sides,
3x / 3 < - 24 / 3
x < - 8
Write an explicit formula for the sequence.
-4,7,-10,13,-16
Step-by-step explanation:
Sequence is
4
,
7
,
10
,
13
,
16
,
.
.
.
a
1
=
4
,
a
2
=
7
,
a
3
=
10
,
.
.
.
If it is Arithmetic sequence,
a
2
−
a
1
=
a
3
−
a
2
=
a
4
−
a
3
& so on
In the given sum,
a
2
−
a
1
=
7
−
4
=
3
a
3
−
a
2
=
10
−
7
=
3
a
4
−
a
3
=
13
−
10
=
3
Since the difference between the successive terms is same and
hence
common difference
d
=
3
Does this appear to be a regular polygon? Explain using the definition of a regular polygon.
Answer:
yes it is. a polygon is any closed shape with at least 3 connected lines (eg. triangle, square, pentagon, hexagon, heptagon, octagon, etc)
Step-by-step explanation:
What is the sum of the geometric sequence 1, 3, 9, ... if there are 10 terms? (5 points)
Answer:
[tex]S_n = \frac{1 (1 - 3^{10})}{1 - 3} = 29524[/tex]
Step-by-step explanation:
There's a handy formula we can use to find the sum of a geometric sequence, and here it is
[tex]S_n = \frac{a_1 (1 - r^n)}{1 - r}[/tex]
The value n represents the amount of terms you want to sum in the sequence. The variable r is known as the common ratio, and a is just some constant. Let's find those values.
First lets visualize this sequence
[tex]n_1 = 1\\n_2 = 1 + 3\\n_3 = 1 + 3 + 3^2\\n_4=1+3+3^2+3^3\\...[/tex]
Okay so there's clearly a pattern here, let's write it a bit more concisely. For each n, starting at 1, we raise 3 to the (n-1) power, add it to what we had for the previous term.
[tex]S_n = \sum{3^{n-1}} = 3^{1 - 1} + 3^{2 - 1} + 3^{3-1} ...[/tex]
Our coefficients of r, and a, are already here! As you can see below, r is just 3, and a is just 1.
[tex]S_n = \sum{a*r^{n-1}}[/tex]
To finish up lets plug these coefficients in and get our sum after 10 terms.
[tex]S_n = \frac{1 (1 - 3^{10})}{1 - 3} = 29524[/tex]
Use the discriminant to describe the roots of each equation. Then select the best description.
7x² + 1 = 5x
Answer:
Imaginary roots
Step-by-step explanation:
The discriminant of a quadratic in standard form [tex]ax^2+bx+c[/tex] is given by [tex]b^2-4ac[/tex].
Given [tex]7x^2+1=5x[/tex], subtract 5x from both sides so that the quadratic is in standard form:
[tex]7x^2-5x+1=0[/tex]
Now assign variables:
[tex]a\implies 7[/tex] [tex]b\implies -5[/tex] [tex]c\implies 1[/tex]The discriminant is therefore [tex](-5)^2-4(7)(1)=25-28=\textbf{-3}[/tex].
What does this tell us about the roots?
Recall that the discriminant is what is under the radical in the quadratic formula. The quadratic formula is used to find the solutions of a quadratic. Therefore, the solutions of this quadratic would be equal to [tex]\frac{-b\pm \sqrt{-3}}{2a}[/tex] for some [tex]b[/tex] and [tex]a[/tex]. Since the number under the radical is negative, there are no real roots to the quadratic (whenever the discriminant is negative, the are zero real solutions to the quadratic). Therefore, the quadratic has imaginary roots.
Which of the following is an advantage of using systematic random sampling?
Systematic random sampling reduces sampling variability.
Systematic random sampling does not require a finite population size.
Systematic random sampling could inadvertently miss patterns in the population.
Systematic random sampling uses clusters, which are close in proximity, making data collection easier.
This is a question that asks about the advantages of a systematic random sampling. Thus, we first take a look at the types of sampling, and then we see the advantage of systematic random sampling.
Samples may be classified as:
Convenient: Sample drawn from a conveniently available pool.
Random: Basically, put all the options into a hat and drawn some of them.
Systematic: Every kth element is taken. For example, you want to survey something on the street, you interview every 5th person, for example.
Cluster: Divides population into groups, called clusters, and each element in the cluster is surveyed.
Stratified: Also divides the population into groups. However, then only some elements of the group are surveyed.
Systematic:
One of the bigger advantages is that the systematic sampling eliminate clusters, which means that the last option is wrong.
Inadvertently missing patterns is a problem in systematic sampling, and not an advantage, thus the third option is also wrong.
It also does not reduce sampling variability, thus the first option is wrong.
From this, it can be concluded that the correct option is:
Systematic random sampling does not require a finite population size.
For another example of systematic random sampling, you can check https://brainly.com/question/21100042
How many more barrels of gasoline than desiel were produced
Answer:
15
Step-by-step explanation:
How much bigger is the Sum of first 50 even numbers than the sum of first 50 odd numbers?
Answer:
50
Step-by-step explanation:
Sum Even numbers
n = 50
d = 2
a1 = 2
The last number is
an = a1 + (n-1)d
an = 2 + (50 - 1)*2
an = 2 + 49 * 2
an = 2 + 98
an = 100
Sum of the even numbers
Sum = (a1 + a50)*n/ 2
Sum = (2 + 100)*50/2
sum = 102 * 25
sum = 2550
Sum of the first 50 odd numbers
a1 = 1
n = 50
d = 2
l = ?
Find l
l = a1 + (n - 1)*2
l = 1 + 49*2
l = 99
Sum
Sum = (1 + 99)*50/2
Sum = 2500
The difference and answer is 2550 - 2500 = 50
What is the discriminat of 2x+5x^=1
Answer:
don't know...........
find the perimeter of 6 CM 6 CM 6 CM 6 CM
Answer:
P = 24
Step-by-step explanation:
Since all the sides are the same length, the shape is a square.
Multiply all sides by 6.
6 cm x 4 sides = 24
Find the measure of angle FGE
35 degrees
40 degrees
100 degrees
30 degrees
60 degrees
The measure of angle FGE is 52.5°.
What is the Angles of Intersecting Secants Theorem?Angles of Intersecting Secants Theorem states that, If two lines intersect outside a circle, then the measure of an angle formed by the two lines is one half the positive difference of the measures of the intercepted arcs.
Thus, applying the angles of intersecting secants theorem
m∠FGE = 1/2[(100 + 35) - 30]
m∠FGE = 1/2[(105]
m∠FGE = 52.5°
Learn more about angles of intersecting secants theorem here :
https://brainly.com/question/15532257
#SPJ2
Which of the following is a solution to 6x - 5y=4?
(2,7)
(-1, -2)
(-2, -1)
(2, -7)
Answer:
2,7
Step-by-step explanation:
Answer:
(-1,-2)
Step-by-step explanation:
(6 x -1) -(-2 x 5) = 4
-6 + 10 = 4
helpppp asap pleaseee
Answer:
29/3 is your answer
Step-by-step explanation:
pls mark as brainliest
thank you for the help every one
Answer:
1. 1.66in
2. 6.66in
3. 3.33in
4. 1inch
Step-by-step explanation:
the area of a rectangle is found by multiplying the length times width or the two sides.
5 x 1/3 is about 1.66 inches
5 x 4/3 is about 6.66 inches
5/2 x 4/3 is about 3.33 inches
and 7/6 x 6/7 is 1 inch
A population is equally divided into three class of drivers. The number of accidents per individual driver is Poisson for all drivers. For a driver of Class I, the expected number of accidents is uniformly distributed over [0.2, 1.0]. For a driver of Class II, the expected number of accidents is uniformly distributed over [0.4, 2.0]. For a driver of Class III, the expected number of accidents is uniformly distributed over [0.6, 3.0]. For driver randomly selected from this population, determine the probability of zero accidents.
Answer:
Following are the solution to the given points:
Step-by-step explanation:
As a result, Poisson for each driver seems to be the number of accidents.
Let X be the random vector indicating accident frequency.
Let, [tex]\lambda=[/tex]Expected accident frequency
[tex]P(X=0) = e^{-\lambda}[/tex]
For class 1:
[tex]P(X=0) = \frac{1}{(1-0.2)} \int_{0.2}^{1} e^{-\lambda} d\lambda \\\\P(X=0) = \frac{1}{0.8} \times [-e^{-1}-(-e^{-0.2})] = 0.56356[/tex]
For class 2:
[tex]P(X=0) = \frac{1}{(2-0.4)} \int_{0.4}^{2} e^{-\lambda} d\lambda\\\\P(X=0) = \frac{1}{1.6} \times [-e^{-2}-(-e^{-0.4})] = 0.33437[/tex]
For class 3:
[tex]P(X=0) = \frac{1}{(3-0.6)} \int_{0.6}^{3} e^{-\lambda} d\lambda\\\\P(X=0) = \frac{1}{2.4} \times [-e^{-3}-(-e^{-0.6})] = 0.20793[/tex]
The population is equally divided into three classes of drivers.
Hence, the Probability
[tex]\to P(X=0) = \frac{1}{3} \times 0.56356+\frac{1}{3} \times 0.33437+\frac{1}{3} \times 0.20793=0.36862[/tex]
Solve -9 < 4x + 3 5 19.
Answer:
C -3 < x ≤ 4
Step-by-step explanation:
-9 < 4x + 3 ≤ 19.
Subtract 3 from all sides
-9-3 < 4x + 3-3 ≤ 19-3
-12 < 4x ≤ 16
Divide by 4
-12/4 < 4x/4 ≤ 16/4
-3 < x ≤ 4