Answer:
hey baby
Step-by-step explanation:
hi thwrw honey i love you lol
The operation we use to simplify a ratio after finding the greatest common factor (GCF) is division.
Option A is the correct answer.
What is an expression?An expression contains one or more terms with addition, subtraction, multiplication, and division.
We always combine the like terms in an expression when we simplify.
We also keep all the like terms on one side of the expression if we are dealing with two sides of an expression.
Example:
1 + 3x + 4y = 7 is an expression.
3 + 4 is an expression.
2 x 4 + 6 x 7 – 9 is an expression.
33 + 77 – 88 is an expression.
We have,
To simplify a ratio after finding the greatest common factor (GCF), we use division.
We divide both terms of the ratio by the GCF.
This reduces the ratio to its simplest form.
Thus,
The operation we use to simplify a ratio after finding the greatest common factor (GCF) is division.
Learn more about expressions here:
https://brainly.com/question/3118662
#SPJ2
Help me find the value of x
Answer:
x = 30
Step-by-step explanation:
We know
The three angles must add up to 180°. We know one is 20°, so the other two must add up to 160°.
2x + 3x + 10 = 160
5x + 10 = 160
5x = 150
x = 30
The number 0 is an element of the set of natural numbers.
OA. True
B. False
SUBI
it is false. 0 is not a natural number. it is a whole number
Mia has a collection of vintage action figures that is worth $190. If the collection appreciates at a rate of 6% per year, which equation represents the value of the collection after 5 years?
The equation that represents the value of the collection after 5 years is:
Value of collection after 5 years = 190 x (1 + 0.06)^5
Explanation:
To calculate the value of the collection after 5 years, we need to use the compound interest formula. This formula is represented as A = P x (1 + r)^n, where P is the principal amount (initial value of the collection), r is the rate of interest (in this case, 6%), and n is the number of years (in this case, 5).
Therefore, the equation for the value of the collection after 5 years is:
Value of collection after 5 years = 190 x (1 + 0.06)^5
This can also be written as:
Value of collection after 5 years = 190 x 1.31 (1.31 is the result of (1 + 0.06)^5)
Therefore, the value of the collection after 5 years is $246.90.
Answer: 254.26
Step-by-step explanation:
please help I know its 9:35 PM I Just need help what this question2.1 × 1.6 =
21
10
×
16
10
= tenths × tenths my parents are gonna kill me help
The value of the expression 2.1 × 1.6 = 3.36.
What are decimals?Decimals are a collection of numbers falling between integers on a number line. They are only an additional mathematical representation of fractions. Decimals allow us to express quantifiable quantities like length, weight, distance, money, etc. with more accuracy. Integers, also known as whole numbers, are represented to the left of the decimal point, while decimal fractions are shown to the right of the decimal point.
Given that the expression is: 2.1 × 1.6.
2.1 × 1.6 can be written as:
2.1 × 1.6 = 21/10 × 16/10
Multiply the numerator and denominator:
21/10 × 16/10 = 336/100
Covert the fraction into decimal:
336/100 = 3.36
Hence, the value of the expression 2.1 × 1.6 = 3.36.
Learn more about decimals here:
https://brainly.com/question/30958821
#SPJ1
Answer the question below: *
Tasha is planning an expansion of a square flower garden in a city park. If each side of the original garden is
increased by 5 m, the new total area of the garden will be 121 m². Find the length of each side of the original garden.
O 6 meters
O 6.6 meters
O 11 meters
O 16 meters
Sea "x" la longitud de cada lado del jardín original en metros.
La superficie del jardín original es x^2 m².
Si cada lado del jardín original se aumenta en 5 m, el nuevo lado del jardín será de (x+5) metros, y la nueva superficie será (x+5)^2 m².
Según el problema, la nueva superficie total es de 121 m²:
(x+5)^2 = 121
Tomando la raíz cuadrada en ambos lados:
x+5 = 11
Restando 5 en ambos lados:
x = 6
Por lo tanto, la longitud de cada lado del jardín original es de 6 metros.
Por lo tanto, la respuesta correcta es O 6 metros.
x - the length of each side of the original garden
A = x²
( x + 5 )² = 121 /√
x + 5 = 11, or x + 5 = - 11;
x = 11 - 5
x = 6 ( another solution in negative )
Answer:
A ) 6 m
WILL MARK AS BRAINLIEST!!!!!!!!!!!!!!
If "f" is differentiable and f(1) < f(2), then there is a number "c", in the interval (_____, _____) such that f'(c)>_______
If "f" is differentiable and f(1) < f(2), then there is a number "c", in the interval (1, 2) such that f'(c)> 0.
How do we know?Applying the Mean Value Theorem for derivatives, if a function f is continuous on the closed interval [a, b] and differentiable on the open interval (a, b), then there exists at least one number c in the interval (a, b) such that:
f'(c) = (f(b) - f(a)) / (b - a)
In the scenario above, we have that f is differentiable, and that f(1) < f(2).
choosing a = 1 and b = 2.
Then applying the Mean Value Theorem, there exists at least one number c in the interval (1, 2) such that:
f'(c) = (f(2) - f(1)) / (2 - 1)
f'(c) = f(2) - f(1)
We have that f(1) < f(2), we have:
f(2) - f(1) > 0
We can conclude by saying that there exists a number c in the interval (1, 2) such that:
f'(c) = f(2) - f(1) > 0
Learn more about Mean Value Theorem at: https://brainly.com/question/19052862
#SPJ1
in one of his experiments conducted with animals, thorndike found that cats learned to escape from a puzzle box:
In one of his experiments conducted with animals, Thorndike found that cats learned to escape from a puzzle box is increased gradually
To quantify the learning process, Thorndike used a mathematical formula known as the Law of Effect equation. The equation is:
B = f(log S1/S2)
where B represents the strength of the behavior, S1 represents the satisfaction of the positive consequence, and S2 represents the degree of frustration or negative consequence.
In the context of Thorndike's puzzle box experiment, the Law of Effect equation can be used to describe how the cat's behavior changed over time as it learned to escape the puzzle box more quickly and efficiently. Initially, the cat's behavior was weak because it did not know which actions would lead to a positive outcome.
To know more about puzzle box here
https://brainly.com/question/30470834
#SPJ4
Segment AE shown has length of sqrt 20. Which segment is closest in length to sqrt 10?
Segment C has a length of √10, which is the closest to √10 compared to the other segments.
What is Segment?Segment is a customer data platform (CDP) that enables companies to collect, store, and analyze customer data from multiple sources. It helps companies build customer profiles and create personalized experiences for their customers. Segment allows businesses to track website visits, user actions, and other events in real-time, as well as to create custom events and store customer data in a secure and unified data warehouse. With Segment, companies can create powerful customer segmentation, which allows them to target customers with personalized messages and offers. Segment also integrates with various marketing, analytics, and CRM tools to provide a complete picture of customer behavior. It enables companies to build cohesive customer journeys, run campaigns, and optimize their customer experience.
To learn more about Segment
https://brainly.com/question/551912
#SPJ1
Complete Question.
Without an appointment, the average waiting time in minutes at the doctor's office has the probability density function f(t)=1/38, where 0≤t≤38
Step 1 of 2:
What is the probability that you will wait at least 26 minutes? Enter your answer as an exact expression or rounded to 3 decimal places.
Step 2 of 2:
What is the average waiting time?
The probability of waiting at least 26 minutes is 0.316. The average waiting time is 19 minutes.
Step 1:
The probability of waiting at least 26 minutes can be calculated by finding the area under the probability density function from 26 to 38:
P(waiting at least 26 minutes) = ∫26^38 (1/38) dt = [t/38] from 26 to 38
= (38/38) - (26/38) = 12/38 = 0.316
So the probability of waiting at least 26 minutes is 0.316 or approximately 0.316 rounded to 3 decimal places.
Step 2:
The average waiting time can be calculated by finding the expected value of the probability density function:
E(waiting time) = ∫0³⁸ t f(t) dt = ∫0³⁸ (t/38) dt
= [(t²)/(238)] from 0 to 38
= (38²)/(238) = 19
Therefore, the average waiting time is 19 minutes.
Learn more about probability here: brainly.com/question/30034780
#SPJ4
Subtract 1/9 - 1/14 and give answer as improper fraction if necessary.
Answer:
To subtract 1/9 - 1/14, we need to find a common denominator. The smallest number that both 9 and 14 divide into is 126.
So, we will convert both fractions to have a denominator of 126:
1/9 = 14/126
1/14 = 9/126
Now we can subtract them:
1/9 - 1/14 = 14/126 - 9/126
Simplifying the right-hand side by subtracting the numerators, we get:
5/126
Therefore, 1/9 - 1/14 = 5/126 as an improper fraction.
Answer:
1/9-1/14
=14-9/9*14
=5/126
= 25 1/5
What is the slope of the line in the following graph?
Answer:
1/3
Step-by-step explanation:
using rise over run fron the two dots, we can find 2/6, which simplifies down to 1/3
show that if 16 people are seated in a row of 20 chairs, then some group of 4 consecutive chairs must be occupied.
The process to show that if 16 people are seated in a row of 20 chairs, then some group of 4 consecutive chairs must be occupied is shown below.
We prove this using the Pigeonhole Principle, which states that if n items are placed into m containers, and n > m, then at least one container must contain more than one item.
Let us consider the 16 people seated in a row of 20 chairs. Each person occupies one chair, so there are 20 - 16 = 4 empty chairs in the row.
We assume that empty chairs as containers, and people as items that need to be placed into containers.
Since there are more items (people) than containers (empty chairs), there must be at least one group of 2 or more consecutive empty chairs.
Now, let's consider the complement of this statement: Suppose there are no groups of 4 consecutive chairs that are occupied. Then, each group of 4 consecutive chairs contains at most 3 people.
We partition the row of chairs into groups of 4 consecutive chairs.
So, there are 20 - 3 = 17 such groups. By the statement above, each of these groups contains at most 3 people. Therefore, the total number of people seated in the row is at most 17×3 = 51.
But, we know that there are actually 16 people seated in the row. This is a contradiction, since 51 < 16. Therefore, our assumption that there are no groups of 4 consecutive chairs that are occupied must be false, and we have proved that some group of 4 consecutive chairs must be occupied.
Learn more about Pigeonhole Principle here
https://brainly.com/question/30322724
#SPJ4
Maximize z = 3x₁ + 5x₂
subject to: x₁ - 5x₂ ≤ 35
3x1 - 4x₂ ≤21
with. X₁ ≥ 0, X₂ ≥ 0.
use simplex method to solve it and find the maximum value
Answer:
See below.
Step-by-step explanation:
We can solve this linear programming problem using the simplex method. We will start by converting the problem into standard form
Maximize z = 3x₁ + 5x₂ + 0s₁ + 0s₂
subject to
x₁ - 5x₂ + s₁ = 35
3x₁ - 4x₂ + s₂ = 21
x₁, x₂, s₁, s₂ ≥ 0
Next, we create the initial tableau
Basis x₁ x₂ s₁ s₂ RHS
s₁ 1 -5 1 0 35
s₂ 3 -4 0 1 21
z -3 -5 0 0 0
We can see that the initial basic variables are s₁ and s₂. We will use the simplex method to find the optimal solution.
Step 1: Choose the most negative coefficient in the bottom row as the pivot element. In this case, it is -5 in the x₂ column.
Basis x₁ x₂ s₁ s₂ RHS
s₁ 1 -5 1 0 35
s₂ 3 -4 0 1 21
z -3 -5 0 0 0
Step 2: Find the row in which the pivot element creates a positive quotient when each element in that row is divided by the pivot element. In this case, we need to find the minimum positive quotient of (35/5) and (21/4). The minimum is (21/4), so we use the second row as the pivot row.
Basis x₁ x₂ s₁ s₂ RHS
s₁ 4/5 0 1/5 1 28/5
x₂ -3/4 1 0 -1/4 -21/4
z 39/4 0 15/4 3/4 105
Step 3: Use row operations to create zeros in the x₂ column.
Basis x₁ x₂ s₁ s₂ RHS
s₁ 1 0 1/4 7/20 49/10
x₂ 0 1 3/16 -1/16 -21/16
z 0 0 39/4 21/4 525/4
The optimal solution is x₁ = 49/10, x₂ = 21/16, and z = 525/4.
Therefore, the maximum value of z is 525/4, which occurs when x₁ = 49/10 and x₂ = 21/16.
During a manufacturing process, a metal part in a machine is exposed to varying temperature conditions. The manufacturer of the machine recommends that the temperature of the machine part remain below 131°F. The temperature T in degrees Fahrenheit x minutes after the machine is put into operation is modeled by T=-0.005x^2+0.45x+125. Will the temperature of the part ever reach or exceed 131°F? Use the discriminant of a quadratic equation to decide.
answer options
1. No
2. Yes
From the discriminant of the give quadratic equation, the temperature of the machine will part after 50 minutes of operation.
Will the temperature of the part ever reach or exceed 135°F?The given equation that models the temperature of the machine is;
T = -0.005x² + 0.45x + 125
Let check if there's a value that exists for T = 135
Putting T = 135 in the given equation,
135 = -0.005x² + 0.45x + 125
We can simplify this to;
0.005x² - 0.45x + 10 = 0
From the general form of quadratic equation which is ax² + bx + c = 0, where a = 0.005, b = -0.45, and c = 10.
The discriminant of this quadratic equation is given by:
D = b² - 4ac
= (-0.45)² - 4(0.005)(10)
= 0.2025 - 0.2
= 0.0025
The discriminant of the equation is positive which indicates we have two roots. Therefore, the temperature of the machine part will cross 135°F at some point during the operation.
We can also find the roots of the quadratic equation using the formula:
[tex]x = (-b \± \sqrt(D)) / 2a[/tex]
Substituting the values of a, b, and D, we get:
[tex]x = (0.45 \± \sqrt(0.0025)) / 2(0.005)\\= (0.45 \± 0.05) / 0.01[/tex]
Taking the positive value, we get:
x = 50
Therefore, the temperature of the machine part will cross 135°F after 50 minutes of operation.
Learn more on discriminant here;
https://brainly.com/question/12526527
#SPJ1
Question 6 of 10
Based only on the information given in the diagram, which congruence
theorems or postulates could be given as reasons why ACDE AOPQ?
Check all that apply.
AA
A. AAS
B. ASA
C. LL
OD. HL
E. LA
F. SAS
Therefore, A, B, C, and F are the proper responses as the congruence theories or postulates based on the data.
what is triangle ?Having three straight sides and three angles where they intersect, a triangle is a closed, two-dimensional shape. It is one of the fundamental geometric shapes and has a number of characteristics that can be used to study and resolve issues that pertain to it. The triangle inequality theory states that the sum of a triangle's interior angles is always 180 degrees, and that the longest side is always the side across from the largest angle. Triangles can be used to solve a wide range of mathematical issues in a variety of disciplines and can be categorised based on the length of their sides and the measurement of their angles.
given
We can use the following congruence theories or postulates based on the data in the diagram:
A. ASA
B. AAS
C. LL (corresponding angles hypothesis)
F. SAS
Therefore, A, B, C, and F are the proper responses as the congruence theories or postulates based on the data.
To know more about triangle visit:
https://brainly.com/question/2773823
#SPJ1
According to Money magazine, Maryland had the highest median annual household income of any state in 2018 at $75,847.† Assume that annual household income in Maryland follows a normal distribution with a median of $75,847 and standard deviation of $33,800.
(a) What is the probability that a household in Maryland has an annual income of $90,000 or more? (Round your answer to four decimal places.)
(b) What is the probability that a household in Maryland has an annual income of $50,000 or less? (Round your answer to four decimal places.)
The required probability that a household in Maryland with annual income of ,
$90,000 or more is equal to 0.3377.
$50,000 or less is equal to 0.2218.
Annual household income in Maryland follows a normal distribution ,
Median = $75,847
Standard deviation = $33,800
Probability of household in Maryland has an annual income of $90,000 or more.
Let X be the random variable representing the annual household income in Maryland.
Then,
find P(X ≥ $90,000).
Standardize the variable X using the formula,
Z = (X - μ) / σ
where μ is the mean (or median, in this case)
And σ is the standard deviation.
Substituting the given values, we get,
Z = (90,000 - 75,847) / 33,800
⇒ Z = 0.4187
Using a standard normal distribution table
greater than 0.4187 as 0.3377.
P(X ≥ $90,000)
= P(Z ≥ 0.4187)
= 0.3377
Probability that a household in Maryland has an annual income of $90,000 or more is 0.3377(rounded to four decimal places).
Probability that a household in Maryland has an annual income of $50,000 or less.
P(X ≤ $50,000).
Standardizing X, we get,
Z = (50,000 - 75,847) / 33,800
⇒ Z = -0.7674
Using a standard normal distribution table
Probability that a standard normal variable is less than -0.7674 as 0.2218. This implies,
P(X ≤ $50,000)
= P(Z ≤ -0.7674)
= 0.2218
Probability that a household in Maryland has an annual income of $50,000 or less is 0.2218.
Therefore, the probability with annual income of $90,000 or more and $50,000 or less is equal to 0.3377 and 0.2218 respectively.
learn more about probability here
brainly.com/question/24111146
#SPJ4
I need help with this
The line segment AB and CB are perpendicular to each other.
How to determine if a line is perpendicular?Check whether the slopes of the lines are the negative reciprocals of one another to see if they are perpendicular to one another. The steps are as follows:
Using the following formula, get the slope of the first line:slope is equal to (y-change) / (change in x)where the "change in y" refers to the difference between the y-coordinates of two points on the line, and the "change in x" refers to the difference between the x-coordinates of the same two places.Using the same formula, determine the slope of the second lineTake the first slope's negative reciprocal by turning it upside down and altering its sign. For instance, the negative reciprocal of the first line's slope of 2/3 is -3/2.Check if the second slope is equal to the negative reciprocal of the first slope. If it is, then the lines are perpendicular.Learn more about Coordinates here:
brainly.com/question/18269861
#SPJ1
The pens in a box are repackaged equally into 9 packs. Each pack has more than 15 pens.
1. Find an inequality to represent n, the possible number of pens in the box.
2. Explain why you chose this inequality.
Therefore, the possible number of pens in the box is p, where p is greater than 135.
What is inequality?Inequality refers to a situation in which there is a difference or disparity between two or more things, usually in terms of value, opportunity, or outcome. Inequality can take many forms, including social, economic, and political inequality.
Inequalities are mathematical expressions that compare two values using the symbols < (less than), > (greater than), ≤ (less than or equal to), or ≥ (greater than or equal to). To solve an inequality, you need to isolate the variable (the unknown quantity) on one side of the inequality symbol and determine the range of values for which the inequality holds true.
Here are some general steps to solve an inequality:
Simplify both sides of the inequality as much as possible. This may involve combining like terms, distributing terms, or factoring.Get all the variable terms on one side of the inequality symbol and all the constant terms on the other side. Remember that when you multiply or divide both sides of an inequality by a negative number, you must reverse the direction of the inequality symbol.Solve for the variable by isolating it on one side of the inequality symbol. If the variable has a coefficient, divide both sides of the inequality by that coefficient.Write down the solution as an inequality. If you have solved for x, the solution will be in the form of x < a or x > b, where a and b are numbers.Check your solution by testing a value in the original inequality that is within the range of the solution. If the inequality holds true for that value, then the solution is correct. If not, then you may need to recheck your work or adjust your solutionby the question.
Let's say there are 'p' pens in the box. Each pack has more than 15 pens, so we can write the inequality:
p/9 > 15
Multiplying both sides by 9, we get:
p > 135
To learn more about inequality:
https://brainly.com/question/30231190
#SPJ1
What is the difference between the questionnaire and an interview?
Answer: Questionnaire refers to a research instrument, in which a series of question, is typed or printed along with the choice of answers, expected to be marked by the respondents, used for survey or statistical study. It consists of aformalisedd set of questions, in a definite order on a form, which are mailed to the respondents or manually delivered to them for answers. The respondents are supposed to read, comprehend and give their responses, in the space provided.
A ‘Pilot Study’ is advised to be conducted to test the questionnaire before using this method. A pilot survey is nothing but a preliminary study or say rehearsal to know the time, cost, efforts, reliability and so forth involved in it.
The interview is a data collection method wherein a direct, in-depth conversation between interviewer and respondent takes place. It is carried out with a purpose like a survey, research, and the like, where both the two parties participate in the one to one interaction. Under this method, oral-verbal stimuli are presented and replied by way of oral-verbal responses.
It is considered as one of the best methods for collecting data because it allows two way exchange of information, the interviewer gets to know about the respondent, and the respondent learns about the interviewer. There are two types of interview:
Personal Interview: A type of interview, wherein there is a face to face question-answer session between the interviewer and interviewee, is conducted.
Telephonic Interview: This method involves contacting the interviewee and asking questions to them on the telephone itself.
Show your solution ( 3. ) C + 18 = 29
Answer:
Show your solution ( 3. ) C + 18 = 29
Step-by-step explanation:
To solve the equation C + 18 = 29, we want to isolate the variable C on one side of the equation.
We can start by subtracting 18 from both sides of the equation:
C + 18 - 18 = 29 - 18
Simplifying the left side of the equation:
C = 29 - 18
C = 11
Therefore, the solution to the equation C + 18 = 29 is C = 11.
find the closed formula for 3,6,11,18 by relating them to a well known sequence. assume the first term given is
The closed formula for this particular sequence is an = n² + 2.
Take note that the odd numbers 3, 5, 7, 9, and 11 are separate consecutive terms. This shows that the first n odd numbers can be added to the initial term, az, to get the nth term. Hence, the following is how we may represent the nth term a = az + 1 + 3 + 5 + ... + (2n-3) (2n-3). We may utilize the formula for the sum of an arithmetic series to make the sum of odd integers simpler that is 1 + 3 + 5 + ... + (2n-3) = n².
As a result, we get a = az + n^2 - 1. In conclusion, the equation for the series (an)n21, where a1 = az and an is the result of adding the first n odd numbers to az, is as a = az + n^2 - 1. We have the following for the given series where a1 = az = 3.
So, the closed formula for this particular sequence is an = n² + 2.
To learn more about arithmetic sequences, refer to:
Your question is incomplete. The complete question is:
Find the closed formula for the sequence (an)n21. Assume the first term given is az. an = 3, 6, 11, 18, 27... Hint: Think about the perfect squares.
Two cars, one going due east at the rate of 90 km/hr and the other going to south at the rate of 60 km/hr are traveling toward the intersection of two roads. At what rate the two cars approaching each other at the instant when the first car is 0.2 km and the second car is 0.15 km from the intersection ?
The two cars are approaching each other at a rate of 36 km/hr at the given instant.
We can solve this problem by using the Pythagorean theorem and differentiating with respect to time. Let's call the distance of the first car from the intersection "x" and the distance of the second car from the intersection "y". We want to find the rate at which the two cars are approaching each other, which we'll call "r".
At any moment, the distance between the two cars is the hypotenuse of a right triangle with legs x and y, so we can use the Pythagorean theorem
r^2 = x^2 + y^2
To find the rates of change of x and y, we differentiate both sides of this equation with respect to time
2r(dr/dt) = 2x(dx/dt) + 2y(dy/dt)
Simplifying and plugging in the given values
dr/dt = (x(dx/dt) + y(dy/dt)) / r
dr/dt = (0.2 x 90 + 0.15 x (-60)) / sqrt((0.2)^2 + (0.15)^2)
dr/dt = (18 - 9) / sqrt(0.04 + 0.0225)
dr/dt = 9 / sqrt(0.0625)
dr/dt ≈ 36 km/hr
Learn more about Pythagorean theorem here
brainly.com/question/14930619
#SPJ4
Please answer Full question
(1) 4y-7z is a binomial.
(2) 8-xy² is a binomial.
(3) ab-a-b can be written as ab - (a + b) which is a binomial.
(4) z²-3z+8 is a trinomial.
What are monomials, binomials and trinomials?In algebra, monomials, binomials, and trinomials are expressions that contain one, two, and three terms, respectively.
A monomial is an algebraic expression with only one term. A monomial can be a number, a variable, or a product of numbers and variables.
A binomial is an algebraic expression with two terms that are connected by a plus or minus sign. For example, 2x + 3y and 4a - 5b are both binomials.
A trinomial is an algebraic expression with three terms that are connected by plus or minus signs.
Learn more about monomial on;
https://brainly.com/question/29047865
#SPJ1
Classify into monomials, binomials and trinomials.
(1) 4y-7z
(1) 8-xy²
(v) ab-a-b
(ix) z2-3z+8
Both descriptive statistics (mean, median, mode, and range) and probability (the likelihood that something will happen) can be useful in our academic, professional, and personal lives. • Determine which of the two (descriptive statistics or probability) you find to be the most useful in your life and explain why using two (2) specific examples.
Descriptive statistics are the most useful in life. Descriptive statistics provide information about a data set and can help to summarize and interpret data. Specifically, I find the mean and median to be the most useful.
What does Descriptive statistics mean?Descriptive statistics involves the use of measures such as the mean, median, mode, and range, as well as graphical representations of the data, such as histograms, box plots, and scatter plots.
The mean is the average of a set of data and is useful for summarizing and interpreting data. For example, when I am studying for a test, I often use the mean of my practice test scores to understand my overall performance.
The median is the middle value of a set of data and is useful for understanding the spread of the data. For example, when I am tracking my monthly expenses, I often use the median to understand how much I am spending each month. By taking the median of my monthly expenses, I can get an idea of which expenses are taking up the most of my budget.
For more questions related to median
https://brainly.com/question/26177250
#SPJ1
Type the correct answer in each box. Assume π = 3.14. Round your answer(s) to the nearest tenth. 90° 30° In this circle, the area of sector COD is 50.24 square units. The radius of the circle is units, and m AB is units.
Therefore, the length of segment AB is approximately 7.4 units.
What is area?Area is a mathematical concept that describes the size of a two-dimensional surface. It is a measure of the amount of space inside a closed shape, such as a rectangle, circle, or triangle, and is typically expressed in square units, such as square feet or square meters. The area of a shape is calculated by multiplying the length of one side or dimension by the length of another side or dimension. For example, the area of a rectangle can be found by multiplying its length by its width.
Here,
To find the radius of the circle, we can use the formula for the area of a sector:
Area of sector = (θ/360) x π x r²
where θ is the central angle of the sector in degrees, r is the radius of the circle, and π is approximately 3.14.
We're given that the area of sector COD is 50.24 square units and the central angle of the sector is 90°. So we can plug in these values and solve for r:
50.24 = (90/360) x 3.14 x r²
50.24 = 0.25 x 3.14 x r²
r² = 50.24 / (0.25 x 3.14)
r² = 201.28
r = √201.28
r ≈ 14.2
Therefore, the radius of the circle is approximately 14.2 units.
Next, we need to find the length of segment AB. Since AB is a chord of the circle, we can use the formula:
AB = 2 x r x sin(θ/2)
where θ is the central angle of the sector in degrees, r is the radius of the circle, and sin() is the sine function.
We're given that the central angle of sector COD is 30°. So we can plug in this value and the radius we found earlier to solve for AB:
AB = 2 x 14.2 x sin(30/2)
AB = 2 x 14.2 x sin(15)
AB ≈ 7.4
To know more about area,
https://brainly.com/question/22469440
#SPJ1
Let the Universal Set, S, have 158 elements. A and B are subsets of S. Set A contains 67 elements and Set B contains 65 elements. If Sets A and B have 9 elements in common, how many elements are in neither A nor B?
There are 92 elements in A but not in B.
What are sets?In mathematics, a set is a well-defined collection of objects or elements. Sets are denoted by uppercase symbols, and the number of elements in a finite set is denoted as the cardinality of the set enclosed in curly braces {…}.
Empty or zero quantity:
Items not included. example:
A = {} is a null set.
Finite sets:
The number is limited. example:
A = {1,2,3,4}
Infinite set:
There are myriad elements. example:
A = {x:
x is the set of all integers}
Same sentence:
Two sets with the same members. example:
A = {1,2,5} and B = {2,5,1}:
Set A = Set B
Subset:
A set 'A' is said to be a subset of B if every element of A is also an element of B. example:
If A={1,2} and B={1,2,3,4} then A ⊆ B
Universal set:
A set that consists of all the elements of other sets that exist in the Venn diagram. example:
A={1,2}, B={2,3}, where the universal set is U = {1,2,3}
n(A ∪ B) = n(A – B) + n(A ∩ B) + n(B – A)
Hence, There are 92 elements in A but not in B.
learn more about sets click here:
https://brainly.com/question/13458417
#SPJ1
What triangles are similar to triangle ABC?
Answer:
A right angled triangle is similar to triangle ABC
Step-by-step explanation:
If you tilt the triangle and put it straight, you'll see that angle C is equal to 90°
And if a triangle has one angle of 90° then it is a right angled triangle
Hope you understand :)
Parts A-D. What is the value of the sample mean as a percent? What is its interpretation? Compute the sample variance and sample standard deviation as a percent as measures of rotelle for the quarterly return for this stock.
The sample mean is 2.1, the sample variance is 212.5% and the standard deviation is 14.57%
What is the sample mean?a. The sample mean can be computed as the average of the quarterly percent total returns:
[tex](11.2 - 20.5 + 13.2 + 12.6 + 9.5 - 5.8 - 17.7 + 14.3) / 8 = 2.1[/tex]
So the sample mean is 2.1%, which can be interpreted as the average quarterly percent total return for the stock over the sample period.
b. The sample variance can be computed using the formula:
[tex]s^2 = sum((x - mean)^2) / (n - 1)[/tex]
where x is each quarterly percent total return, mean is the sample mean, and n is the sample size. Plugging in the values, we get:
[tex]s^2 = (11.2 - 2.1)^2 + (-20.5 - 2.1)^2 + (13.2 - 2.1)^2 + (12.6 - 2.1)^2 + (9.5 - 2.1)^2 + (-5.8 - 2.1)^2 + (-17.7 - 2.1)^2 + (14.3 - 2.1)^2 / (8 - 1) = 212.15[/tex]
So the sample variance is 212.15%. The sample standard deviation can be computed as the square root of the sample variance:
[tex]s = \sqrt(s^2) = \sqrt(212.15) = 14.57[/tex]
So the sample standard deviation is 14.57%.
c. To construct a 95% confidence interval for the population variance, we can use the chi-square distribution with degrees of freedom n - 1 = 7. The upper and lower bounds of the confidence interval can be found using the chi-square distribution table or calculator, as follows:
upper bound = (n - 1) * s^2 / chi-square(0.025, n - 1) = 306.05
lower bound = (n - 1) * s^2 / chi-square(0.975, n - 1) = 91.91
So the 95% confidence interval for the population variance is (91.91, 306.05).
d. To construct a 95% confidence interval for the standard deviation (as percent), we can use the formula:
lower bound = s * √((n - 1) / chi-square(0.975, n - 1))
upper bound = s * √((n - 1) / chi-square(0.025, n - 1))
Plugging in the values, we get:
lower bound = 6.4685%
upper bound = 20.1422%
So the 95% confidence interval for the standard deviation (as percent) is (6.4685%, 20.1422%).
Learn more on sample mean here;
https://brainly.com/question/26941429
#SPJ1
state the third congruence statement that is needed to prove that FGH is congruent to LMN using the ASA congruence therom
Answer:
a
Step-by-step explanation:
Expand and simplify completely
[tex]x(x+(1+x)+2x)-3(x^2-x+2)[/tex]
Answer:
x² + 4x - 6
Step-by-step explanation:
x(x + (1 + x) + 2x) - 3(x² - x + 2) ← simplify parenthesis on left
= x(x + 1 + x + 2x) - 3(x² - x + 2)
= x(4x + 1) - 3(x² - x + 2) ← distribute parenthesis
= 4x² + x - 3x² + 3x- 6 ← collect like terms
= x² + 4x - 6