Answer:
D. 10, 8, 6, 4, 2, ...
Step-by-step explanation:
f(n + 1) = f(n) - 2
This means that each term is the previous term subtracted by 2,
f(1) = 10
This means that the first term of the sequence is 10.
Thus, the sequence is:
10, 8, 6, 4, 2, ...
Thus the correct answer is given by option D.
why do you think that increasing the number of people in a sample creates a normal curve?
Answer:
Increasing the number of people allows more variety and diversity, which makes the sample more accurate.
The area of a triangular sign is 6x² + 24x What is the measure of the base? (View attachment)
Answer:
[tex]2x + 8[/tex]
Step-by-step explanation:
Area of triangle equal
[tex] \frac{b \times h}{2} = a[/tex]
where b is the base and h is the height.
Plug in what we know.
[tex] \frac{b \times 6x}{2} = 6 {x}^{2} + 24x[/tex]
Multiply 2 by both sides.
[tex]b \times 6x = 2(6 {x}^{2} + 24x)[/tex]
Divide 6x by both sides.
[tex]b = \frac{12 {x}^{2} + 48x }{6x} = 2x + 8[/tex]
Which step in the solution contains the first error ?? Please helpp
Answer:
step 4 I believe
Step-by-step explanation:
To paint interior walls, a person charges 50¢ per square foot plus the cost of the paint. For a recent job, the paint cost $100 and the total bill was $475.
The person must have painted ____ ft^2.
Answer:
750 ft²
Step-by-step explanation:
.Given :
Charge per ft² = 50¢ = $0.5
Total cost = ((charge per ft² * number of ft²) + cost of paint)
Given that :
Paint cost = $100
Total cost = $475
Number of ft² = x
Plugging values into the equation :
475 = (( 0.5 * x) + 100)
475 = 0.5x + 100
475 - 100 = 0.5x
375 = 0.5x
x = 375 / 0.5
x = 750 ft²
3384/24 step by step ......I really need help
Madge has cut out two triangular shapes from a block of wood, as shown below. Are the two shapes similar? Show your calculations.
what does the equation inverse of the function found in part b represent in the contract of the problem ? explain your answer .
context to question - At a carnaval , you pay $15 for admission plus $3 for each ride that you go on .
Answer:
[tex]f^{-1}(x) =\frac{x}{3} - 5[/tex]
The inverse function is to calculate the number of rides; given the amount paid
Step-by-step explanation:
Given
[tex]Admission = 15[/tex]
[tex]Ride = 3[/tex] per ride
Required
Explain the inverse function
First, we calculate the function
Let x represents the number of rides
So:
[tex]f(x) = Admission + Ride * x[/tex]
[tex]f(x) = 15 + 3 * x[/tex]
[tex]f(x) = 15 + 3x[/tex]
For the inverse function, we have:
[tex]y = 15 + 3x[/tex]
Swap x and y
[tex]x = 15 + 3y[/tex]
Make 3y the subject
[tex]3y = x - 15[/tex]
Make y the subject
[tex]y =\frac{x}{3} - 5[/tex]
Replace y with the inverse function
[tex]f^{-1}(x) =\frac{x}{3} - 5[/tex]
The above is to calculate the number of rides; given the amount paid
find the volume of pyrmaid
Answer:
37
Step-by-step explanation:
In the given figure the angles are vertically opposite angles so ;
4x + 2 = 150
or, 4x = 148
or, x = 37 ans .
Sonia took a loan of $10 000 from ABC bank tob pay for a renovation at home. The bank offered her a period of 30 months at a rate of 10.5%. to repay the loan:
a) Calculate the Simple Interest she would pay in 30 months.
b) Calculate the Total amount Sonia would have to repay the bank.
Answer:
a. Simple interest, S.I = $2,625
b. Total amount = $12,625
Step-by-step explanation:
Given the following data;
Principal = $10,000
Interest rate = 10.5%
Time = 30 months to years = 2.5 years
a. To find the simple interest;
Mathematically, simple interest is calculated using this formula;
[tex] S.I = \frac {PRT}{100} [/tex]
Where;
S.I is simple interest. P is the principal. R is the interest rate. T is the time.Substituting into the formula, we have;
[tex] S.I = \frac {10000*10.5*2.5}{100} [/tex]
[tex] S.I = \frac {262500}{100} [/tex]
Simple interest, S.I = $2,625
b. To calculate the total amount Sonia would have to repay the bank;
Total amount = simple interest + principal
Total amount = 2625 + 10000
Total amount = $12,625
The equation of the line passing through (2, 3) with a slope of 5 is y = [] x - []
what are the answers to []
Answer:
y = 5x - 7
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
Here m = 5, then
y = 5x + c ← is the partial equation
To find c substitute (2, 3) into the partial equation
3 = 10 + c ⇒ c = 3 - 10 = - 7
y = 5x - 7 ← equation of line
can anyone help me in this questions
Answer:
Step-by-step explanation:
Which of the following question is not considered a statistical question?
Answer:
B. How many total customers were at the story today?
Step-by-step explanation:
Option 'B' is not a statistical question because there is not more than one answer.
There is only one answer to this question.
Option 'A,' 'C,' and 'D' are statistical questions because there is more than one answer.
What amounts did each person at the store spend on their purchase?
This question has more than one answer.
How long did each customer spend shopping at the store?
What are the heights of each customer who entered the store?
These questions have more than one answer as well.
Statistical questions are questions that have more than one answer. This means you can collect data.
I, therefore, believe that option 'B' is not a statistical question.
Leila is arranging 11 cans of food in a row on a shelf. She has 4 cans of corn, 1 can of peas, and 6 cans of beets. In how many distinct orders can the cans be arranged if two cans of the same food are considered identical.
Given:
Leila is arranging 11 cans of food in a row on a shelf. She has 4 cans of corn, 1 can of peas, and 6 cans of beets.
To find:
The distinct orders can the cans be arranged if two cans of the same food are considered identical.
Solution:
Total number of cans = 11
Cans of corn = 4
Cans of Peas = 1
Cans of beets = 6
We need to find divide total possible arrangements (11!) by the repeating arrangements (1!, 4!, 6!) to find the distinct orders can the cans be arranged if two cans of the same food are considered identical.
[tex]\text{Distinct order}=\dfrac{11!}{1!4!6!}[/tex]
[tex]\text{Distinct order}=\dfrac{11\times 10\times 9\times 8\times 7\times 6!}{1\times (4\times 3\times 2\times 1)\times 6!}[/tex]
[tex]\text{Distinct order}=\dfrac{55440}{24}[/tex]
[tex]\text{Distinct order}=2310[/tex]
Therefore, the total number of distinct orders is 2310.
Ahmed packs 8 text books each of mass x grams. And two dictionaries each mass y grams into a box of mass 250 grams. What is total mass of the box now?
Answer:
8x + 2y + 250 grams
Step-by-step explanation:
The box contains
8 text books each with a mass of x grams = 8x
2 dictionaries each with a mass of y grams = 2y
1 box = 250 grams
Total = 8x + 2y + 250
A college admissions officer takes a simple random sample of 90 entering freshman and computes their mean mathematics sat score to be 436. assume the population standard deviation is σ = 101. Based on a 99% confidence interval for the mean mathematics SAT score, is it likely that the mean mathematics SAT score for entering freshmen class is greater than 460?
Answer:
460 is part of the confidence interval, which means that we cannot say that there is significant evidence that the mean mathematics SAT score for entering freshmen class is greater than 460
Step-by-step explanation:
We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1 - 0.99}{2} = 0.005[/tex]
Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].
That is z with a pvalue of [tex]1 - 0.005 = 0.995[/tex], so Z = 2.575.
Now, find the margin of error M as such
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
[tex]M = 2.575\frac{101}{\sqrt{90}} = 27.4[/tex]
The lower end of the interval is the sample mean subtracted by M. So it is 436 - 27.4 = 408.6.
The upper end of the interval is the sample mean added to M. So it is 436 + 27.4 = 463.4.
460 is part of the confidence interval, which means that we cannot say that there is significant evidence that the mean mathematics SAT score for entering freshmen class is greater than 460
Maria's Pizza Palace offers 4 types of crust, 7 toppings, and 6 kinds of cheese for the mega calzone. How many different mega calzones can be made if a mega calzone contains 5 different toppings and 3 different cheeses
Answer:
210 different mega calzones can be made.
Step-by-step explanation:
Fundamental counting principle:
States that if there are p ways to do a thing, and q ways to do another thing, and these two things are independent, there are p*q ways to do both things.
Additionally:
The order in which the toppings and the cheeses are chosen is not important, which means that the combinations formula is used to solve this question.
Combinations formula:
[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
Toppings:
5 from a set of 7. So
[tex]C_{7,5} = \frac{7!}{5!2!} = 21[/tex]
Cheeses
3 from a set of 6. So
[tex]C_{6,3} = \frac{6!}{3!3!} = 20[/tex]
How many different mega calzones can be made if a mega calzone contains 5 different toppings and 3 different cheeses?
Toppings and cheeses are independent, and thus, by the fundamental counting principle:
21*20 = 210
210 different mega calzones can be made.
SOMENE PLS PLS HELP IL GIVE OYU A KISS AND A COOKIE FI YOU HHELP E IM BEGGING
Answer:
B
Step-by-step explanation:
SOH CAH TOA
sin theta = opp/hyp
csc theta = hyp/opp
csc theta = 10/8 = 5/4
cos theta = adj/hyp
sec theta = hyp/adj
sec theta = 10/6 = 5/3
Answer: B
the lengths of two sides of a right triangle are 12 inches and 15 inches.What is the difference between the two possible lengths of the third side of the triangle
Answer:10.2 inches
Step-by-step explanation:
we know that
In this problem we have two cases
First case
The given lengths are two legs of the right triangle
so
Applying the Pythagoras Theorem
Find the length of the hypotenuse
substitute
Second case
The given lengths are one leg and the hypotenuse
so
Applying the Pythagoras Theorem
Find the length of the other leg
substitute
Find the difference between the two possible lengths of the third side of the triangle
so
Answer:
The difference between the two possible lengths for the third side of the triangle is about 10.21 inches.
Step-by-step explanation:
We are given that the lengths of two sides of a right triangle is 12 inches and 15 inches.
And we want to find the difference between the two possible lengths of the third side.
In the first case, assume that neither 12 nor 15 is the hypotenuse of the triangle. Then our third side c must follow the Pythagorean Theorem:
[tex]a^2+b^2=c^2[/tex]
Substitute in known values:
[tex](12)^2+(15)^2=c^2[/tex]
Solve for c:
[tex]c=\sqrt{12^2+15^2}=\sqrt{369}=\sqrt{9\cdot 41}=3\sqrt{41}[/tex]
In the second case, we will assume that one of the given lengths is the hypotenuse. Since the hypotenuse is always the longest side, the hypotenuse will be 15. Again, by the Pythagorean Theorem:
[tex]a^2+b^2=c^2[/tex]
Substitute in known values:
[tex](12)^2+b^2=(15)^2[/tex]
Solve for b:
[tex]b=\sqrt{15^2-12^2}=\sqrt{81}=9[/tex]
Therefore, the difference between the two possible lengths for the third side is:
[tex]\displaystyle \text{Difference}=(3\sqrt{41})-(9)\approx 10.21\text{ inches}[/tex]
What is the common ratio of the sequence?
-2, 6, -18, 54,...
-3
-2
3
8
Answer:
-3
Step-by-step explanation:
Which of the following phrases would represent this expression?
x/3
• the difference of x and 3
• the quotient of 3 and x
• the product of 3 and x
• the quotient of x and 3
Answer:
the quotient of x and 3
Step-by-step explanation:
x divided by 3
division answers are called quotients
Answer:
Step-by-step explanation:
x/3
• the difference of x and 3
• the quotient of 3 and x
• the product of 3 and x
• the quotient of x and 3 is correct. We are dividing x into 3, not 3 into x.
Can someone tell me if its A,B, or C? Thanks besties.
Answer:
... ..... C is the answer
The square root of -2 rounded to nearest 100th?
Answer:
√-2 ≈ 1.41i
Step-by-step explanation:
√-2 = i√2 = i × 1.414.. ≈ 1.41i
A custodian has 5 1/2 gallons of paint. Each of the bookcases she is painting requires 1/2 gallon of paint. How many bookcases will the custodian be able to paint with that amount of paint
A. 3
B. 4
C. 11
D. 15
Of the following fractions: 9/19, 5/11, 7/15, and 11/23, which is the largest?
Answer:
silly question...I used technology to "cheat"
it is 11/23
34155 32775 33649 34485
72105 72105 72105 72105
Step-by-step explanation:
En una escuela hay 200 estudiantes. Si la razón entre hombres estudiantes y mujeres
estudiantes es de 3:5, ¿cuántos estudiantes son hombres y cuántas son mujeres?
Answer:
75 hombres y 125 mujeres
Step-by-step explanation:
lo siento, yo no hablo español bien
Write the following as an algebraic expression. Then simplify.
The total amount of money (in cents) in x nickles, (x+3) quarters, and 3x dimes. (Hint: The value of a nickel is 5 cents, the value of a quarter is 25 cents, and the value of a dime is 10 cents.)
The total amount of money is ___ cents.
(Simplify your answer. Do not factor.)
Answer:
[tex]60x+75[/tex]
Step-by-step explanation:
We want to find the total amount of money (in cents) of the expression:
[tex]\text{$x$ nickels, $(x+3)$ quarters, and $3x$ dimes}[/tex]
Since each nickel is worth five cents, each quarter 25 cents, and each dime ten cents, we can write that:
[tex]\displaystyle \text{Total}=5(x)+25(x+3)+10(3x)[/tex]
Simplify. Distribute:
[tex]T=5x+25x+75+30x[/tex]
Combine like terms. Therefore, the total amount of money (in cents) is represented by:
[tex]T=60x+75[/tex]
santino is renting a canoe from a local shop that charges a $10 fee, plus an hourly rate of $7.50. For how long can santino rent a canoe if he pays a total of $70
Answer:
Santino rented the canoe for 8 hours.
Step-by-step explanation:
The total bill is represented by the formula r(h) = $10 + ($7.50/hour)h,
where h is the number of hours over which the canoe is rented.
If the total bill is $70, then $70 = $10 + ($7.50/hour)h.
Solve this for h. Start by subtracting $10 from both sides, obtaining:
$60 = ($7.50/hour)h.
Dividing both sides by ($7.50/hour), we get:
$60
h = --------------------- = 8 hours
($7.50/hour)
Santino rented the canoe for 8 hours.
Select the statements that describe exponential growth.
a. Exponential growth is common in many circumstances throughout nature.
b. Exponential growth is the rapid and unrestricted increase of a population.
c. Exponential growth is population growth limited by natural resources in the environment.
d. Exponential growth occurs when populations level off and stop growing.
e. Exponential growth occurs when a population increases at a fixed percentage of every generation.
Answer:
the answer is B
Step-by-step explanation:
cause exponensial means like a crazy amount very quickly
9514 1404 393
Answer:
e. Exponential growth occurs when a population increases at a fixed percentage of every generation.
Step-by-step explanation:
Exponential growth occurs when the amount of increase is proportional to the population. That is, the increase is a fixed percentage of the population in any given time period (generation).
__
Many populations appear to have exponential growth when resources are effectively unlimited. The growth can be rapid, but isn't always. At some point, the population generally finds a limit to its growth, which then ceases to be exponential.
A function describing population growth that is jointly proportional to population and available resources is called a logistic function. It has an exponential component, but is not an exponential function.
In a geometric sequence, the term an+1 can be smaller than the term ar O A. True O B. False
9514 1404 393
Answer:
True
Step-by-step explanation:
In a geometric sequence, the terms a[n+1] and a[n] are related by the common ratio. If the sequence is otherwise unspecified, two sequential terms may have any a relation you like.* Either could be larger or smaller than the other.
__
* If one is zero, the other must be as well. Multiplying 0 by any finite common ratio will give zero as the next term.
A baseball is hit and its height at different one-second intervals is recorded (See attachment)
Answer:
[tex]h(t)[/tex] is likely a quadratic function.
Based on values in the table, domain of [tex]h(t)[/tex] : [tex]\lbrace 0,\, 1,\, 2,\, 3,\, 4,\, 5,\, 6,\, 7,\, 8\rbrace[/tex]; range of [tex]h(t)\![/tex]: [tex]\lbrace 0,\, 35.1,\, 60.1\, 75.2,\, 80.3,\, 75.3,\, 60.2,\, 35.0 \rbrace[/tex].
Step-by-step explanation:
By the power rule, [tex]h(t)[/tex] is a quadratic function if and only if its first derivative, [tex]h^\prime(t)[/tex], is linear.
In other words, [tex]h(t)[/tex] is quadratic if and only if [tex]h^\prime(t)[/tex] is of the form [tex]a\, x + b[/tex] for some constants [tex]a[/tex] and [tex]b[/tex]. Tables of differences of [tex]h(t)\![/tex] could help approximate whether [tex]h^\prime(t)\![/tex] is indeed linear.
Make sure that values of [tex]t[/tex] in the first row of the table are equally spaced. Calculate the change in [tex]h(t)[/tex] over each interval:
[tex]h(1) - h(0) = 35.1[/tex].[tex]h(2) - h(1) = 25.0[/tex].[tex]h(3) - h(2) = 15.1[/tex].[tex]h(4) - h(3) = 5.1[/tex].[tex]h(5) - h(4) = -5.0[/tex].[tex]h(6) - h(5) = -15.1[/tex].[tex]h(7) - h(6) = -25.2[/tex].[tex]h(8) - h(7) = -35.0[/tex].Consecutive changes to the value of [tex]h(t)[/tex] appears to resemble a line with slope [tex](-10)[/tex] within a margin of [tex]0.2[/tex]. Hence, it is likely that [tex]h(t)\![/tex] is indeed a quadratic function of [tex]t[/tex].
The domain of a function is the set of input values that it accepts. For the [tex]h(t)[/tex] of this question, the domain of [tex]h(t)\![/tex] is the set of values that [tex]t[/tex] could take. These are listed in the first row of this table.
On the other hand, the range of a function is the set of values that it outputs. For the [tex]h(t)[/tex] of this question, these are the values in the second row of the table.
Since both the domain and range of a function are sets, their members are supposed to be unique. For example, the number "[tex]0[/tex]" appears twice in the second row of this table: one for [tex]t = 0[/tex] and the other for [tex]t = 8[/tex]. However, since the range of [tex]h(t)[/tex] is a set, it should include the number [tex]0\![/tex] only once.