When radioactive decay occurs, the original nucleus splits into daughter nuclei and the resulting nucleus is more stable than the original nucleus. The nucleus can be of a different element than the original.
Unstable nuclei often undergo radioactive decay. In a radioactive decay, the unstable nucleus is broken up into other nuclei. Usually, the nuclei formed during radioactive decay are smaller in mass compared to the original nucleus.
Also, the resulting nucleus is more stable than the original nucleus. The nucleus can be of a different element than the original.
The effect is that the nucleus changes into the nucleus of one or more other elements. These daughter nuclei have a lower mass and are more stable (lower in energy) than the parent nucleus.
a. Calculate the change in enthalpy when 20.0 grams of aluminum metal is heated from 298 K to 573 K at constant pressure of 1 atm.
b. Calculate the change in enthalpy when 20.0 grams of metallic lead is taken through the same process. In both cases assume the heat capacity values predicted by equipartition are valid through the temperature range stated.
WILL GIVE BRAINLEST
Water waves in a small tank are 6.0 cm long. They pass at a given point at a rate of 4.8 waves per second. What is the speed of the wave?
Answer:, Correct option is 0.288m/s
Explanation:
The relationship between the velocity of the wave, its wavelength and frequency is given by the formula
Wavelengthλ=
Frequency(ν)
Speed(v)
,
where, v - velocity of the wave
λ - wavelength of the wave
f - frequency of the wave.
In the question it is given that the frequency is 4.8 Hz and the wavelength is 6.0 cm, that is, 0.06 meters.
The velocity of the sound is calculated as follows.
v=f×λ=4.8 Hz×0.06 m=0.288 m/s
Hence, the speed of the water wave is 0.288 m/s.
what is the best way to make a supersaturated solution?
A: Heat the solution
B: Stir the Solution
C: Evaporate the solution
D: Cool the solution
Answer:
heat the solution
Explanation:
i think
Answer:
The way to make a supersaturated solution is to add heat, but just a little heat won't do the job. You have to heat the water close to the boiling point. When the water gets this hot, the water molecules have more freedom to move around, and there is more space for solute molecules between them.
A 4.0 L flask containing N2 at 15 atm is connected to a 4.0 L flask containing H2 at 7.0 atm and the gases are allowed to mix. What is the mole fraction of N2
The mole fraction of N₂ after the mixture of 4.0 L of N₂ at 15 atm with 4.0 L of H₂ at 7.0 atm is 0.68.
We can calculate the mole fraction of N₂ with the following equation:
[tex] X_{N_{2}} = \frac{n_{N_{2}}}{n_{t}} = \frac{n_{N_{2}}}{n_{N_{2}} + n_{H_{2}}} [/tex] (1)
The number of moles of N₂ and H₂ can be found with the ideal gas law:
[tex] PV = nRT [/tex]
Where:
P: is the pressure
R: is the gas constant
T: is the temperature
V: is the volume
For nitrogen gas we have:
[tex] n_{N_{2}} = \frac{P_{N_{2}}V_{N_{2}}}{RT} [/tex] (2)
And for hydrogen:
[tex] n_{H_{2}} = \frac{P_{H_{2}}V_{H_{2}}}{RT} [/tex] (3)
After entering equations (2) and (3) into (1), we get:
[tex] X_{N_{2}} = \frac{\frac{P_{N_{2}}V_{N_{2}}}{RT}}{\frac{P_{N_{2}}V_{N_{2}}}{RT} + \frac{P_{H_{2}}V_{H_{2}}}{RT}} [/tex]
Since RT are constants, we have:
[tex] X_{N_{2}} = \frac{P_{N_{2}}V_{N_{2}}}{P_{N_{2}}V_{N_{2}} + P_{H_{2}}V_{H_{2}}} [/tex]
We know that:
[tex] P_{N_{2}} = 15 atm[/tex]
[tex] V_{N_{2}} = 4.0 L[/tex]
[tex] P_{H_{2}} = 7.0 atm[/tex]
[tex] V_{H_{2}} = 4.0 L[/tex]
so:
[tex] X_{N_{2}} = \frac{15 atm*4.0 L}{15 atm*4.0 L + 7.0 amt*4.0 L} = 0.68 [/tex]
Therefore, the mole fraction of N₂ is 0.68.
Find more here:
https://brainly.com/question/4147359?referrer=searchResults
I hope it helps you!
Environmental scientists collect air samples so they can test the quality of the air. They start with rigid metal containers that are completely empty—the air has been pumped out of them.
What happens to the pressure inside the container and the volume of the container as air enters it?
Explanation:
filling air inside an empty o2 medal containers, if air is added, the air inside, creates volume inside.
due to heat, weather,... depending on what indoor or outdoor storage said containers r placed in,;
So, I can't give you an answer, due to lack of details..sorry...
How many atoms are in mercury (I) phospate?
The chemical formula is (Hg2)3(PO4)2
A)11
B)14
C)15
D)16
Mercury (I) phosphate with the chemical formula (Hg2)3(PO4)2 has 16 atoms.
Number of Hg atoms = 2x3 = 6Number of P atoms = 2 x 1 = 2Number of O atoms = 4x2 = 8Sum of all the atoms = 6+2+8
= 16 atoms
More on the number of atoms in a molecule can be found here: https://brainly.com/question/19140379
Suppose you have samples of three unknown solids. Explain how you could use their properties to
determine whether or not they are ionic solids.
Using melting and boiling temperature, hardness and electric current passing testing.
Ionic solidsIonic solids are materials that have a strong bond between their ions, thus producing well-defined shapes.
In addition, due to this strong attraction, the boiling and melting temperatures of these materials are very high, in addition to the resistance to breakage presented by them.
Finally, ionic solids are also excellent conductors of electricity.
So, their properties used to determine whether or not they are ionic solids are melting and boiling temperature, hardness and electric current passing testing.
Learn more about ionic solids: brainly.com/question/8236583
Oxidation unit test
Please help ASAP!!!
Which statement correctly describes the oxidation number of the manganese atom (Mn) in Mnl2 and MnO2?
O Manganese has an oxidation number of +4 in Mnl2 and +2 in MnO2.
o Manganese has an oxidation number of +2 in Mnl2 and +4 in MnO2.
o Manganese has an oxidation number of +4 in both Mnl2 and MnO2.
Manganese has an oxidation number of +2 in both Mnl2 and MnO2.
In this case, according to the given information about the oxidation numbers and the compounds given, it turns out possible to figure out the oxidation number of manganese in both MnI2, manganese (II) iodide and MnO2, manganese (IV) oxide, by using the concept of charge balance.
Thus, we can define the oxidation state of iodine and oxygen as -1 and -2, respectively, since the former needs one electron to complete the octet and the latter, two of them.
Next, we can write the following [tex]x[/tex], since manganese has five oxidation states, and it is necessary to calculate the appropriate ones:
[tex]Mn^xI_2^-\\\\Mn ^xO_2^{-2}[/tex]
Next, we multiply each anion's oxidation number by the subscript, to obtain the following:
[tex]Mn^xI_2^-\rightarrow x-2=0;x=+2\\\\Mn ^xO_2^{-2}\rightarrow x-4=0;x=+4[/tex]
Thus, the correct choice is Manganese has an oxidation number of +2 in Mnl2 and +4 in MnO2.
Learn more:
https://brainly.com/question/15167411 https://brainly.com/question/6710925which two types of food are homogeneous mixtures
A. mustard
B. mayonnaise
C. tossed salad
D. trail mix
Fill in the left side of this equilibrium constant equation for the reaction of benzoic acid with water
Answer:
C6H5CO2H (aq) + H2O (l) _C6H5CO2- + H3OPLS HELP THIS IS TO HARD PLS
Why are sound waves considered a type of mechanical energy?
Question 6 options:
Sound waves can travel through space
Sound waves can travel through a solid
Sound waves transfer energy by the motion of particles
Sounds waves are made by machines
-Sound waves transfer energy by the motion of particles.
Explanation:
These particle-to-particle, mechanical vibrations of sound conductance qualify sound waves as mechanical waves. Sound energy, or energy associated with the vibrations created by a vibrating source, requires a medium to travel, which makes sound energy a mechanical wave.
Sound waves transfer energy by the motion of particles considered a type of mechanical energy.
What is mechanical energy ?Potential energy plus kinetic energy are combined to form mechanical energy. According to the concept of mechanical energy conservation, mechanical energy remains constant in an isolated system that is solely exposed to conservative forces.
The quantity of energy that a force transfers is known as mechanical work. It is a scalar quantity with joules as its SI unit, much as energy.
Since there are only microscopic forces generated by atomic collisions and no macroscopically quantifiable force, heat conduction is not regarded as a kind of work.
Transverse, longitudinal, and surface waves are the three different forms of mechanical waves. When the wave's energy goes through them, they behave differently in terms of how the medium's particles move.
Thus, option C is correct.
To learn more about mechanical energy follow the link;
https://brainly.com/question/1932868
#SPJ2
A metal (FW 341.1 g/mol) crystallizes into a body-centered cubic unit cell and has a radius of 1.74 Angstrom. What is the density of this metal in g/cm3
This problem provides the molar mass and radius of a metal that has an BCC unit cell and the density is required.
Firstly, we consider the formula that relates molar mass and also includes the Avogadro's number and the volume of the unit cell:
[tex]\rho =\frac{Z*M}{V*N_A}[/tex]
Whereas Z stands for the number of atoms in the unit cell, M the molar mass, V the volume and NA the Avogadro's number. Next, since BCC is able to hold 2 atoms and M and NA are given, we calculate the volume of the atom in the unit cell given the radius in meters:
[tex]V=a^3=(\frac{4R}{\sqrt{3} } )^3=(\frac{4*1.74x10^{-10}m}{\sqrt{3} } )^3=6.49x10^{-29}m^3[/tex]
And finally the required density in g/cm³:
[tex]\rho =\frac{2*341.1g/mol}{6.49x10^{-29}m^3\frac{m^3}{atom} *6.022x10^{23}\frac{atom}{mol} } =17455257.8g/m^3\\\\\rho=17.5g/cm^3[/tex]
Learn more:
brainly.com/question/12977980 brainly.com/question/13110055
The melting point of H₂O(s) is 0 °C. Would you expect the melting point of H₂S(s) to be 85 °C, 0 °C or -85 °C.? Justify your choice
Answer:
-85 °C
Explanation:
O and S are in the same group( Group 16). Since S is below O it's atomic mass is higher than O. So molar mass of H2S is higher than H2O. The strength of Vanderwaal Interactions ( London dispersion forces) increases when the molar mass increases. However, only H2O can form H bonds with each other. This is because electronegativity of O is higher than S and therefore H in H2O has a higher partial positive charge than H of H2S.
H bond dominate among these 2 types of forces so the strength of attractions between molecules is higher in H2O than H2S. Therefore more energy should be supplied for H2O to break inter
molecular forces and convert from solid to liquid state than H2S. So mpt of H2O must be higher than that of H2S.
How is hydrogen isolated from water
To extract hydrogen from water, researchers insert two electrodes across the water and pass current, which can separate the hydrogen from water. The process called electrolysis of water. ... An electric field applied through the cobalt oxide to water molecules resulted in the electrolysis of water
Hydrogen gas is an environment-friendly fuel — it produces water on combustion in the presence of oxygen. ... To extract hydrogen from water, researchers insert two electrodes across the water and pass current, which can separate the hydrogen from water. The process called electrolysis of water.
Determine the molarity for each of the following Solution: 98.0 of phosphoric acids H3PO4 in 1.00L of Solution.
The molarity of the solution is 0.01.
Brainliest?
For the reaction C + O2 = CO2, if 3 grams of carbon react with the oxygen, how many grams of carbon dioxide are produced?
A strand of DNA has the following string of bases:
TAACGTCG
What is the order of bases of the RNA molecule that is built from this DNA?
The genetic makeup of the majority of these organisms is either RNA or DNA. For instance, some viruses' genetic material may be RNA whereas others' genetic material may be DNA. RNA is present in the Human Immunodeficiency Virus (HIV), which after adhering to the host cell, transforms into DNA.
DNA is a collection of molecules that is in charge of transporting and passing genetic information from parents to children. A ribonucleic acid called RNA aids in the body's production of proteins. In the human body, new cells are created as a result of this nucleic acid.
Instead of thymine, uracil is present in RNA. All other bases are same as DNA like adenine, guanine and cytosine. The order of bases in RNA is:
UAACGUCG.
To know more about RNA, visit;
https://brainly.com/question/14317249
#SPJ1
as the solar nebula cooled which compounds were the first to condense from a gas to a solid? Rock water ice or metal
As the solar nebula cooled METAL compounds are the first to condense from a gas to a solid. The solar nebula gave birth to the Solar system.
A solar nebula is a disc-shaped cloud of gases and grain dust, which gave birth to the Sun and planets of the Solar system, approximately 4.6 billion years ago.
The solar nebula is at the beginning a mixture of interstellar gases (hydrogen and helium) and dust grains.
As the solar nebula cools, heavy elements such as metals in the disk condensate into planetesimals.
Learn more in:
https://brainly.com/question/14151385
Dissolution of KOH, ΔHsoln:
KOH(s) → KOH(aq) (10.1)
Neutralization of solid KOH, ΔHneut:
KOH(s) + HCl(aq) → H2O(l) + KCl(aq) (10.2)
1) Using Hess's law, show how to combine Reaction 10.1 and Reaction 10.2 to give
KOH(aq) + HCl(aq) → H2O(l) + KCl(aq) (10.3)
2)How should ΔHsoln and ΔHneut be combined (mathematically) to give the change in enthalpy for Reaction 10.3, ΔH?
Using Hess's law we found:
1) By adding reaction 10.2 with the reverse of reaction 10.1 we get reaction 10.3:
KOH(aq) + HCl(aq) → H₂O(l) + KCl(aq) ΔH (10.3)
2) The ΔHsoln must be subtracted from ΔHneut to get the total change in enthalpy (ΔH).
The reactions of dissolution (10.1) and neutralization (10.2) are:
KOH(s) → KOH(aq) ΔHsoln (10.1)
KOH(s) + HCl(aq) → H₂O(l) + KCl(aq) ΔHneut (10.2)
1) According to Hess's law, the total change in enthalpy of a reaction resulting from differents changes in various reactions can be calculated as the sum of all the enthalpies of all those reactions.
Hence, to get reaction 10.3:
KOH(aq) + HCl(aq) → H₂O(l) + KCl(aq) (10.3)
We need to add reaction 10.2 to the reverse of reaction 10.1
KOH(s) + HCl(aq) + KOH(aq) → H₂O(l) + KCl(aq) + KOH(s)
Canceling the KOH(s) from both sides, we get reaction 10.3:
KOH(aq) + HCl(aq) → H₂O(l) + KCl(aq) (10.3)
2) The change in enthalpy for reaction 10.3 can be calculated as the sum of the enthalpies ΔHsoln and ΔHneut:
[tex] \Delta H = \Delta H_{soln} + \Delta H_{neut} [/tex]
The enthalpy of reaction 10.1 (ΔHsoln) changed its sign when we reversed reaction 10.1, so:
[tex] \Delta H = \Delta H_{neut} - \Delta H_{soln} [/tex]
Therefore, the ΔHsoln must be subtracted from ΔHneut to get the total change in enthalpy ΔH.
Learn more here:
https://brainly.com/question/2082986?referrer=searchResultshttps://brainly.com/question/1657608?referrer=searchResultsI hope it helps you!
Find the volume of 0.170 M sulfuric acid necessary to react completely with 72.2 g sodium hydroxide.
The volume of sulphuric acid, H₂SO₄ needed for the complete reaction with 72.2 g of sodium hydroxide, NaOH is 5.31 L
We'll begin by calculating the number of mole in 72.2 g of NaOH. This can be obtained as follow:
Mass of NaOH = 72.2 g
Molar mass of NaOH = 23 + 16 + 1 = 40 g/mol
Mole of NaOH =?Mole = mass / molar mass
Mole of NaOH = 72.2 / 40
Mole of NaOH = 1.805 mole Next, we shall determine the number of mole of H₂SO₄ needed to react with 1.805 mole of NaOH.2NaOH + H₂SO₄ —> Na₂SO₄ + 2H₂O
From the balanced equation above,
2 moles of NaOH reacted with 1 mole of H₂SO₄.
Therefore,
1.805 mole of NaOH will react with = 1.805 / 2 = 0.9025 mole of H₂SO₄.
Finally, we shall determine the volume of H₂SO₄.Mole of H₂SO₄ = 0.9025 mole
Molarity of H₂SO₄ = 0.170 M
Volume of H₂SO₄ =?Volume = mole / Molarity
Volume of H₂SO₄ = 0.9025 / 0.170
Volume of H₂SO₄ = 5.31 LThus, the volume of H₂SO₄ needed for the reaction is 5.31 L
Learn more: https://brainly.com/question/14356462
Explain how you determine the freezing point of a solution that does not have a well-defined transition in the cooling curve.
This question is asking for a method for the determination of the freezing point in a solution that does not have a noticeable transition in the cooling curve, which is basically based on a linear fit method.
The first step, would be to understand that when the transition is well-defined as the one on the attached file, we can just identify the temperature by just reading the value on the graph, at the time the slope has a pronounced change. For instance, on the attached, the transition occurs after about 43 seconds and the freezing point will be about 4 °C.
However, when we cannot identify a pronounced change in the slope, it will be necessary to use a linear fit method (such as minimum squares) to figure out the equation for each segmented line having a significantly different slope and then equal them so that we can numerically solve for the intercept.
As an example, imagine two of the segmented lines have the following equations after applying the linear fit method:
[tex]y=-3.5 x + 25\\\\y=-0.52 x + 2[/tex]
First of all, we equal them to find the x-value, in this case the time at which the freezing point takes place:
[tex]-3.5 x + 25=-0.52 x + 2\\\\-3.5 x+0.52 x =2-25\\\\x=\frac{-23}{-2.98}=7.72[/tex]
Next, we plug it in in any of the trendlines to obtain the freezing point as the y-value:
[tex]y=-3.5 (7.72) + 25\\\\y = 1.84[/tex]
This means the freezing point takes place after 7.72 second of cooling and is about 1.84 °C. Now you can replicate it for any not well-defined cooling curve.
Learn more:
https://brainly.com/question/22818252 https://brainly.com/question/9680530Doing Labs at home
I’m a junior and I’m staying home for this semester and I have to take chemistry and a lot of my work is Labs but I don’t know how to do them since I don’t have the materials at home to do the labs. Someone please help!!!
Answer:
go get the stuff.
Explanation:
Calculate the mass (in grams) of chlorine (Cl2) gas sample which occupies a 2.50 L container at a pressure of 1.22 atm and temperature of 27.8°C?
Answer:Nothing
Explanation:
The answer is nothing the tempatature isnt matched with the degrees this is false
A gas has a volume of 3.7 liters with a pressure of 1.75 atm. What is the pressure of the gas if its volume is raised to 4.5 L?
Answer: 251 K
Explanation: hope this helps :)
Find five household items that contain ionic compounds. List the following information for each compound: a.name of the product
b. the chemical name of the ionic compound
d.the chemical formula of the ionic compound c. identify the ions present in each compound
Answer:
D . GOD BLESS .
Explanation:
an alloy composed of tin, lead, and cadmium is analyzed. the mole ratio of sn:pb is 2.73:1.00, and the mass ratio of pb:cd is 1.78:1.00. what is the mass percent composition of pb in the alloy
This problem is describe the mole-ratio composition of an allow composed by tin, lead and cadmium. Ratios are given as Sn:Pb 2.73:1.00 and Pb:Cd is 1.78:1.00, and we are asked to calculate the mass percent compositon of Pb in the allow.
In this case, according to the given information, it turns out possible realize that the following number of moles are present in the alloy, according to the aforementioned ratios:
[tex]2.73mol Sn\\\\1.00molPb\\\\\frac{1.00molPb*1.00molCd}{1.78molPb}= 0.562molCd[/tex]
Next, we calculate the masses by using each metal's atomic mass:
[tex]m_{Sn}=2.73mol*\frac{118.7g}{1mol}=324.05g\\\\ m_{Pb}=1.00mol*\frac{207.2g}{1mol}=207.2g\\\\m_{Cd}=0.562mol*\frac{112.4g}{1mol}=63.2g[/tex]
Thus, the mass percent composition of each metal is shown below:
[tex]\%Sn=\frac{324.05g}{324.05g+207.2g+63.2g} *100\%=54.5\%\\\\\%Pb=\frac{207.2g}{324.05g+207.2g+63.2g} *100\%=34.9\%\\\\\%Cd=\frac{63.2}{324.05g+207.2g+63.2g} *100\%=10.6\%[/tex]
So that of lead is 34.9 %.
https://brainly.com/question/19168996https://brainly.com/question/2578569Learn more:
In the laboratory you are asked to make a 0.282 m manganese(II) acetate solution using 315 grams of water. How many grams of manganese(II) acetate should you add
Answer:315 - 282 = 173?
Explanation:
Grace wanted to find out the best conditions for growing lettuce plants.
She took 4 trays and planted 8 lettuce plants in each.
The results of her investigation are shown below.
How many days did the investigation last?
Use the table to help you.
Explanation:
the investigation lasts for 7 days.
hope this helps you.
How many of sodium (Na) are needed to make 4.5 liters of a 1.5mol/L of Na solution?
Answer:
Explanation:
First you will find the mole from the molarity and then the desired mass from the mole.