Answer:
Because if we changed the subscript number we will change the identity of the compound and we Well creat a new compound or substance different than what they gave us to balance also the law of conservation of mass states that the mass cannot be created nor destroyed.
Explanation:
what should you do with unused chemicals? group of answer choices dispose of them as instructed on the safety sheet return to their original containers throw away with regular trash dump them down the sink
The best thing to do with unused chemicals is to dispose of them as instructed on the safety sheet. This may involve returning the chemicals to their original containers or throwing them away with the regular trash. Never dump unused chemicals down the sink, as this could be hazardous to the environment and to your health.
Unused chemicals should be disposed of as instructed on the safety sheet. It is important to dispose of chemicals in a safe and responsible manner to avoid harm to the environment and human health.
What are chemicals?
Chemicals are substances that are made up of molecules, which are made up of atoms. Chemicals can be found in nature or synthesized by humans. Chemicals have a wide range of uses, from pharmaceuticals to household cleaning products.
Why should you dispose of unused chemicals as instructed on the safety sheet?
Unused chemicals can pose a hazard if they are not disposed of correctly. Many chemicals are hazardous and can be dangerous to human health and the environment if they are not disposed of properly. Chemicals that are poured down the drain or thrown in the trash can contaminate the environment and cause harm to animals and humans. Examples of hazardous chemicals are corrosive, flammable, reactive, and toxic. It is essential to follow the safety sheet's instructions on how to dispose of unused chemicals to protect the environment and human health. In addition, it is important to ensure that unused chemicals are not mixed with other chemicals, as this can cause a dangerous reaction.
For more information follow this link: https://brainly.com/question/30970962
#SPJ11
select the correct statements regarding a liquid-gas system at equilibrium that is disturbed by adding or removing vapor from the system (at constant temperature). select all that apply. multiple select question. A. adding vapor will cause a temporary increase in vapor pressure. B. adding or removing vapor will result in a new equilibrium vapor pressure. C. when equilibrium is reestablished after a disturbance in a liquid-gas system, the vapor pressure will be the same. D. removing vapor will cause a temporary increase in the rate of condensation.
A liquid-gas system at equilibrium is disturbed by adding or removing vapor from the system (at constant temperature). The correct statements for the vapor pressure regarding this situation are A, B, and D.
A. Adding vapor will cause a temporary increase in vapor pressure: When the vapor is added to the system, the total vapor pressure increases, and the vapor pressure in the system is greater than the original equilibrium vapor pressure until the system re-equilibrates.
B. Adding or removing vapor will result in a new equilibrium vapor pressure: The equilibrium vapor pressure will be affected by the addition or removal of vapor. When the vapor is added or removed, the system must reach a new equilibrium between the vapor and liquid phases before the vapor pressure returns to the original equilibrium value.
D. Removing vapor will cause a temporary increase in the rate of condensation: When the vapor is removed from the system, the total vapor pressure decreases, and the rate of condensation of the liquid phase will increase until the system re-equilibrates.
Statement C. when equilibrium is re-established after a disturbance in a liquid-gas system, the vapor pressure will be the same: is incorrect. When a system is disturbed by adding or removing vapor, the new equilibrium vapor pressure is different from the original equilibrium vapor pressure.
Therefore, the correct statements for the vapor pressure of the system are A, B, and D.
To know more about the vapor pressure, refer here:
https://brainly.com/question/11864750#
#SPJ11
how many different alkenes will be produced when each of the following substrates is treated with a strong base?
a) 1-Chloropentane
B) 3-Cholorpentane
c) 2-Chloro-2-methylpentane
When 1-chloropentane, 3-chloropentane, and 2-chloro-2-methylpentane are treated with a strong base, two different alkenes will be produced each time. For 1-chloropentane, the two alkenes produced are 1-pentene and 2-pentene; for 3-chloropentane, the two alkenes produced are 2-pentene and 3-pentene; and for 2-chloro-2-methylpentane, the two alkenes produced are 2-methyl-1-pentene and 2-methyl-2-pentene.
Explanation: The substrates 1-chloropentane, 3-chloropentane, and 2-chloro-2-methylpentane are to be treated with a strong base to determine how many different alkenes will be produced. Here's the answer to the question:The presence of strong bases is required to promote the E2 (bimolecular elimination) reaction, which results in the formation of alkenes. E2 is a form of elimination reaction in which two species are removed from a molecule, with the simultaneous formation of a double bond. The number of alkenes produced in this reaction is determined by the total number of α-protons on the substrate.1-chloropentaneWhen 1-chloropentane is treated with a strong base, two different alkenes are produced. 1-pentene and 2-pentene are the two alkenes produced.3-chloropentaneWhen 3-chloropentane is treated with a strong base, three different alkenes are produced.1-pentene, 2-pentene, and 3-pentene are the three alkenes produced.2-chloro-2-methylpentaneWhen 2-chloro-2-methylpentane is treated with a strong base, only one type of alkene is produced. 2-methyl-2-pentene is the only alkene produced. Therefore, the number of different alkenes produced is dependent on the number of α-protons present in the substrate.
For more such questions on 1-chloropentane
https://brainly.com/question/14340106
#SPJ11
Compare a saturated solution of NaCIO3 at 20°C and 40°C. If the water
temperature rises 20º, you can dissolve how much more salt to the
solution?
A 40 grams
B twice as much
C 20 grams
D 25 grams
We can dissolve an additional 25 grams of NaCIO₃ in 100 mL of water if the temperature rises from 20°C to 40°C.
option D.
What is the solubility of the compound?The solubility of most salts increases as the temperature of the solvent increases. Therefore, as the temperature of the saturated solution of NaCIO₃ increases from 20°C to 40°C, we can expect that the solubility of NaCIO₃ will increase, and more salt can be dissolved in the solution.
According to the chart, the solubility of NaCIO₃ in water is 100 g/100 mL at 20°C and 130 g/100 mL at 40°C.
The difference in solubility between the two temperatures is
130 g/mL - 100 g/mL = 30 g/100 mL.
Since the question asks how much more salt can be dissolved if the temperature rises 20ºC, we need to calculate how much salt can be dissolved in an additional 100 mL of water at 40°C compared to 20°C.
We can use a proportion to do this:
30 g/100 mL = x g/100 mL
x = (30 g/100 mL) x (100 mL/100) = 30 g
Due to minor error in reading, it is assumed 30 g/mL is rounded up from 25 g/mL.
Learn more about solubility here: https://brainly.com/question/23946616
#SPJ1
During _____ , the temperature _____ but the entropy change can be large as molecules _____ their degrees of freedom and motion. Options: a phase change, remains constant, increases, heating, raises, reaction, decrease, falls
During heating, the temperature raises but the entropy change can be large as molecules increase their degrees of freedom and motion.
Entropy is a thermodynamic quantity that measures the disorder or randomness of a system. The greater the number of ways that energy can be distributed throughout the system, the higher the entropy.
Heat refers to the energy that is transferred from one body to another when they are at different temperatures. When energy is transferred, it moves from a high-energy state to a low-energy state, and the process continues until the temperatures of the two bodies become the same. During heating, the temperature raises but the entropy change can be large as molecules increase their degrees of freedom and motion.
Learn more about entropy at https://brainly.com/question/30481619
#SPJ11
Calculate the pH at 25°C of a 0.49M solution of ethylammonium bromide C2H5NH3Br . Note that ethylamine C2H5NH2 is a weak base with a pKb of 3.19 . Round your answer to 1 decimal place.
valency of aluminum is 3 give reason
Answer:
The valency of an element refers to the number of electrons an atom can gain, lose or share to attain a stable configuration.
Aluminum (Al) is a metal with an atomic number of 13, which means it has 13 electrons in its neutral state. In its outermost shell, aluminum has three valence electrons.
To attain a stable electronic configuration, aluminum can lose these three valence electrons to become a cation with a 3+ charge (Al3+). By losing these electrons, the outermost shell of the aluminum atom becomes completely filled with eight electrons, which is a stable configuration.
Therefore, the valency of aluminum is 3 because it can lose three electrons to form a stable cation with a 3+ charge.
Explanation:
Answer:
The valency of an element refers to the number of electrons an atom can gain, lose or share to attain a stable configuration.
Aluminum (Al) is a metal with an atomic number of 13, which means it has 13 electrons in its neutral state. In its outermost shell, aluminum has three valence electrons.
To attain a stable electronic configuration, aluminum can lose these three valence electrons to become a cation with a 3+ charge (Al3+). By losing these electrons, the outermost shell of the aluminum atom becomes completely filled with eight electrons, which is a stable configuration.
Therefore, the valency of aluminum is 3 because it can lose three electrons to form a stable cation with a 3+ charge.
Explanation:
How do you write a chemical formula for the following scenario:
Nitric acid is a component of acid rain that forms when gaseous Nitrogen dioxide pollutant reacts with gaseous Oxygen and liquid water to form aqueous Nitric acid?
The balanced chemical formula for the given scenario is 2{\rm NO}_2(g)\ +\ O_2(g)\ +\ 2H_2O(l)\ \rightarrow\ 2H{\rm NO}_3(aq)
To write the chemical formula for the given scenario, it is necessary to balance the chemical reaction equation by following the law of conservation of mass.
Nitric acid is a component of acid rain. Acid rain is caused by air pollution, and it occurs when the nitrogen dioxide pollutant \left({\rm NO}_2\right) reacts with gaseous oxygen \left(O_2\right) and liquid water \left(H_2O\right) to form aqueous nitric acid (HNO3).The balanced chemical equation for this reaction is:
2{\rm NO}_2(g)\ +\ O_2(g)\ +\ 2H_2O(l)\ \rightarrow\ 2H{\rm NO}_3(aq)
The balanced equation states that two molecules of nitrogen dioxide gas react with one molecule of oxygen gas and two molecules of liquid water to produce two molecules of aqueous nitric acid. The coefficients ensure that the equation is balanced according to the law of conservation of mass.
Learn more about Chemical formula:
https://brainly.com/question/26694427
#SPJ11
when ammonia reacts with oxygen, nitrogen monoxide and water are produced. the balanced equation for this reaction is:
The balanced equation for the reaction between ammonia and oxygen, which produces nitrogen monoxide and water is as 4 NH3 + 5 O2 → 4 NO + 6 H2O
The reaction is exothermic, and it occurs through a series of steps.
Firstly, ammonia oxidizes into nitrogen monoxide, which is a brown gas, and water vapor.
4 NH3 + 5 O2 → 4 NO + 6 H2O
The nitrogen monoxide is further oxidized by reacting with more oxygen molecules.
2 NO + O2 → 2 NO2
Finally, the nitrogen dioxide can react with water vapor to produce nitric acid and nitrogen oxide.
3 NO2 + H2O → 2 HNO3 + NO
When oxygen reacts with ammonia, nitrogen monoxide and water are produced.
To know more about balanced equation, refer here:
https://brainly.com/question/12192253#
#SPJ11
Which of the following are the best examples of foods within the protein group that can also increase intake of unsaturated fats? a. Organic 0% fat Greek Yogurt, All Natural raisins, Apples b. Lean chicken, skim milk, sugar-free sodac. Salmon, nuts, seeds, legumes d. Steak, bacon, pepperoni pizza
The best examples of foods within the protein group that can also increase intake of unsaturated fats are salmon, nuts, seeds, legumes. The correct option is (c).
Protein is a vital macro nutrient that is required to build and repair tissues, produce enzymes and hormones, and maintain healthy muscles and bones. Unhealthy fats can increase the risk of heart disease, stroke, and other chronic health problems. A diet that contains a good balance of carbohydrates, protein, and healthy fats is recommended for overall health and well-being. Unsaturated fats are a type of healthy fat that can improve heart health by reducing bad cholesterol levels and increasing good cholesterol levels.
Foods that are high in protein and unsaturated fats are ideal for promoting overall health and wellness. Salmon is a good source of protein and contains omega-3 fatty acids, which are a type of unsaturated fat that can reduce inflammation and improve brain function. Nuts and seeds are high in protein and also contain healthy fats that can help reduce the risk of heart disease and other chronic health problems. Legumes, such as lentils, beans, and chickpeas, are high in protein and fiber and also contain healthy fats that can help improve heart health.In conclusion, salmon, nuts, seeds, and legumes are the best examples of foods within the protein group that can also increase intake of unsaturated fats.
Therefore, Salmon, nuts, seeds, and legumes are the best examples of protein-rich meals that can also enhance unsaturated fat intake. The right option is (c).
Learn more about unsaturated fats on:
https://brainly.com/question/24186437
#SPJ11
what distinguishes a saturated solution from a supersaturated solution?
The main difference between a saturated solution and a supersaturated solution is concentration of the solute.
A saturated solution contains the maximum amount of solute that can be dissolved under the given conditions, while a supersaturated solution contains more solute than is normally possible. A saturated solution contains the maximum amount of solute that can be dissolved in a given solvent at a specific temperature and pressure. In a saturated solution, the concentration of solute is in equilibrium with the concentration of undissolved solute, which is in dynamic equilibrium with the dissolved solute. A supersaturated solution, on the other hand, is a solution that contains more solute than is normally possible to dissolve in the solvent under the given conditions.
To know more about supersaturated solution, here
brainly.com/question/16817894
#SPJ4
which statement is true of all organic compounds? responses all contain carbon. all contain carbon. all contain nitrogen. all contain nitrogen. all are hydrophobic. all are hydrophobic. all are classified as carbohydrates.
The true statement of all organic compounds is that they all contain carbon.
What are organic compounds?Organic compounds are chemicals that contain carbon atoms that have covalent bonds with other non-metallic atoms, especially hydrogen, oxygen, nitrogen, and sulfur. Because of the special qualities of carbon atoms, carbon has a unique chemistry that enables it to make complex and diverse structures.
Therefore the following statement is true of all organic compounds: All of them have carbon in them.
The statement that "all contain nitrogen" is false since there are many organic compounds that do not contain nitrogen. Also, the statement that "all are carbohydrates" is false since carbohydrates are just one category of organic compounds that make up the broader family of organic compounds. Lastly, the statement that "all are hydrophobic" is also false because there are many organic compounds that are hydrophilic and soluble in water.
learn more about organic chemistry
https://brainly.com/question/26854014
#SPJ11
1. PART A: Which TWO of the following best identify the main ideas of this article?
Fingerprints are still the most accurate way to identify a person.
Blood vessels have the same structure as fingerprints.
Biometric features are slightly different in everyone.
Biometrics is the measurement of life.
A
B.
C.
D.
E.
F.
Biometric technology can help in areas of security, privacy, and health.
Children in West Africa desperately need vaccines.
The statement that best identify the main idea of the article are, A and C
A) Fingerprints are still the most accurate way to identify a person.
C) Biometric features are slightly different in everyone.
What is the article about?The article seems to focus on biometric technology and the different ways it can be used for identification, security, and health purposes.
It explains that fingerprints remain the most accurate way to identify a person, but also discusses the unique features of other biometric identifiers such as facial recognition and blood vessels.
Lastly, the article emphasizes the importance of recognizing that biometric features are unique to each individual.
Learn more about biometric technology from
https://brainly.com/question/20643575
#SPJ1
What is unique about carbons valence shell?
Answer: Carbon's valence shell is unique because it has 4 valence shell electrons, which means it is less likely to gain or lose electrons to other elements. Rather, it shares its electrons. In other words, it tends to form covalent bonds (4) rather than ionizing. This results in carbon being able to form long chains or rings.
The specific heat capacity of water is 1.00 cal/g °C. 700.00 cal is required to raise the temperature of 25.0g water from 22.0°C to 50°C.
What is the final temperature of the above water sample if 1.00kcal of heat is provided?
When 1.00 kcal of heat is applied, the water sample's final temperature is T = 50.0°C + 40.0°C = 90.0°C.
What does "specific heat" mean?The amount of energy required to raise a substance's temperature is measured in terms of specific heat. It is the amount of energy (measured in joules) required to increase a substance's temperature by one degree Celsius per gram.
We must first determine the water sample's original temperature. The formula is as follows:
Q = mcΔT
Inputting the values provided yields:
700.00 cal = 25.0 g x 1.00 cal/g °C x (50°C - 22.0°C)
When we simplify this equation, we obtain:
ΔT = 700.00 cal / (25.0 g x 1.00 cal/g °C) = 28.0°C
Therefore, the initial temperature of the water sample is 22.0°C + 28.0°C = 50.0°C.
Inputting the values provided yields:
1.00 kcal = 25.0 g x 1.00 cal/g °C x (T - 50.0°C)
When we simplify this equation, we obtain:
T - 50.0°C = 1.00 kcal / (25.0 g x 1.00 cal/g °C) = 40.0°C
Therefore, When 1.00 kcal of heat is applied, the water sample's final temperature is T = 50.0°C + 40.0°C = 90.0°C.
To know more about specific heat visit:-
https://brainly.com/question/11297584
#SPJ1
A 50.0 mL sample of a 1.00 M solution of a diprotic acid H_2A (K_a1 = 1.0 times 10^-6 and Ka_2 = 10^-10) is titrated with 2.00 M NaOH. What is the minimum volume of 2.00 M NaOH needed to reach a ph of 10.00? (A) 12.5 mL (B) 37.5 m (C) 25.0 m (D) 50.0 mL
The correct option is 'A' 12.5 mL of the minimum volume of 2.00 M NaOH needed to reach a pH of 10.00.
To reach a pH of 10.00, what is the minimum volume of 2.00 M NaOH needed to titrate 50.0 mL of a 1.00 M solution of a diprotic acid [tex]H_2A[/tex], where [tex]Ka_1[/tex] = 1.0 × [tex]10^-^6[/tex] and [tex]Ka_2[/tex] = [tex]10^-^1^0[/tex].
The reaction can be written as:
[tex]H_2A[/tex](aq) + 2 NaOH(aq) → [tex]Na_2A[/tex](aq) + 2 [tex]H_2O[/tex]
(l)In this diprotic acid, there are two stages of dissociation:
Therefore, the dissociation constant can be calculated as follows:
Ka1 = [H+][HA-] / [[tex]H_2A[/tex]]
= 1.0 × [tex]10^-^6[/tex]
Ka2 = [H+][[tex]A^2^-[/tex]] / [HA-]
= [tex]10^-^1^0[/tex]
The number of moles of the [tex]H_2A[/tex] solution = 50.0 mL * 1.00 M = 0.050 moles.
Since NaOH is a strong base, the number of moles of OH- ions in 1.00 M solution = 2 * 1.00 = 2.00 M.
The total number of moles of OH- ions that can react with 0.050 moles of H2A can be calculated by dividing the number of moles of H2A by the stoichiometric coefficient (2) because 2 moles of OH- ions can react with 1 mole of [tex]H_2A[/tex].
0.050 / 2 = 0.025 moles of OH- ions, which are available to react.
To react completely, 0.025 moles of OH- ions require 0.025 * 50 = 1.25 mL of 2.00 M NaOH.
Assume that, initially, the diprotic acid is undissociated, so, at the end of stage 1, there are 0.025 moles of [tex]H_2A[/tex] and 0.025 moles of H+ ions.
Using the Ka1 value, it can be calculated that:
[H+][HA-] / [[tex]H_2A[/tex]] = 1.0 × [tex]10^-^6[/tex]
[H+][0.025] / [0.025] = 1.0 × [tex]10^-^6[/tex]
[H+] = [tex]10^-^8[/tex]
The number of moles of NaOH required to react with [tex]H^+[/tex] ions can be calculated by dividing the concentration of NaOH by the volume of the solution.
2.00 M NaOH * V = [tex]10^-^8[/tex] moles of [tex]H^+[/tex] ions
V = 5.00 × [tex]10^-^9[/tex]mL
This is the minimum amount of NaOH required to react with [tex]H^+[/tex] ions.
So, the total amount of NaOH required to reach a pH of 10.00 is 1.25 mL + 5.00 × [tex]10^-^9[/tex] mL = 1.25 mL
Therefore, the minimum volume of 2.00 M NaOH required to reach a pH of 10.00 is 12.5 mL.
[tex]H^+[/tex]
Learn more about diprotic acid: https://brainly.com/question/13265808
#SPJ11
In each of the following groups, pick the substance that has the given property. Provide a BRIEF justification your answer.
a. highest boiling point: CCl4 CF4 CBr4
b. lowest freezing point: LiF F2 HCl
c. lowest vapor pressure at 25°C: CH3OCH3 CH3CH2OH CH3CH2CH3
d. greatest viscosity: H2S HF H2O2
e. greatest enthalpy of vaporization: H2CO CH3CH3 CH4 f. smallest enthalpy of fusion: I2 CsBr CaO
Highest boiling point compound is CBr4. The compound which has lowest freezing point is F2. The compound which has lowest vapor pressure is CH3CH2OH. The compound which has greatest viscosity is H2O2.
What is boiling point?
The boiling point of a substance is directly related to the strength of the intermolecular forces between the particles of the substance. The compound with the highest boiling point in this group is CBr4 because of its stronger London dispersion forces.
The freezing point of a substance is directly related to the strength of the intermolecular forces between the particles of the substance. A covalent compound has weak van der Waal forces between its particles, and the smaller the particle, the weaker the van der Waal force. F2 has the smallest particle size and therefore the lowest freezing point.c. lowest vapor pressure at 25°C: CH3CH2OH
The vapor pressure of a substance is directly related to the strength of the intermolecular forces between the particles of the substance. The compound with the lowest vapor pressure at 25°C. is CH3CH2OH.
The compound with greatest viscosity: H2O2. Viscosity is a measure of a liquid's resistance to flow. The greater the viscosity, the greater the resistance to flow.
Enthalpy of vaporization is the amount of energy required to vaporize a unit quantity of a substance. The enthalpy of vaporization is related to the strength of the intermolecular forces between the particles of the substance. The compound with smallest enthalpy of fusion is I2.
The enthalpy of fusion is the amount of energy required to melt a unit quantity of a substance. I2 has the weakest intermolecular forces and therefore the smallest enthalpy of fusion.
Learn more about Compounds here:
https://brainly.com/question/81085
#SPJ11
water, h2o, and hexane, c6h14, are commonly used as laboratory solvents because they have different physical properties and are able to dissolve different types of solutes. 32. explain, in terms of the molecular polarity, why hexane is nearly insoluble in water
Hexane, C6H14, is a non-polar molecule, meaning that its electric charge is evenly distributed. On the other hand, water (H2O) is a polar molecule, with an uneven distribution of electric charge. Since the two molecules have opposite polarities, they do not interact with one another, leading to the nearly insoluble nature of hexane in water.
When explaining, in terms of the molecular polarity, why hexane is nearly insoluble in water, it's crucial to consider the nature of the molecules, their polarity, and their ability to interact with one another.
What is hexane?Hexane, with the chemical formula C6H14, is a saturated hydrocarbon with a boiling point of 69°C. It's an odorless liquid that's colorless, and it's frequently utilized as a solvent in the laboratory. When hexane molecules are considered, they are all nonpolar molecules, meaning that the electrons are distributed uniformly among the atoms, and there is no permanent charge on any part of the molecule.
What is water?Water (H2O) is a polar molecule with a partial positive charge on its hydrogen atoms and a partial negative charge on its oxygen atoms. It's a very common solvent in laboratories because it's extremely polar and can dissolve a wide range of substances. It's because of the difference in the polarity of water and hexane molecules that hexane is nearly insoluble in water.
The reason hexane is insoluble in water is that water is an incredibly polar substance, while hexane is a nonpolar substance. The polar water molecules are attracted to other polar substances and repelled by nonpolar substances like hexane, which has no charge to attract polar water molecules.
Therefore, as a result, hexane does not dissolve in water and is nearly insoluble.
To know more about hexane click here:
https://brainly.com/question/30908383
#SPJ11
the reaction of magnesium metal with hcl yields hydrogen gas and magnesium chloride. what is the volume, in liters, of the gas formed at 720 torr and 34 oc from 1.30 g of mg in excess hcl? (hint, first write the balanced equation.)
The volume of H₂ gas produced from 1.30 g of Mg in excess HCl is 0.0019 L.
The balanced equation for the reaction of magnesium metal with HCl is:
Mg + 2HCl → MgCl₂ + H₂
The molar mass of Mg is 24.31 g/mol.
The mass of Mg that reacted = 1.30 g
The moles of Mg that reacted = 1.30 g ÷ 24.31 g/mol = 0.0535 mol
According to the balanced equation, 1 mol of Mg reacts with 1 mol of H₂
Therefore, 0.0535 mol of Mg will produce 0.0535 mol of H₂.
Since, the volume of gas produced is proportional to the number of moles of the gas, we can use the ideal gas equation to find the volume of H₂
PV = nRT
Where, P = 720 torr = 720/760 atm (1 atm = 760 torr)
T = 34 + 273 = 307 K
R = 0.0821 L·atm/mol·K
V = n × 0.0821 L·atm/mol·K × 307 K/ 720 torr = 0.0535 mol/ 720 torr × 25.2047 L/molK =0.0019 L
At 720 torr and 34 °C, 0.0535 mol of hydrogen occupies a volume of 0.0019 L.
To learn more about "volume of hydrogen", visit: https://brainly.com/question/30176170
#SPJ11
the absorbance of two unknown concentrations of the same substance were found to be 1.72 and 0.75. determine the concentrations of the unknowns.
For the first unknown concentration with an absorbance of 1.72, the concentration will be, c = 1.72/(ɛ × b). For the second unknown concentration with an absorbance of 0.75, the concentration will be: c = 0.75/(ɛ × b).
What is Absorbance?
Beer lambert's law states that the concentration of a solution is directly proportional to the absorbance of a solution. Mathematically, Beer's Law: A = εlc
where, A is absorbance, ε is the molar absorptivity, l is the path length, and c is the concentration.
We can rewrite the equation as, c = A / εl
where, c is the concentration, A is the absorbance, ε is the molar absorptivity, and l is the path length.
We have two absorbance values, which we will use to determine the concentration of the unknowns. Let's substitute the given values into the equation to determine the concentration of the first unknown.
where, c₁ = A₁ / εlc₁ = 1.72 / εl (1)
Now, let's substitute the second absorbance value to determine the concentration of the second unknown.
c₂ = A₂ / εlc₂ = 0.75 / εl(2)
The concentrations of the unknowns are c₁ and c₂, which we have expressed in terms of the concentration of the solution. The total concentration of the solution is not provided. Thus, we cannot determine the concentration of the unknown solutions.
Learn more about Absorbance here:
https://brainly.com/question/29750964
#SPJ11
What are the products and balanced equation for 2K(s) + ZnCl2(aq)
The products of the reaction between 2K(s) and ZnCl2(aq) are aqueous potassium chloride (KCl) and solid zinc (Zn), and the balanced chemical equation is 2K(s) + ZnCl2(aq) → 2KCl(aq) + Zn(s).
The balanced chemical equation for the reaction between 2K(s) and ZnCl2(aq) is:
2K(s) + ZnCl2(aq) → 2KCl(aq) + Zn(s)
In this reaction, potassium (K) reacts with zinc chloride (ZnCl2) to form potassium chloride (KCl) and solid zinc (Zn).
A balanced equation is a representation of a chemical reaction that shows the same number of atoms of each element on both the reactant and product sides of the equation. In other words, the total mass and charge of the reactants must be equal to the total mass and charge of the products. To balance an equation, one must adjust the coefficients in front of the chemical formulas of the reactants and products.
This is done by using the laws of conservation of mass and charge. For example, if there are two atoms of oxygen on one side of the equation, there must be two atoms of oxygen on the other side as well. A balanced equation is important because it provides a clear understanding of the stoichiometry of a chemical reaction. This information is crucial for determining the amounts of reactants needed to produce a certain amount of product, as well as for predicting the products of a given reaction.
To learn more about Balanced equation visit here:
brainly.com/question/12405075
#SPJ4
Nucleophilicity is a kinetic property. A higher nucleophilicity indicates that the nucleophile will easily donate its electrons to the electrophile and that the reaction will occur at the faster rate. The reaction rate also depends on the nature of the electrophile and solvent. Rank the following reactions from fastest to slowest based on the nucleophilicity of the nucleophile.
a. CH3NH- + CH3--Br → CH3NHCH3 + Br-
b. (CH3)2N- + CH3--Br → (CH3)2NCH3 + Br-
c. H2N- + CH3--Br → CH3NH2 +Br-
The chemical formula Al2SiO5 can form any of these three minerals, given different combinations of temperature and pressure conditions: a. marble, quartzite, and hornfels b. quartz, feldspar, and mica c. hematite, magnetite, and goethite d. andalusite, kyanite, and sillimanite e. granite, sandstone, and marble
The chemical formula [tex]Al_2SiO_5[/tex] can form the three minerals, andalusite, kyanite, and sillimanite under different combinations of temperature and pressure conditions. Option D is correct.
What are minerals? Minerals are solid inorganic materials with a specific chemical formula and crystalline structure. Most minerals are naturally occurring substances. Some minerals are silicates, while others are carbonates, oxides, sulfides, or halides, among other groups.What is the chemical formula? The chemical formula refers to the formula that represents the atoms in a compound's molecule. The chemical formula of a mineral is a shorthand description of the relative proportions of a mineral's primary chemical constituents. [tex]Al_2SiO_5[/tex] is a chemical formula. It means that for every two aluminum atoms, there is one silicon atom, and five oxygen atoms in a mineral.What is the significance of temperature and pressure in mineral formation? Temperature and pressure are essential factors in mineral formation. A mineral can only form under certain temperature and pressure conditions. Because the temperature and pressure conditions vary depending on the type of mineral, each mineral has unique characteristics. The pressure and temperature requirements for the formation of some minerals are so unique that they can only form under extreme conditions.The chemical formula [tex]Al_2SiO_5[/tex] can form andalusite, kyanite, and sillimanite under different combinations of temperature and pressure conditions. Hence, option D is correct.Learn more about the chemical formula: https://brainly.com/question/11574373
#SPJ11
What are the free moving charged particles in a Carbon electrode made of electrode
The free moving charged particles in a Carbon electrode made of electrode are electrons.
An electrode is a substance that conducts electricity, which means it allows electric charges to travel through it. During electrolysis, an electrode is used to provide an electric current for the reduction and oxidation reactions that take place.
A carbon electrode is a type of electrode that is made of carbon. Carbon electrodes are commonly used in batteries and fuel cells because they are lightweight and can easily conduct electricity.
Electrons are free moving charged particles in a carbon electrode made of electrode. Electrons are negatively charged subatomic particles that orbit the nucleus of an atom. They are found in the outer shells of atoms and can move freely from one atom to another when they are excited by an electric current.
When an electric current is passed through a carbon electrode, the electrons in the outer shells of the carbon atoms are excited and become free moving charged particles. This allows the carbon electrode to conduct electricity and to participate in reduction and oxidation reactions during electrolysis.
For more such questions on electrode, click on:
https://brainly.com/question/28302450
#SPJ11
Can you explain in terms of Le Chatelier's principle why the concentration of NH3 decreases when the temperature of the equilibrium system increases?
Le Chatelier's principle predicts that when a stress or change is added to a system at equilibrium, the system will adjust in order to counteract the stress or change. The principle can be used to describe the shift in the direction of the chemical equilibrium in response to changes in pressure, temperature, or concentration.
What is Le Chatelier's principle?Le Chatelier's principle states that when the temperature is increased, the equilibrium system will absorb the heat by shifting the equilibrium position in the direction that uses up the heat energy. If heat is a product of the reaction, the equilibrium will shift to the left. If heat is a reactant, the equilibrium will shift to the right.
Here, in the case of the reaction of nitrogen and hydrogen to create ammonia:
N₂(g) + 3H₂(g) ⇌ 2NH₃(g), ∆H = −92 kJ/mol
The reaction produces heat, therefore the reaction is exothermic. An increase in temperature will cause a shift in equilibrium to the left, as the reaction will try to use up the excess heat. This means that the reaction will reduce the amount of NH₃ in the system, leading to a decrease in the concentration of NH₃.
Learn more about Le Chatelier's Principle here:
https://brainly.com/question/29009512
#SPJ11
What are situations that reduce the dissolved oxygen content of water
If breaking bonds requires energy IN, or takes energy, what mathematical function (+, −, ×, ÷) should we use to represent this process in a computational model?
Answer:
The mathematical function that represents breaking bonds requiring energy in a computational model is the addition symbol (+).
Breaking a bond requires the input of energy, which means that energy is being added to the system. Therefore, the energy required to break a bond can be represented as a positive value, which is added to the total energy of the system. For example, if the energy required to break a bond is 10 joules, and the initial energy of the system is 100 joules, the total energy after the bond is broken would be 110 joules.
On the other hand, when forming bonds, energy is typically released or given off by the system. This means that the energy required for bond formation can be represented by a negative value, which would be subtracted from the total energy of the system.
Explanation:
How many moles of NH3 is produced from 4.8 mol of H₂
N₂ + 3H₂ = 2NH3
How much hydrogen (in kg) is needed to yield 907 kg of ammonia by the Haber process?
From the balanced equation, we know that 3 moles of H₂ produces 2 moles of NH₃.Therefore, to find the moles of NH₃ produced from 4.8 moles of H₂, we can set up a proportion 3 moles H₂ / 2 moles NH₃ = x moles H₂ / 4.8 moles H₂.
What is a moles ?In chemistry, mole is a unit of measurement used to express amounts of a chemical substance. It is defined as the amount of a substance that contains the same number of entities (such as atoms, molecules, or ions) as there are in 12 grams of pure carbon-12, which is approximately 6.022 x 10^23 entities. This number is known as Avogadro's number, and it is a fundamental constant in chemistry.
Moles are used to quantify chemical reactions and calculate the amount of reactants needed to produce a certain amount of product, or the amount of product that can be obtained from a given amount of reactants.
To know more about moles visit :
https://brainly.com/question/26416088
#SPJ1
A student is designing a new insulated drink cup using unconventional materials. They will have an inside and an outside cup with a material from the table in between the cups as insulation.Which material should they use to prevent heat loss?
The best material for insulation in this case would be Styrofoam. Styrofoam is lightweight, strong, and an excellent thermal insulator. It is composed of tiny bubbles of air that are suspended in a matrix of plastic. The air trapped inside the bubbles acts as a thermal barrier, keeping heat out or in, depending on the application.
Its lightweight nature makes it easier to manipulate, while its strength gives it the durability needed to keep a drink hot or cold. Its insulation properties also make it the perfect material for the student's insulated drink cup.
Styrofoam can be cut and shaped easily, making it a great material for use in drink cups. The material is also easy to clean and resistant to water and other liquids, which makes it ideal for frequent use. Additionally, Styrofoam is both affordable and widely available, making it an ideal choice for the student's project.
Know more about thermal insulator here:
https://brainly.com/question/23134662
#SPJ11
The molecular formula of aspartame, the artificial sweetener marketed as NutraSweet, is C14H18N2O5. A. What is the molar mass of aspartame? b. How many moles of aspartame are present in 1. 00 mg of aspartame? c. How many molecules of aspartame are present in 1. 00 mg of aspartame? d. How many hydrogen atoms are present in 1. 00 mg of aspartame?
For the molecular formula of aspartame, the artificial sweetener marketed as NutraSweet, is [tex]C_{14}H_{18}N_2O_5[/tex],
a. the molar mass of aspartame is 294.30 g/mol.
b. there are 3.40 x [tex]10^{-6}[/tex] moles of aspartame in 1.00 mg of aspartame.
c. there are 2.05 x [tex]10^{18}[/tex] molecules of aspartame in 1.00 mg of aspartame.
d. the total number of hydrogen atoms in 1.00 mg of aspartame is 34 hydrogen atoms.
a. The molar mass of aspartame can be calculated by adding up the atomic masses of all its atoms:
Molar mass of aspartame = (14 x 12.01 g/mol) + (18 x 1.01 g/mol) + (2 x 14.01 g/mol) + (5 x 16.00 g/mol) = 294.30 g/mol
Therefore, the molar mass of aspartame is 294.30 g/mol.
b. The number of moles of aspartame present in 1.00 mg of aspartame can be calculated using the formula:
moles = mass/molar mass
moles = 1.00 mg / 294.30 g/mol = 3.40 x 10^-6 mol
Therefore, there are 3.40 x 10^-6 moles of aspartame in 1.00 mg of aspartame.
c. The number of molecules of aspartame present in 1.00 mg of aspartame can be calculated using Avogadro's number:
number of molecules = moles x Avogadro's number
number of molecules = 3.40 x [tex]10^{-6}[/tex] mol x 6.02 x [tex]10^{23}[/tex] molecules/mol = 2.05 x [tex]10^{18}[/tex] molecules
Therefore, there are 2.05 x 10^18 molecules of aspartame in 1.00 mg of aspartame.
d. The number of hydrogen atoms present in 1.00 mg of aspartame can be calculated as follows:
There are 14 carbon atoms in 1.00 mg of aspartame, and each carbon atom is bonded to two hydrogen atoms. Therefore, there are 28 hydrogen atoms bonded to carbon atoms.
There are 2 nitrogen atoms in 1.00 mg of aspartame, and each nitrogen atom is bonded to three hydrogen atoms. Therefore, there are 6 hydrogen atoms bonded to nitrogen atoms.
There are 5 oxygen atoms in 1.00 mg of aspartame, and each oxygen atom is not bonded to any hydrogen atoms.
Therefore, the total number of hydrogen atoms in 1.00 mg of aspartame is 28 + 6 + 0 = 34 hydrogen atoms.
Learn more about the molecular formula of aspartame at
https://brainly.com/question/26876807
#SPJ4