This above answer helps a lot.
An airplane increases its speed at the average rate of 15 m/s2. How much time does it take to increase its speed from 100 m/s to 160 m/s
Answer:
4 s
Explanation:
Acceleration (a) = 15 m/s²Initial velocity (u) = 100 m/sFinal velocity (v) = 160 m/sWe are asked to calculate time taken (t).
By using the first equation of motion,
[tex]\longrightarrow[/tex] v = u + at
[tex]\longrightarrow[/tex] 160 = 100 + 15t
[tex]\longrightarrow[/tex] 160 - 100 = 15t
[tex]\longrightarrow[/tex] 60 = 15t
[tex]\longrightarrow[/tex] 60 ÷ 15 = t
[tex]\longrightarrow[/tex] 4 s = t
A 6.0-cm-diameter horizontal pipe gradually narrows to 4.0 cm. When water flows through this pipe at a certain rate, the gauge pressure in these two sections is 32.0 kPa and 24.0 kPa, respectively. What is the volume rate of flow?
Answer:
a n c
Explanation:
If an electrical component with a resistance of 53 Q is connected to a 128-V source, how much current flows through the component?
Answer:
the current that flows through the component is 2.42 A
Explanation:
Given;
resistance of the electrical component, r = 53 Ω
the voltage of the source, V = 128 V
The current that flows through the component is calculated using Ohm's Law as demonstrated below;
[tex]V = IR\\\\I = \frac{V}{R} = \frac{128 \ V}{53 \ ohms} = 2.42 \ A[/tex]
Therefore, the current that flows through the component is 2.42 A
A charge of 0.20uC is 30cm from a point charge of 3.0uC in vacuum. what work is required to bring the 0.2uC charge 18cm closer to the 3.0uC charge?
Answer:
The correct answer is "[tex]4.49\times 10^{10} \ joules[/tex]".
Explanation:
According to the question,
The work will be:
⇒ [tex]Work=-\frac{kQq}{R}[/tex]
[tex]=-\frac{1}{4 \pi \varepsilon \times (18-30)\times 3\times 0.2}[/tex]
[tex]=-\frac{1}{4 \pi \varepsilon \times (-12)\times 3\times 0.2}[/tex]
[tex]=\frac{0.3978}{\varepsilon }[/tex]
[tex]=4.49\times 10^{10} \ joules[/tex]
Thus the above is the correct answer.
We have that the workdone is mathematically given as
W=4.49*10e10 J
From the question we are told
A charge of 0.20uC is 30cm from a point charge of 3.0uC in vacuum. what work is required to bring the 0.2uC charge 18cm closer to the 3.0uC charge?WorkdoneGenerally the equation for the workdone is mathematically given as
W=-kQq/R
Therefore
0.3978/ε0 =-1/(4πε0*(18-30)*3*0.2
Hence
W=4.49*10e10 JFor more information on Charge visit
https://brainly.com/question/9383604
why is it wrong to leave our light on
Answer:
you will get huge electricity bills ............
PLZ help asap :-/
............................
Explanation:
[16][tex]\underline{\boxed{\large{\bf{Option \; A!! }}}} [/tex]
Here,
[tex]\rm { R_1} [/tex] = 2Ω[tex]\rm { R_2} [/tex] = 2Ω[tex]\rm { R_3} [/tex] = 2Ω[tex]\rm { R_4} [/tex] = 2ΩWe have to find the equivalent resistance of the circuit.
Here, [tex]\rm { R_1} [/tex] and [tex]\rm { R_2} [/tex] are connected in series, so their combined resistance will be given by,
[tex]\longrightarrow \rm { R_{(1,2)} = R_1 + R_2} \\ [/tex]
[tex]\longrightarrow \rm { R_{(1,2)} = (2 + 2) \; Omega} \\ [/tex]
[tex]\longrightarrow \rm { R_{(1,2)} = 4 \; Omega} \\ [/tex]
Now, the combined resistance of [tex]\rm { R_1} [/tex] and [tex]\rm { R_2} [/tex] is connected in parallel combination with [tex]\rm { R_3} [/tex], so their combined resistance will be given by,
[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \dfrac{1}{R_{(1,2)}} + \dfrac{1}{R_3} } \\ [/tex]
[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \Bigg ( \dfrac{1}{4} + \dfrac{1}{2} \Bigg ) \;\Omega} \\ [/tex]
[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \Bigg ( \dfrac{1 + 2}{4} \Bigg ) \;\Omega} \\ [/tex]
[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \Bigg ( \dfrac{3}{4} \Bigg ) \;\Omega} \\ [/tex]
Reciprocating both sides,
[tex]\longrightarrow \rm {R_{(1,2,3)}= \dfrac{4}{3} \;\Omega} \\ [/tex]
Now, the combined resistance of [tex]\rm { R_1} [/tex], [tex]\rm { R_2} [/tex] and [tex]\rm { R_3} [/tex] is connected in series combination with [tex]\rm { R_4} [/tex]. So, equivalent resistance will be given by,
[tex]\longrightarrow \rm {R_{(1,2,3,4)}= R_{(1,2,3)} + R_4} \\ [/tex]
[tex]\longrightarrow \rm {R_{(1,2,3,4)}= \Bigg ( \dfrac{4}{3} + 2 \Bigg ) \; \Omega} \\ [/tex]
[tex]\longrightarrow \rm {R_{(1,2,3,4)}= \Bigg ( \dfrac{4 + 6}{3} \Bigg ) \; \Omega} \\ [/tex]
[tex]\longrightarrow \rm {R_{(1,2,3,4)}= \Bigg ( \dfrac{10}{3} \Bigg ) \; \Omega} \\ [/tex]
[tex]\longrightarrow \bf {R_{(1,2,3,4)}= 3.33 \; \Omega} \\ [/tex]
Henceforth, Option A is correct.
_________________________________[17][tex]\underline{\boxed{\large{\bf{Option \; B!! }}}} [/tex]
Here, we have to find the amount of flow of current in the circuit. By using ohm's law,
[tex] \longrightarrow [/tex] V = IR
[tex] \longrightarrow [/tex] 3 = I × 3.33
[tex] \longrightarrow [/tex] 3 ÷ 3.33 = I
[tex] \longrightarrow [/tex] 0.90 Ampere = I
Henceforth, Option B is correct.
____________________________[tex] \tt \purple{Hope \; it \; helps \; you, Army! \heartsuit } \\ [/tex]
Four equal-value resistors are in series with a 5 V battery, and 2.23 mA are measured. What isthe value of each resistor
Answer:
560.54 Ω
Explanation:
Applying,
V = IR'............... Equation 1
Where V = Voltage of the battery, I = currrent, R' = Total resistance of the resistors
make R' the subject of the equation
R' = V/I............ Equation 2
From the question,
Given: V = 5 V, I = 2.23 mA = 2.23×10⁻³ A
Substitute these values into equation 2
R' = 5/(2.23×10⁻³ )
R' = 2242.15 Ω
Since the fours resistor are connected in series and they are equal,
Therefore the values of each resistor is
R = R'/4
R = 2242.15/4
R = 560.54 Ω
A charge Q exerts a 1.2 N force on another charge q. If the distance between the charges is doubled, what is the magnitude of the force exerted on Q by q
Answer:
0.3 N
Explanation:
Electromagnetic force is F= Kq1q2/r^2, where r is the distance between charges. If r is doubled then the force will be 1/4F which is 0.3 N.
The magnitude of the force exerted on Q by q when the distance between them is doubled is 0.3 N
Coulomb's law equationF = Kq₁q₂ / r²
Where
F is the force of attraction K is the electrical constant q₁ and q₂ are two point charges r is the distance apart Data obtained from the question Initial distance apart (r₁) = rInitial force (F₁) = 1.2 NFinal distance apart (r₂) = 2rFinal force (F₂) =? How to determine the final forceFrom Coulomb's law,
F = Kq₁q₂ / r²
Cross multiply
Fr² = Kq₁q₂
Kq₁q₂ = constant
F₁r₁² = F₂r₂²
With the above formula, we can obtain the final force as follow:
F₁r₁² = F₂r₂²
1.2 × r² = F₂ × (2r)²
1.2r² = F₂ × 4r²
Divide both side by 4r²
F₂ = 1.2r² / 4r²
F₂ = 0.3 N
Learn more about Coulomb's law:
https://brainly.com/question/506926
Two objects are at rest on a frictionless surface. Object 1 has a greater mass than object 2.
(a) When a constant force is applied to object 1, it accelerates through a distance d. The force is removed from object 1 and is applied to object 2. At the moment when object 2 has accelerated through the same distance d, which statements are true? (Select all that apply.)
K1 < K2 p1 = p2 p1 < p2 p1 > p2 K1 > K2 K1 = K2
(b) When a force is applied to object 1, it accelerates for a time interval ?t. The force is removed from object 1 and is applied to object 2. Which statements are true after object 2 has accelerated for the same time interval ?t? (Select all that apply.)
K1 > K2 K1 = K2 p1 = p2 p1 > p2 K1 < K2 p1 < p2
Answer:
Look at explanation
Explanation:
a) Kinetic energy= ΔW. W=Fd, and since in both scenarios the same force and same distance is travelled. K1=K2. I am assuming that the objects are at non zero height so by P=mgh, P1>P2
b. Again I am assuming that the objects are at non zero height so by P=mgh, P1>P2. A heavier mass, a constant force means a smaller acceleration. So a1<a2. We can then use x-x0=v0t+1/2at² and since v0=0, x-x0(d)=1/2at². Solve for t²=2d/a. Since t is the same for both but a1<a2, d1<d2. And since Kinetic Energy=ΔW, W=Fd and F is constant while d1<d2, K1<K2.
According to the question,
Potential energy be "P".Kinetic energy be "K".(a)
Word done towards both the block will be similar.
So,
→ [tex]P1 = P2[/tex]
→ [tex]K1= K2[/tex]
(b)
We know,
→ [tex]a = \frac{F}{M}[/tex]
or,
→ [tex]V = a\times t[/tex]
Now,
→ [tex]K = \frac{1}{2} MV^2[/tex]
[tex]= 0.5\times M\times V^2[/tex]
[tex]=0.5\times M\times (\frac{F^2}{M^2} )\times t^2[/tex]
[tex]= 0.5\times F^2\times \frac{t^2}{M}[/tex]
The force and t will be same. So K of the smaller mass will be greater than the larger mass.
hence,
→ [tex]K1<K2[/tex]
Thus the above responses are correct.
Learn more about friction here:
https://brainly.com/question/13340887
The correct equation for the x component of a vector named A with an angle measured from the x axis would be which of the following?
Answer:
Acosθ
Explanation:
The x-component of a vector is defined as :
Magnitude * cosine of the angle
Maginitude * cosθ
The magnitude is represented as A
Hence, horizontal, x - component of the vector is :
Acosθ
Furthermore,
The y-component is taken as the sin of the of the angle multiplied by the magnitude
Vertical, y component : Asinθ
Your cell phone typically consumes about 300 mW of power when you text a friend. If the phone is operated using a lithium-ion battery with a voltage of 3.5 V, what is the current (in A) flowing through the cell-phone circuitry under these circumstances
Answer:
I = 0.0857 A
Explanation:
Given that,
Power consumed by the cellphone, P = 300 mW
The voltage of the battery, V = 3.5 V
Let I is the current flowing through the cell-phone. We know that,
P = VI
Where
I is the current
So,
[tex]I=\dfrac{P}{V}\\\\I=\dfrac{300\times 10^{-3}}{3.5}\\\\I=0.0857\ A[/tex]
So, the current flowing the cell-phone is 0.0857 A.
You are driving to the grocery store at 20 m/s. You are 150 m from an intersection when the traffic light turns red. Assume that your reaction time is 0.50 s and that your car brakes with constant acceleration.
Required:
a. How far are you from the intersection when you begin to apply the brakes?
b. What acceleration will bring you to rest right at the intersection?
c. How long does it take you to stop?
Hi there!
a.
Use the formula d = st to solve:
d = 20 × 0.5 = 10m
150 - 10 = 140m away when brakes are applied
b.
Use the following kinematic equation to solve:
vf² = vi² + 2ad
Plug in known values:
0 = 20² + 2(150)(a)
Solve:
0 = 400 + 300a
-300a = 400
a = -4/3 (≈ -1.33) m/s² required
c.
Use the following kinematic equation to solve:
vf = vi + at
0 = 20 - 4/3t
Solve:
4/3t = 20
Multiply both sides by 3/4 for ease of solving:
t = 15 sec
A merry-go-round of radius R = 2.0 m has a moment of inertia I = 250 kg-m2
and is rotating at 10 rev/min. A 25-kilogram child at rest jumps onto the edge of the merry-go-round. What is the new angular speed of the merry-go-round?
Answer:
dont be lose because the person who lose will win the match
A football quarterback runs 15.0 m straight down the playing field in 3.00 s. He is then hit and pushed 3.00 m straight backward in 1.71 s. He breaks the tackle and runs straight forward another 24.0 m in 5.20 s. Calculate his average velocity (in m/s) for the entire motion. (Assume the quarterback's initial direction is positive. Indicate the direction with the sign of your answer.)
Answer:
Average Velocity = 3.63 m/s
Explanation:
First, we will calculate the total displacement of the quarterback, taking forward direction as positive:
Total Displacement = 15 m - 3 m + 24 m = 36 m
Now, we will calculate the total time taken for this displacement:
Total Time = 3 s + 1.71 s + 5.2 s = 9.91 s
Therefore, the average velocity will be:
[tex]Average\ Velocity = \frac{Total\ Displacement}{Total\ Time}\\\\Average\ Velocity = \frac{36\ m}{9.91\ s}[/tex]
Average Velocity = 3.63 m/s
Suppose a power plant uses a Carnot engine to generate electricity, using the atmosphere at 300 K as the low-temperature reservoir. Suppose the power plant produces an amount of electric energy with the hot reservoir at 500 K during Day One and then produces the same amount of electric energy with the hot reservoir at 600 K during Day Two. The thermal pollution was:
Answer: hello your question lacks some vital information below is the complete question
Suppose a power plant uses a Carnot engine to generate electricity, using the atmosphere at 300 K as the low-temperature reservoir. Suppose the power plant produces 1 × 106 J of electricity with the hot reservoir at 500 K during Day One and then produces 1 × 106 J of electricity with the hot reservoir at 600 K during Day Two. The thermal pollution was
answer:
Total thermal pollution = 2.5 * 10^6 J
Explanation:
Low temperature reservoir = 300 K
hot reservoir temperature = 500 K
Electrical energy produced by plant ( W ) = 1 * 10^6 J
lets assume ; Q1 = energy absorbed , Q2 = energy emitted
W = Q1 - Q2 or Q2 = Q1 - W ( we will apply this as the formula for determining thermal pollution )
For day 1
T1 = 500k , T2 = 300k
applying Carnot engine formula
W / Q1 = 1 - T2/T1
∴ Q1 = 10^6 / ( 1 - (300/500)) = 2.5 * 10^6 J
thermal pollution ; Q2 = Q1 - W = ( 2.5 * 10^6 - 1 * 10^6 ) = 1.5 * 10^6 J
for Day 2
T1 = 600k, T2 = 300k
Q1 = 10^6 / ( 1 - (300/600)) = 2 * 10^6 J
Thermal pollution; Q2 = Q1 - W = 1 * 10^6 J
Therefore the Total thermal pollution = 1 * 10^6 + 1.5 * 10^6 = 2.5 * 10^6 J
Assuming the atmospheric pressure is 1 atm at sea level, determine the atmospheric pressure at Badwater (in Death Valley, California) where the elevation is 86.0 m below sea level.
Answer:
Atmospheric pressure at Badwater is 1.01022 atm
Explanation:
Data given:
1 atmospheric pressure (Pi) = 1.01 * 10[tex]^{5}[/tex] Pa
Elevation (h) = 86m
gravity (g) = 9.8 m/s2
Density of air P = 1.225 kg/m3
Therefore pressure at bad water Pb = Pi + Pgh
Pb = (1.01 * 10[tex]^{5}[/tex]) + (1.225 * 9.8 * 86)
Pb = (1.01 * 10[tex]^{5}[/tex]) + 1032.43 = 102032 Pa
hence:
Pb = 102032 /1.01 * 10[tex]^{5}[/tex] = 1.01022 atm
Which of the following statements is correct about the magnitude of the static friction force between an object and a surface?
a. Static friction depends on the mass of the object.
b. Static friction depends on the shape of the object.
c. Static friction depends on what the object is made of but not what the surface is made of.
d. None of the above is correct.
Answer:
Static friction depends on the mass of the object.
Explanation:
Friction is the force between two surfaces in contact. The force of friction between two surfaces in contact depends on;
1) nature of the object and the surface(how rough or smooth the surfaces are)
2)surface area of the object and the surface
3) mass of the object
Since;
F=μmg
Where;
μ= coefficient of static friction
m= mass of the object
g= acceleration due to gravity
Hence, as the mass of the object increases, the magnitude of static friction force between an object and a surface increases and vice versa.
A wheel rotates about a fixed axis with an initial angular velocity of 13 rad/s. During a 8-s interval the angular velocity increases to 57 rad/s. Assume that the angular acceleration was constant during this time interval. How many revolutions does the wheel turn through during this time interval
Answer:
The number of revolutions is 44.6.
Explanation:
We can find the revolutions of the wheel with the following equation:
[tex]\theta = \omega_{0}t + \frac{1}{2}\alpha t^{2}[/tex]
Where:
[tex]\omega_{0}[/tex]: is the initial angular velocity = 13 rad/s
t: is the time = 8 s
α: is the angular acceleration
We can find the angular acceleration with the initial and final angular velocities:
[tex] \omega_{f} = \omega_{0} + \alpha t [/tex]
Where:
[tex] \omega_{f} [/tex]: is the final angular velocity = 57 rad/s
[tex] \alpha = \frac{\omega_{f} - \omega_{0}}{t} = \frac{57 rad/s - 13 rad/s}{8 s} = 5.5 rad/s^{2} [/tex]
Hence, the number of revolutions is:
[tex] \theta = \omega_{0}t + \frac{1}{2}\alpha t^{2} = 13 rad/s*8 s + \frac{1}{2}*5.5 rad/s^{2}*(8 s)^{2} = 280 rad*\frac{1 rev}{2\pi rad} = 44.6 rev [/tex]
Therefore, the number of revolutions is 44.6.
I hope it helps you!
A car accelerates at 2 meters/s/s. Assuming the car starts from rest how far will it travel in 10 seconds
Answer:
Distance = velocity x time, so 10 m/s X 10 s = 100 m
Explanation:
If you accelerate at 2 m/s^2 for 10 seconds, at the end of the 10 seconds you are moving at a rate of 20 m/s.
V(f) = V(i) + a*t
Final velocity = initial velocity + acceleration x time
Your average velocity will be half of your final, because you accelerated at a constant rate. So your average velocity is 10 m/s.
Distance = velocity x time, so 10 m/s X 10 s = 100 m
Answer:
100 m
Explanation:
Given,
Initial velocity ( u ) = 0 m/s
Acceleration ( a ) = 2 m/s^2
Time ( t ) = 10 sec s
To find : Displacement ( s ) = ?
By 2nd equation of motion,
s = ut + at^2 / 2
= ( 0 ) ( 10 ) + ( 2 ) ( 10 )^2 / 2
= 0 + ( 2 ) ( 100 ) / 2
= 200 / 2
s = 100 m
g four small masses 0.2 kg each are connected by light rods 0.4m long to form a square.what is the moment of interia axis
Complete Question
Four small masses of 0.2 kg each are connected by light rods 0.4m long to form a square. What is the moment of inertia of this object for an axis through the middle of the square and parallel to two sides.
Answer:
[tex]I=0.032kgm^2[/tex]
Explanation:
From the question we are told that:
Mass[tex]m=0.2kg[/tex]
Length [tex]l=0.4m[/tex]
Generally the equation for Inertia is mathematically given by
[tex]I=md^2[/tex]
[tex]I=0.8*0.20(\frac{0.40}{2})^2[/tex]
[tex]I=0.032kgm^2[/tex]
I need help with this physics question.
Answer:
5.04 m
Explanation:
You are told that the homeowner wants to increase their fences by 34 percent meaning Original+ 34 percent. If the original is 100 percent, then the new fence size will be 134 % of the original. You are given the original which is 3.76 meters, to find new fence size 1.34 * 3.76m to get 5.0384 meters, rounded to 5.04 m.
Answer:
5.0384m
Explanation:
% increase = 100 x (Final - Initial / | initial | )
( |~~| Bars indicate absolute value since you can't have a negative height)
How are elastic and inelastic collisions different?
A: Elastic collisions occur when the colliding objects move separately after the collision; after inelastic collisions, the objects are connected and move together.
B: Elastic collisions occur when the objects are going the same direction when they collide; inelastic collisions occur when the objects are going in opposite directions when they collide.
C: Momentum is conserved in elastic collisions; momentum is not conserved in inelastic collisions.
D: Elastic collisions occur between objects of the same mass; inelastic collisions occur between different masses.
Answer:
a
Explanation:
Answer:
the answer is c
'
Explanation:
The bulk modulus of water is B = 2.2 x 109 N/m2. What change in pressure ΔP (in atmospheres) is required to keep water from expanding when it is heated from 10.9 °C to 40.0 °C?
Answer:
A change of 160.819 atmospheres is required to keep water from expanding when it is heated from 10.9 °C to 40.0 °C.
Explanation:
The bulk modulus of water ([tex]B[/tex]), in newtons per square meters, can be estimated by means of the following model:
[tex]B = \rho_{o}\cdot \frac{\Delta P}{\rho_{f} - \rho_{o}}[/tex] (1)
Where:
[tex]\rho_{o}[/tex] - Water density at 10.9 °C, in kilograms per cubic meter.
[tex]\rho_{f}[/tex] - Water density at 40 °C, in kilograms per cubic meter.
[tex]\Delta P[/tex] - Pressure change, in pascals.
If we know that [tex]\rho_{o} = 999.623\,\frac{kg}{m^{3}}[/tex], [tex]\rho_{f} = 992.219\,\frac{kg}{m^{3}}[/tex] and [tex]B = 2.2\times 10^{9}\,\frac{N}{m^{2}}[/tex], then the bulk modulus of water is:
[tex]\Delta P = B\cdot \left(\frac{\rho_{f}}{\rho_{o}}-1 \right)[/tex]
[tex]\Delta P = \left(2.2\times 10^{9}\,\frac{N}{m^{3}} \right)\cdot \left(\frac{992.219\,\frac{kg}{m^{3}} }{999.623\,\frac{kg}{m^{3}} }-1 \right)[/tex]
[tex]\Delta P = -16294943.19\,Pa \,(-160.819\,atm)[/tex]
A change of 160.819 atmospheres is required to keep water from expanding when it is heated from 10.9 °C to 40.0 °C.
A copper wire 1.0 meter long and with a mass of .0014 kilograms per meter vibrates in two segments when under a tension of 27 Newtons. What is the frequency of this mode of vibration
Answer:
the frequency of this mode of vibration is 138.87 Hz
Explanation:
Given;
length of the copper wire, L = 1 m
mass per unit length of the copper wire, μ = 0.0014 kg/m
tension on the wire, T = 27 N
number of segments, n = 2
The frequency of this mode of vibration is calculated as;
[tex]F_n = \frac{n}{2L} \sqrt{\frac{T}{\mu} } \\\\F_2 = \frac{2}{2\times 1} \sqrt{\frac{27}{0.0014} }\\\\F_2 = 138.87 \ Hz[/tex]
Therefore, the frequency of this mode of vibration is 138.87 Hz
MCQ
................
Answer:
I think it would be (-7 C )..
3. You have a variable-voltage power supply and a capacitor in the form of two metal disks of radius 0.6 m, held a distance of 1 mm apart. What is the largest voltage you can apply to the capacitor without the air becoming highly conductive
Answer:
The breakdown of air occurs at a maximum voltage of 3kV/mm.
Explanation:
The breakdown of air occurs at a maximum voltage of 3kV/mm.
At this level of voltage the air between the plates become highly ionised and breakdown occurs. Since, the distance held between the plates is 1mm , it can withstand a maximum voltage of 3 kV.
After this voltage the air will become conductive in nature and will form ions in the air between the plates and ultimately breakdown will take place with a flash.
What are the differences among elements, compounds, and mixtures?
Answer:
Elements have a characteristic number of electrons and protons.Both Hydrogen(H) and oxygen(O) are two different elements.
••••••••••••••••
Compounds are chemical substances where the atoms atoms of two different elements are combined together. It is made of .Hydrogen(H) and Oxygen(O) both qr4 naturally gases,but they react to form water(H2O),which is liquid compound.
•••••••••••••••
A mixture is made of atleast two parts》 solid,liquid or gas.The difference is that it's not a chemical substance that's bonded by other elements.
------------------------------
Hope it helps...
Have a great day!!!
Answer: Elements have a characteristic number of electrons and protons. Both Hydrogen(H) and oxygen(O) are two different elements. Compounds are chemical substances where the atoms atoms of two different elements are combined together. It is made of.Hydrogen(H) and Oxygen(O) both qr4 naturally gases, but they react to form water(H2O), which is liquid compound. A mixture is made of at least two parts solid, liquid, or gas. The difference is that it's not a chemical substance that's bonded by other elements.
convert 2.4 milimetres into metre
Answer: 2.4 millimeters = 0.0024 meters
Explanation: A millimeter is 1/1000 of a meter. By diving 2.4 by 1000, you get 0.0024.
A 1.40-kg block is on a frictionless, 30 ∘ inclined plane. The block is attached to a spring (k = 40.0 N/m ) that is fixed to a wall at the bottom of the incline. A light string attached to the block runs over a frictionless pulley to a 60.0-g suspended mass. The suspended mass is given an initial downward speed of 1.60 m/s .
How far does it drop before coming to rest? (Assume the spring is unlimited in how far it can stretch.)
Express your answer using two significant figures.
Answer:
0.5
Explanation:
because the block is attached to the pulley of the string
1. Draw four illustrations of a globe and paper that are positioned to yield equatorial, transverse, oblique, and polar aspect projections. Label the equator in each. Use your textbook or lecture material if you need a reference.2. On any map, why is there distortion at areas that do not fall on lines of tangency or secancy?
Answer:
1) attached below
2) assumption that the earth is spherical
Explanation:
1) Four illustrations of a globe
attached below
2) Reason for distortions at areas that do not fall on lines of tangency or secancy
The reason for distortion on areas outside the lines of tangency or secancy is because of the assumption that the earth is spherical which is not true hence map projections on the areas that fall on the lines of tangency do not experience distortion and are true