Therefore, the correct response is OB: No, the box is a rectangle, and the tray's 12.5-inch length is greater than the box's 11-inch breadth.
what is rectangle ?A rectangle is a geometric shape with four edges and four angles that exists in two dimensions. Because it is a sort of quadrilateral, it has four sides that are parallel to one another. Rectangles are a form of parallelogram because they have opposite sides that are the same length and opposite angles that are the same size. A rectangle's two adjacent sides make right angles, so all four of the angles, which each measure 90 degrees, are right angles.
given
The tray has a breadth of 17 inches and a length of 12.5, according to the measurements given. The package is 13 inches by 11 inches by 11 inches in size.
The platter can fit inside the box because its length is less than the box's length, which is 13 inches. But we also need to think about the box's breadth and height.
The tray cannot fit inside the box in that dimension because its width, which is 17 inches, is larger than the box's, which is 11 inches. The tray cannot fit inside the box because the height of the box is also 11 inches, which is shorter than the length of the tray neither in that realm.
Therefore, the correct response is OB: No, the box is a rectangle, and the tray's 12.5-inch length is greater than the box's 11-inch breadth.
To know more about rectangle visit:
https://brainly.com/question/29123947
#SPJ1
Determine the degree of the Maclaurin polynomial required for the error in the approximation of the function at the indicated value of x to be less than 0.001. f(x) = - " x+1' PA approximate f(0.2)
To determine the degree of the Maclaurin polynomial required for the error in the approximation of the function f(x) = -x+1 at the indicated value of x to be less than 0.001, we can use the formula: N ≥ ln(error)/ln(absolute value of x) + 1.
For our given function, the error is 0.001, and the value of x is 0.2. Plugging these values into the formula, we get: N ≥ ln(0.001)/ln(0.2) + 1, which is equivalent to N ≥ 6.64 + 1 = 7.64. Therefore, we need the degree of the Maclaurin polynomial to be 7.64 in order for the error in the approximation of the function at the indicated value of x to be less than 0.001.
For more such questions on Maclaurin polynomial
https://brainly.com/question/29500966
#SPJ11
Suppose an angle has a measure of 140 degrees a. If a circle is centered at the vertex of the angle, then the arc subtended by the angle's rays is______ times as long as 1/360th of the circumference of the circle. b. A circle is centered at the vertex of the angle, and 1/360th of the circumference is 0.06 cm long. What is the length of the arc subtended by the angle's rays? _______ cmc. Another circle is centered at the vertex of the angle. The arc subtended by the angle's rays is 70 cm long. - 1/360th of the circumference of the circle is _____ cm long. - Therefore the circumference of the circle is _______ cm
If an angle of measurement of 140° then; a circle is centered at the vertex of the angle, then the arc subtended by the angle's rays is 0.0233 cm times as long as 1/360th of the circumference of the circle. Also if a circle is centered at the vertex of the angle, and 1/360th of the circumference is 0.06 cm long then length of the arc subtended by the angle's rays 8.4 cm. Another circle is centered at the vertex of the angle then arc subtended by the angle's rays is 70 cm long,Therefore the circumference of the circle is 180 cm.
a.) To find the fraction of the circle's circumference subtended by the angle's rays, we divide the angle measure by 360 degrees:
fraction of circle's circumference = 140/360
Simplifying this fraction, we get:
fraction of circle's circumference = 7/18
To find the length of the arc subtended by the angle's rays, we multiply the fraction of the circle's circumference by the circumference of the circle. Let's call the circumference of the circle "C":
length of arc = (7/18)*C
We're also told that the length of 1/360th of the circumference is equal to 0.06 cm. So, we can write:
(1/360)*C = 0.06
Multiplying both sides by 360, we get:
C = 360*0.06 = 21.6 cm
Now, we can substitute this value of C into the expression for the length of the arc:
length of arc = (7/18)*C
length of arc = (7/18)*(21.6)
length of arc = 8.4 cm (rounded to one decimal place)
Therefore, the length of the arc subtended by the angle's rays is 8.4 cm.
b.) We're given that 1/360th of the circumference of the circle is 0.06 cm long. To find the length of the arc subtended by the angle's rays, we need to multiply 140/360 by 0.06:
length of arc = (140/360)*0.06
length of arc = 0.0233 cm (rounded to four decimal places)
Therefore, the length of the arc subtended by the angle's rays is approximately 0.0233 cm.
c.) We're told that the length of the arc subtended by the angle's rays is 70 cm. To find the circumference of the circle, we need to find the length of 1/360th of the circumference first. We can do this by dividing 70 by 1/360:
(1/360)*C = 70
Multiplying both sides by 360, we get:
C = 70*360 = 25,200 cm
Therefore, the circumference of the circle is 25,200 cm. We can also verify this by dividing the length of the arc by the fraction of the circumference subtended by the angle's rays:
length of arc = (7/18)*C
C = (18/7)*length of arc
C = (18/7)*70
C = 180 cm (rounded to one decimal place)
This is a different value than we got earlier, so we need to check our calculations. It turns out that the previous calculation was incorrect - we made a mistake when multiplying 7/18 by 21.6. The correct calculation gives us:
length of arc = (7/18)*C
length of arc = (7/18)*(21.6)
length of arc = 8.4 cm (rounded to one decimal place)
Now, we can calculate the circumference of the circle:
length of arc = (7/18)C
C = (18/7) *length of arc
C = (18/7) *70
C = 180 cm (rounded to one decimal place)
Therefore, the circumference of the circle is 180 cm.
Also, If an angle of measurement of 140° then; a circle is centered at the vertex of the angle, then the arc subtended by the angle's rays is 0.0233 cm times as long as 1/360th of the circumference of the circle.
b. A circle is centered at the vertex of the angle, and 1/360th of the circumference is 0.06 cm long.The length of the arc subtended by the angle's rays 8.4 cm
c. Another circle is centered at the vertex of the angle.
The arc subtended by the angle's rays is 70 cm long,Therefore the circumference of the circle is 180 cm.
To practice more questions about circumference:
https://brainly.com/question/27447563
#SPJ11
Calculate (3.7 x 10¹⁴) + (9 × 10¹²) Give your answer in standard index form.
Answer:3.79*10^14
Step-by-step explanation:
370000000000000+9000000000000=379000000000000
=3.79 x 10^14
Answer:
(3.79×10^14)
Step-by-step explanation:
sjskakakzks
In 915. 23, the digit 3 is in the
place.
Answer:
hundreth
Step-by-step explanation:
the 2 is in the tenth and the 3 is in the hundreth
Convince Me! How does the unit rate describe Sergio's cycling speed? How is the unit rate helpful in determining how much farther Sergio must cycle in a given amount of time each time he increases his target speed?
The unit rate is a helpful tool for comparing speeds and calculating distances traveled in a given amount of time.
What is the formula for Speed?The formula for speed is: speed = distance / time where "distance" is the distance traveled by an object and "time" is the duration of travel. This formula can be used to calculate the speed of an object if the distance it has traveled and the time it took to travel that distance are known. It can also be used to calculate the distance traveled by an object if its speed and the time it traveled at that speed are known.
In the given question,
The unit rate describes Sergio's cycling speed by giving the distance he travels in a given amount of time, which is 6 miles per hour. This means that for every hour he cycles, he travels a distance of 6 miles.
By expressing Sergio's cycling speed as a unit rate, we can easily compare it to other speeds and determine how long it will take him to travel a certain distance.
For example, if Sergio increases his target speed to 8 miles per hour, we can use the unit rate to calculate how much farther he must cycle in a given amount of time.
If he wants to cycle for 2 hours, we know that he will travel 6 x 2 = 12 miles at his original speed of 6 miles per hour.
If he wants to cycle for the same 2 hours at a speed of 8 miles per hour, we can use the unit rate to calculate that he will travel 8 x 2 = 16 miles.
This means that he must cycle an additional 4 miles to reach his target distance.
Overall, the unit rate is a helpful tool for comparing speeds and calculating distances traveled in a given amount of time.
To know more about Unit rate, visit:
https://brainly.com/question/29781084
#SPJ1
4x 2 +6x−13=3x 2 to the nearest tenth.
The solutions to the equation are x = -4 and x = 1.
What is quadratic formula?The quadratic formula, which is often employed in the disciplines of mathematics, physics, engineering, and other sciences, is a potent tool for resolving quadratic problems. We must first get the values of a, b, and c from the quadratic equation in order to apply the quadratic formula. To get the answers for x, we then enter these values as substitutes in the formula and simplify.
The given equation is 4x² + 6x - 13 = 3x².
Rearranging the equation we have:
x² + 6x - 13 = 0
The quadratic formula is given as:
x = (-b ± √(b² - 4ac)) / 2a
Substituting the values of a = 1, b = 6, and c = -13.
x = (-6 ± √(6² - 4(1)(-13))) / 2(1)
x = (-6 ± √(100)) / 2
x = (-6 ± 10) / 2
x = -8/2 or x = 2/2
x = -4 or x = 1
Hence, the solutions to the equation are x = -4 and x = 1
Learn more about quadratic formula here:
https://brainly.com/question/2615966
#SPJ1
mai has a jar of quarters and dimes. she takes at least 10 coins out of the jar and has less than $2.00. write a system of inequalities that represents the number of quarters, `x`, and the number of dimes, `y`, that mai could have.
The system of inequalities that represents the number of quarters, x, and the number of dimes, y, that Mai could have is given by:
x + y ≥ 10 and 0.25x + 0.1y < 2
These are the two systems of inequalities that represent the number of quarters, x, and the number of dimes, y, that Mai could have.
Let x be the number of quarters and y be the number of dimes that Mai has. Then, the system of inequalities can be represented as:
Thus, the first inequality is x + y ≥ 10.
Also, Mai has less than $2.00, therefore, the second inequality is 0.25x + 0.1y < 2. The value of x and y are assumed to be non-negative integers.+
To know more about the "system of inequalities": https://brainly.com/question/25275758
#SPJ11
Simplify to an expression involving a single trigonometric function with no fractions.
cos(−x)+tan(−x)sin(−x)
Sec x is the simplified expression cos(−x)+tan(−x)sin(−x) involving a single trigonometric function with no fractions.
The functions of an angle in a triangle are known as trigonometric functions, commonly referred to as circular functions. In other words, these trig functions provide the relationship between a triangle's angles and sides. There are five fundamental trigonometric functions: sine, cosine, tangent, cotangent, secant, and cosecant.
The Given expression is
cos(−x)+tan(−x)sin(−x)
Now,
cos(−x) + tan(−x)sin(−x)
= cos x + (- tan x) (- sin x)
= cos x + tan x * sin x
= cos x + (sin x / cos x) * sin x
= (cos²x + sin²x) / cos x ( As sin²x + cos²x = 1)
= 1/ cos x
= sec x (As sec x = 1/cos x)
Learn more about Trigonometric Functions here: brainly.com/question/22986150
#SPJ4
With respect to the average cost curves, the marginal cost curve: Intersects average total cost, average fixed cost, and average variable cost at their minimum point b. Intersects both average total cost and average variable cost at their minimum points Intersects average total cost where it is increasing and average variable cost where it is decreasing d. Intersects only average total cost at its minimum point
With respect to the average cost curves, the marginal cost curve: intersects both average total cost and average variable cost at their minimum points that is option B.
The fixed cost per unit of production is the average fixed cost (AFC). AFC will reduce consistently as output grows since total fixed costs stay constant. The variable cost per unit of production is known as the average variable cost (AVC). AVC generally declines until it reaches a minimum and then increases due to the growing and then lowering marginal returns to the variable input. The average total cost curve's (ATC) behaviour is determined by the behaviour of the AFC and AVC.
The marginal cost is the cost added to the overall cost of producing one extra unit of output. MC initially falls until it hits a minimum and then increases. When both AVC and ATC are at their minimal points, MC equals both. Also, when AVC and ATC are dropping, MC is lower; when they are growing, it is higher.Initially, the marginal cost of manufacturing is lower than the average cost of preceding units. When MC falls below AVC, the average falls. The average cost will reduce as long as the marginal cost is smaller than the average cost.When MC surpasses ATC, the marginal cost of manufacturing one more extra unit exceeds the average cost.Learn more about Marginal cost curve:
https://brainly.com/question/15570401
#SPJ4
Complete question:
With respect to the average cost curves, the marginal cost curve:
A) Intersects average total cost, average fixed cost, and average variable cost at their minimum point
B) Intersects both average total cost and average variable cost at their minimum points
C) Intersects average total cost where it is increasing and average variable cost where it is decreasing
D) Intersects only average total cost at its minimum point
MR. Swanson wants to buy some mugs as gifts on his trip to California.There are three gifts shops, and each is offering a different deal. Which gift shop has the best deal for mugs
Answer: The one that has the best deals.
Step-by-step explanation:
Find the missing side of each triangle round your answers to the nearest 10th
A box with a square base and open top must have a volume of 62500 cm3. We wish to find the dimensions of the box that minimize the amount of material used. First, find a formula for the surface area of the box in terms of only x, the length of one side of the square base. [Hint: use the volume formula to express the height of the box in terms of x.] Simplify your formula as much as possible. A(x) = Next, find the derivative, A'(x). A'(x) = Now, calculate when the derivative equals zero, that is, when A'(x) = 0. [Hint: multiply both sides by x² .] A'(x) = 0 when x =
The area of the square base = x².
we have:l = w = x ... (2) ... And, h = V/lw = V/x² ... (3) ...
The dimension of the box that minimizes the amount of material used is x = (2V)1/3. A(x) = x² + 4V/x, A'(x) = 2x - 4V/x², x = (2V)1/3
The given volume of the box is 62500 cm³. We wish to find the dimensions of the box that minimize the amount of material used.
To obtain the formula for the surface area of the box in terms of only x, the length of one side of the square base, we use the formula for the volume of a box:V = lwh ... (1) ... where V is the volume, l is the length, w is the width, and h is the height of the box. Here, the base of the box is a square with side length x.
Hence, the area of the square base = x². Therefore, we have:l = w = x ... (2) ... And, h = V/lw = V/x² ... (3) ... We can substitute (2) and (3) in (1) to get the formula for V in terms of x as follows:V = x² V/x² A(x) = A(x) = x² + 4xhA(x) = x² + 4x(V/x²) = x² + 4V/x
Now, to find the derivative A'(x) of A(x), we differentiate A(x) with respect to x:A'(x) = 2x - 4V/x² A'(x) = 0 when x = (2V)1/3. Therefore, the dimension of the box that minimizes the amount of material used is x = (2V)1/3. A(x) = x² + 4V/x, A'(x) = 2x - 4V/x², x = (2V)1/3
Learn more about Area
brainly.com/question/1561162
#SPJ11
If x=3, solve for y
y=2*3^(3)
Answer:
54
Step-by-step explanation:
Answer:
y=54
as x=3
so y=2*x^3
y= 2*3^3
y=2*27
y=54
22) i) A cuboid has dimensions 60cm x 24cm x 30cm. How many small cubes with side 5cm can be placed in the given cuboid?
Answer:
345.6
Or 345 full cubes
Step-by-step explanation:
To answer this question we first need to find the volume of the cuboid!
To find volume we use the equation...
area of cross-section × heightor l × w × hFor the cuboid we are given the dimensions 60, 24 and 30 so we just need to multiply them...
60 × 24 × 30 = 43200We now need to the the volume of the cube which we can just do by cubing the value given
5³ = 125We now need to divide the two results together to find out how many cubes would fit...
43200 ÷ 125 = 345.6Or 345 full cubesHope this helps, have a lovely day!
Suppose you roll a special 37-sided die. What is the probability that one of the following numbers is rolled? 35 | 25 | 33 | 9 | 19 Probability = (Round to 4 decimal places) License Points possible: 1 This is attempt 1 of 2.
Answer:
5/37
Step-by-step explanation:
There are 37 possible outcomes when rolling a 37-sided die, so the probability of rolling any one specific number is 1/37.
To find the probability of rolling any of the given numbers (35, 25, 33, 9, or 19), we need to add the probabilities of rolling each individual number.
Probability of rolling 35: 1/37
Probability of rolling 25: 1/37
Probability of rolling 33: 1/37
Probability of rolling 9: 1/37
Probability of rolling 19: 1/37
The probability of rolling any one of these numbers is the sum of these probabilities:
1/37 + 1/37 + 1/37 + 1/37 + 1/37 = 5/37
So the probability of rolling any of the given numbers is 5/37, which is approximately 0.1351 when rounded to four decimal places.
what is -0.33333333333 as a fraction
Answer:
-1/3
Step-by-step explanation:
Answer:
-1/3
Step-by-step explanation:
use a direct proof to show that every odd integer is the difference of two squares. [hint: find the difference of the squares of k 1 and k where k is a positive integer.]
Yes, every odd integer can be written as the difference of two squares.
To prove this, let k be a positive integer. Then the difference of the squares of k+1 and k is (k+1)² - k² = (k+1)(k+1) - k(k) = k² + 2k + 1 - k² = 2k + 1, which is an odd integer. Thus, every odd integer can be written as the difference of two squares.
To prove this, we first chose a positive integer, k. We then found the difference of the squares of k+1 and k to be (k+1)² - k² = (k+1)(k+1) - k(k) = k² + 2k + 1 - k² = 2k + 1. Since 2k + 1 is an odd integer, it follows that every odd integer is the difference of two squares.
To know more about squares click on below link:
https://brainly.com/question/13747846#
#SPJ11
Find the center of mass of a thin plate of constant density delta covering the given region. The region bounded by the parabola y = 3x - x^2 and the line y = -3x The center of mass is. (Type an ordered pair.)
The center of mass of a thin plate of constant density covering the given region is (1.8, 3.6).
To find the center of mass, we must calculate the weighted average of all the points in the region. The region is bounded by the parabola y = 3x - x² and the line y = -3x.
We must calculate the integral of the region and divide by the total mass. The mass is equal to the area times the density, .
The integral of the region is calculated using the limits of the two curves, yielding a final integral of 32/15. Dividing this integral by the density gives the total mass, and multiplying by the density gives us the center of mass, (1.8, 3.6).
We can also find the center of mass by calculating the moments of the plate about the x-axis and y-axis.
The moment about the x-axis is calculated by finding the integral of the parabola and line using the x-coordinate, and the moment about the y-axis is calculated by finding the integral of the parabola and line using the y-coordinate. Once the moments are found, we can divide each moment by the total mass to get the center of mass.
To know more about center of mass click on below link:
https://brainly.com/question/28996108#
#SPJ11
A random sample of size 64 is to be used to test the null hypothesis that for a certian age group
the mean score on an achievement test (the mean of a normal population with sigma square (variance)variancesigma square= 256) is
less than or equal to 40 against the alternative that it is greater than 40. If the null hypothesis
is to be rejected if and only if the mean of the random sample exceeds 43.5, nd
(a) the probabilities of type I errors when\mu=37, 38, 39, and 40;
(b) the probabilities of type II errors when\mu= 41, 42, 43, 44, 45, 46, 47, and 48.
Also plot the power function of this test criterion.
Answer:
A random sample of size 64 is used to test the null hypothesis that for certain age group the mean score on an achievement test is less than or equal to 40 against the alternative that it is greater than 40. The scores are assumed to be normally distributed with variance 0? 256 _ Consider the hypotheses Ha: L <40 versus HA Lt > 40 and suppose the null hypothesis is to be rejected if and only if the sample mean X exceeds 43.5. What is the size of this test? Compute the probability of type Il error at L = 42
Step-by-step explanation:
Determine whether the following subsets are subspaces of the given vector spaces or not.text Is end text W subscript 2 equals open curly brackets space p equals a subscript 2 t squared plus a subscript 1 t plus a subscript 0 space element of space straight double-struck capital p subscript 2 space left enclose space a subscript 0 equals 2 space end enclose close curly brackets space space text a subspace of the vector space end text space straight double-struck capital p subscript 2 ?(Note: space straight double-struck capital p subscript 2 is the set of all 2nd degree polynomials with the usual polynomial addition and scalar multiplication with reals.)Answer 1text Is end text W subscript 1 equals open curly brackets open square brackets table row a b c row d 0 0 end table close square brackets space element of space M subscript 2 x 3 space end subscript space left enclose space b equals a plus c space end enclose close curly brackets space text a subspace of the vector space end text space space M subscript 2 x 3 space end subscript?(Note: space M subscript 2 x 3 space end subscript is the set of all 2x3 matrices with the standart matrix addition and scalar multiplication with reals.)
Yes, W_2 = {p_2 = a_2t_2 + a_1t + a_0 ∈ ℙ_2 | a_0 = 2} is a subspace of the vector space ℙ_2.
Yes, W_1 = {[a b c; d 0 0] ∈ M_{2x3} | b = a + c} is a subspace of the vector space M_{2x3}.
Vector spaces are closed under vector addition and scalar multiplication, and in this case, ℙ_2 is the set of all 2nd degree polynomials with the usual polynomial addition and scalar multiplication with reals.
Vector spaces are closed under vector addition and scalar multiplication, and in this case, M_{2x3} is the set of all 2x3 matrices with the standard matrix addition and scalar multiplication with reals.
To know more about vector space: https://brainly.com/question/17142918
#SPJ11
based on historical data, it takes students an average of 48 minutes with a standard deviation of 15 minutes to complete the unit 5 test. what is the probability that your class of 20 students will have a mean completion time greater than 60 minutes on the unit 5 test?
Using central limit theorem, the probability that the class of 20 students will have a mean completion time greater than 60 minutes on the unit 5 test is 0.00017332
What is the probability that your class of 20 students will have a mean completion time greater than 60 minutes on the unit 5 test?We can use the Central Limit Theorem (CLT) to approximate the distribution of the sample mean completion time for the class. According to CLT, the distribution of the sample mean is approximately normal, with a mean equal to the population mean and a standard deviation equal to the population standard deviation divided by the square root of the sample size.
In this case, the population mean is given as 48 minutes, the population standard deviation is given as 15 minutes, and the sample size is 20. Therefore, the mean of the sample mean completion time is also 48 minutes, and the standard deviation of the sample mean completion time is 15/√20 ≈ 3.3541 minutes.
To find the probability that the class mean completion time is greater than 60 minutes, we can standardize the distribution of the sample mean completion time using the z-score formula:
z = (x - μ) / (σ / √n)
where x is the value we want to find the probability for (in this case, x = 60), μ is the population mean, σ is the population standard deviation, and n is the sample size.
Plugging in the values, we get:
z = (60 - 48) / (15 / √20) = 3.5777
Using a standard normal distribution table (or calculator), we can find the probability that a z-score is greater than 3.5777.
P = 0.00017332
Learn more on probability here;
https://brainly.com/question/24756209
#SPJ1
Use the equation, 8^2x = 32^x+3, to complete the following problems.
(a) Rewrite the equation using the same base.
(b) Solve for x. Write your answer in simplest form.
Given: ,8^2x= 32^x+3
a: (2³)^2x = (2⁵)^x+3
b: Solving, we get
2^6x = 2^5x+15
Since bases are same, we have
=>6x=5x+15
=> x = 15
use the unique factorization theorem to write the following integers in standard factored form. (a) 504 (b) 819 (c) 5,445
Using the Unique factorization theorem for the following integers the standard factored form of 504 is 2³ x 3²x 7 , for 819 is 3² ×7×13 and for 5,445 is 3²×5×7².
The Unique Factorization Theorem states that any positive integer can be written as a product of prime numbers in a unique way. To write each of the integers in standard factored form.
Using this theorem, we can factorize any positive integer into its prime factors. Here are the steps to factorize a number:
Find the smallest prime factor of the number. Divide the number by this prime factor, and repeat step 1 with the result. Continue this process until the result is 1.The prime factors obtained in this process can then be multiplied together to obtain the standard factored form of the original number . Therefore,
)504 = 2³ x 3² x 7)819 = 3² ×7×13)5,445 =3²×5×7²To learn more about 'Unique Factorization Theorem':
https://brainly.com/question/30702016
#SPJ11
Sarah is a healthy baby who was exclusively breast-fed for her first 12 months. Which of the following is most likely a description of her weights (at 3, 6, 9, and 12 months of age) as percentiles of the CDC growth chart reference population? 85th percentile at 3 months; 85th percentile at 6 months; 9oth percentile at 9 months; 95th percentile at 12 months 75th percentile at 3 months; 40th percentile at 6 months; 25th percentile at 9 months; 25th percentile at 12 months 30th percentile at 3 months; 50th percentile at 6 months; 70th percentile at 9 months; 80th percentile at 12 months 25th percentile at 3 months; 25th percentile at 6 months; 25th percentile at 9 months; 25th percentile at 12 months
The 12 months of age) as percentiles of the CDC growth chart reference population.
The most likely description of Sarah's weights (at 3, 6, 9, and 12 months of age) as percentiles of the CDC growth chart reference population is: 85th percentile at 3 months; 85th percentile at 6 months; 90th percentile at 9 months; 95th percentile at 12 months.What is percentile in statistics?In statistics, a percentile is a value below which a specific percentage of observations in a group falls. It is used to split up data into segments that represent an equal proportion of the entire group, resulting in a data set split into 100 equal portions, with each portion representing one percentage point. Sarah's weight is in the 85th percentile at 3 months, 85th percentile at 6 months, 90th percentile at 9 months, and 95th percentile at 12 months is a most likely description of her weights (at 3, 6, 9, and 12 months of age) as percentiles of the CDC growth chart reference population.
Learn more about Percentiles
brainly.com/question/28800128
#SPJ11
Anyone know the answer?
As a result, the Styrofoam collar has a volume of roughly 179.594 cubic inches.
what is volume ?The quantity of space occupied by a three-dimensional object is measured by its volume. Units like cubic meters (m3), cubic centimeters (cm3), or cubic inches (in3) are frequently used to quantify it. Depending on the shape of the item, different formulas can be used to determine its volume. For instance, the volume of a cube can be calculated by multiplying its length, breadth, and height, while the volume of a cylinder can be calculated by dividing the base's area (typically a circle) by the cylinder's height.
given
We must apply the calculation for the volume of a cone's frustum in order to determine the volume of the Styrofoam collar:
[tex]V = (1/3)\pi h(R^2 + Rr + r^2)[/tex]
where h is the height of the frustum, r is the small radius, and R is the large radius.
Given the numbers, we can determine:
R = 5 in.
3 centimeters is r.
24 inches tall
With these numbers entered into the formula, we obtain[tex]V = (1/3)\pi (24)(5^2 + 5*3 + 3^2)\\\\ 179.594 cubic inches[/tex]
As a result, the Styrofoam collar has a volume of roughly 179.594 cubic inches.
To know more about volume visit :-
https://brainly.com/question/13338592
#SPJ1
andrew is buying a cell phone that has a regular price of $485. the cell phone is on sale for 35% off the regular price. what will be the sale price?
the sale price of the cell phone after the 35% discount is $315.25.
How to solve and what is sale?
To find the sale price of the cell phone, we need to apply the discount of 35% to the regular price of $485. We can do this by multiplying the regular price by 0.35 and then subtracting the result from the regular price:
Sale price = Regular price - Discount amount
Sale price = $485 - (0.35 x $485)
Sale price = $485 - $169.75
Sale price = $315.25
Therefore, the sale price of the cell phone after the 35% discount is $315.25.
A sale is a temporary reduction in the price of a product or service. Sales are often used by businesses to attract customers and increase sales volume. Sales can be offered for many reasons, such as to clear out inventory, promote a new product, or attract customers during a slow period.
In a sale, the price of a product or service is discounted, either by a fixed amount or by a percentage of the regular price. For example, a store might offer a 20% discount on all clothing items, or a car dealership might offer a $5,000 discount on a particular model of car.
To know more about Selling related questions, visit:
https://brainly.com/question/30615010
#SPJ1
At noon, ship A is 50 nautical miles due west of ship B. Ship A is sailing west at 16 knots and ship B is sailing north at 15 knots. How fast (in knots) is the distance between the ships changing at 6 PM? (Note: 1 knot is a speed of 1 nautical mile per hour. )
The speed (in knots) at which the distance between the ships A and B is changing at 6 PM is given as 36 knots or 36 nautical miles per hour.
Consider that the ship A is in the west direction and the ship B is in the north direction and both the ships are in regular motion of speed which is 16 knots and 15 knots and the distance between them is 50 nautical miles.
Using the Pythagoras theorem, the relation of the distance x which represents the distance between ships at 6PM to the distances that each ship has travelled can be given as follows:
x^2 = (50 + 16t)^2 + (15t)^2
where, t is the number of hours that has passed since noon.
Differentiating both sides of the above equation with respect to time, we get:
2x*(dx/dt) = 2(50 + 16t)*(16) + 2*(15t)*(15)
t = 6, at 6 PM, therefore substituting the value and solving, we get:
2x(dx/dt) = 2[(50 + 16(6)]*(16) + 2*[15(6)]*(15)
2x(dx/dt) = 4194
dx/dt = 2097/x
Now substituting the value of x that corresponds to 6 PM:
x^2 = (50 + 16(6))^2 + (15(6))^2
x^2 = 3385
x = √3385 ≅ 58.19
Putting this value in dx/dt, we get:
dx/dt = 2097/58.19 ≅ 36.00 knots
Learn more about Pythagoras theorem at:
brainly.com/question/343682
#SPJ4
y=x^2+7x-3
complete the square to re-write the quadratic function in vertex form.
pls help
Answer:
Y=x^2+7x-3
complete the square to re-write the quadratic function in vertex form.
pls help
Step-by-step explanation:
To complete the square, we need to add and subtract a constant term inside the parentheses, which when combined with the quadratic term will give us a perfect square trinomial.
y = x^2 + 7x - 3
y = (x^2 + 7x + ?) - ? - 3 (adding and subtracting the same constant)
y = (x^2 + 7x + (7/2)^2) - (7/2)^2 - 3 (the constant we need to add is half of the coefficient of the x-term squared)
y = (x + 7/2)^2 - 49/4 - 3
y = (x + 7/2)^2 - 61/4
So the quadratic function in vertex form is y = (x + 7/2)^2 - 61/4, which has a vertex at (-7/2, -61/4).
on saturday a local hamburger shop sold a combined total of 416 hamburgers and cheeseburgers.the number of cheeseburgers sold was three times the number of hamburgers sold. how many hamburgers were sold?
Answer: Let x be the number of hamburgers sold.
Then, the number of cheeseburgers sold is 3x.
The total number of burgers sold is x + 3x = 4x.
Given that the total number of burgers sold is 416, we have:
4x = 416
x = 416/4
x = 104
Therefore, 104 hamburgers were sold.
Step-by-step explanation:
What is the gradient of the line segment between the points 2,4 and 4,6
Answer:
1
Step-by-step explanation:
Given values are:
x1 y1=(2,4)
x2 y2=( 4,6)
slop=(6-4)divide (4-2)=1
brainest please
thanks