Answer:
[tex]\displaystyle \text{Function: }{y=20-3x,\\\text{Domain: }(-\infty, \infty)\text{ or }\mathbb{R}[/tex]
Step-by-step explanation:
If the boy initially had 20 cents, then the total number of cents he will have left after purchasing [tex]x[/tex] pencils is equal to the total cost of the pencils subtracted from 20. The total cost of [tex]x[/tex] pencils, in cents, is equal to [tex]3x[/tex], since each pencil is 3 cents.
Therefore, the total amount, in cents, that the boy has left, [tex]y[/tex], is equal to [tex]20-3x[/tex]:
[tex]\displaystyle \text{Equation: }\boxed{y=20-3x}[/tex]
The domain of this function is [tex](-\infty, \infty)[/tex] or all real numbers [tex]\mathbb{R}[/tex].
Roulette is a casino game that involves spinning a ball on a wheel that is marked numbered squares that are red, black, or green. Half of the numbers 1 - 36 are colored red and half are black and the numbers 0 and 00 are green. Each number occurs only once on the wheel. What is the probability of landing on a green space
Answer:
1/19
Step-by-step explanation:
There are a total of 36+2 = 38 spaces
2 are green
P(green) = green / total
= 2/38
=1/19
.052631579
(07.04 MC)
Jim is designing a seesaw for a children's park. The seesaw should make an angle of 30' with the ground, and the maximum height
to which it should rise is 2 meters, as shown below:
1
2 meters
30
What is the maximum length of the seesaw? (6 points)
Select one:
a. 3.00 meters
b. 3.5 meter
C. 4,00 meters
d 4.5 meters
The maximum length of the seesaw is option c 4.00 meters.
What is a right-angled triangle?A right-angled triangle is one in which one of the angles is equal to 90 degrees. A 90 degree angle is called a right angle, which is why a triangle made up of right angle is termed a right angled triangle.
What are hypotenuse, height of a right-angled triangle?A right-angled triangle has three sides- hypotenuse, base and height. Hypotenuse is the longest and also the opposite side of the right angle of the triangle, base and height of a right triangle are always the sides adjacent to the right angle.
How to measure the hypotenuse of a right-angled triangle?The formula for measuring the hypotenuse is,
Height / Hypotenuse = Sinθ , where θ is the angle opposite to the height of the triangle.
In the given question, the seesaw should make an angle of 30° with the ground and the maximum height it should rise is 2 meters so the height here is 2 meters. So the seesaw will make a right angled triangle.
Height = 2 meters, θ = 30°,
Now using the formula,
2 / Hypotenuse = Sin30°
Rearranging we get,
Hypotenuse = 2 / Sin30°
The value of Sin30° is 1/2 and putting the value we get,
Hypotenuse = 2 / (1/2)
= 2 × 2
= 4 meters.
Therefore, the maximum length of the seesaw (that is the hypotenuse ) is 4 meters.
To learn more about right-angled triangles and finding sides of it click here-brainly.com/question/10331046
#SPJ2
In 1815, Sophie Germain won a mathematical prize given by the Institut de France for her work on the theory of elasticity. The prize was a medal made of 1 kilogram of gold. How much is the medal worth today in U.S. dollars and in euros
Answer:
gold price : $58.72/gram
$58,720 per kilo(1000) grams
Step-by-step explanation:
Find the missing segment in the image below
Answer:
Step-by-step explanation:
if 12 +2 =2 orderly what is 6 +3 orderly
Answer:
3
Step-by-step explanation:
Please Mark me brainliest
Answer:
aren't one of the numbers in the equations supposed to be negative?
Match each sequence below to statement that BEST fits it.
Z. The sequence converges to zero;
I. The sequence diverges to infinity;
F. The sequence has a finite non-zero limit;
D. The sequence diverges.
_______ 1. ns in (1/n)
_______2. ln(ln(ln(n)))
_______3. (ln(n))/n
_______4. n!/n^1000
Answer: hello your question is poorly written attached below is the complete question
answer:
1 ) = I (
2) = F
3) = Z
4) = D
Step-by-step explanation:
attached below is the required solution.
1 ) = I ( The sequence diverges to infinity )
2) = F ( The sequence has a finite non-zero limit )
3) = Z ( The sequence converges to zero )
4) = D ( The sequence diverges )
Simplify the radical expression.
3^√0.125b^3
A. -5b
B. -0.5b
C. 0.5b
D. 5b
If you only have a
1
6
cup measuring cup and a recipe calls for
15
1
6
cups of flour, how many 1/6 cups would you need to use?
Hi! I'm happy to help!
To solve this problem, we need to divide the recipe amount in 1/6 amounts. So, we will do a fraction division problem like this:
15[tex]\frac{1}{6}[/tex]÷[tex]\frac{1}{6}[/tex]
This problem is hard to do with mixed numbers, so we need to turn 15[tex]\frac{1}{6}[/tex] into an improper fraction. To do that we need to multiply 15 by 6, because that is our denominator, then add the extra [tex]\frac{1}{6}[/tex].
(15×6)+1
90+1
91
So, our improper fraction would be[tex]\frac{91}{6}[/tex], now, let's solve.
[tex]\frac{91}{6}[/tex]÷[tex]\frac{1}{6}[/tex]
It is difficult to do division problems on their own, so we can change this into an easier problem. We can do the inverse operation and turn this into multiplication. We do this by changing it to multiplication (obviously), then flip the second fraction.
[tex]\frac{91}{6}[/tex]×[tex]\frac{6}{1}[/tex]
Now, we just multiply the top by the top, and bottom by the bottom.
[tex]\frac{546}{6}[/tex]
We could end it here, but we want a whole number, so, we simplify the number by dividing both the top and bottom by 6.
[tex]\frac{91}{1}[/tex]
Anything over 1, is just a whole number
91.
Therefore, the recipe should require 91 uses of the 1/6 cup.
I hope this was helpful, keep learning! :D
PLEASE HELPPPPPPPPPPPPPP
Answer:
False
Step-by-step explanation:
To find the inverse of a function, switch the variables and solve for y.
The inverse of f(n)=-(n+1)^3:
[tex]y=-(n+1)^3[/tex]
[tex]n=-(y+1)^3[/tex]
[tex]\sqrt[3]{n} =-(y+1)[/tex]
[tex]\sqrt[3]{n} =-y-1[/tex]
[tex]\sqrt[3]{n} +1=-y[/tex][tex]-(\sqrt[3]{n} +1)=y[/tex]
[tex]-\sqrt[3]{n} -1=y[/tex]
Answer:
False
Step-by-step explanation:
If y = ax^2 + bx + c passes through the points (-3,10), (0,1) and (2,15), what is the value of a + b + c?
Hi there!
[tex]\large\boxed{a + b + c = 6}[/tex]
We can begin by using the point (0, 1).
At the graph's y-intercept, where x = 0, y = 1, so:
1 = a(0)² + b(0) + c
c = 1
We can now utilize the first point given (-3, 10):
10 = a(-3)² + b(-3) + 1
Simplify:
9 = 9a - 3b
Divide all terms by 3:
3 = 3a - b
Rearrange to solve for a variable:
b = 3a - 3
Now, use the other point:
15 = a(2)² + 2(3a - 3) + 1
14 = 4a + 6a - 6
Solve:
20 = 10a
2 = a
Plug this in to solve for b:
b = 3a - 3
b = 3(2) - 3 = 3
Add all solved variables together:
2 + 3 + 1 = 6
write your answer in simplest radical form
Answer:
please tell me the complete question
A sample of 375 college students were asked whether they prefer chocolate or vanilla ice cream. 210 of those surveyed said that they prefer vanilla ice cream. Calculate the sample proportion of students who prefer vanilla ice cream.
Answer:
The sample proportion of students who prefer vanilla ice cream is 0.56.
Step-by-step explanation:
Sample proportion of students who prefer vanilla ice cream:
Sample of 375 students.
Of those, 210 said they prefer vanilla ice cream.
The proportion is:
[tex]p = \frac{210}{375} = 0.56[/tex]
The sample proportion of students who prefer vanilla ice cream is 0.56.
PLZ HELP ME AND IF U CAN XPLAIN
Answer:
B. 1/2
Step-by-step explanation:
Slope formula = [tex]\frac{y_{2}-y_{1} }{x_{2}-x_{1}}[/tex]
[tex]\frac{(-4)-(-8) }{(6)-(-2)}[/tex]
[tex]\frac{4}{8}[/tex]
[tex]\frac{1}{2}[/tex]
A man earns RS.95 in a day how much does we earn in 18 days
Answer:
RS 17.10
Step-by-step explanation:
If they earn 0.95 a day, you can multiply that income by the number of days, which is 18.
RS 17.10
Let V be the volume of the solid obtained by rotating about the y-axis the region bounded y = sqrt(25x) and y = x^2/25. Find V by slicing & find V by cylindrical shells.
Explanation:
Let [tex]f(x) = \sqrt{25x}[/tex] and [tex]g(x) = \frac{x^2}{25}[/tex]. The differential volume dV of the cylindrical shells is given by
[tex]dV = 2\pi x[f(x) - g(x)]dx[/tex]
Integrating this expression, we get
[tex]\displaystyle V = 2\pi\int{x[f(x) - g(x)]}dx[/tex]
To determine the limits of integration, we equate the two functions to find their solutions and thus the limits:
[tex]\sqrt{25x} = \dfrac{x^2}{25}[/tex]
We can clearly see that x = 0 is one of the solutions. For the other solution/limit, let's solve for x by first taking the square of the equation above:
[tex]25x = \dfrac{x^4}{(25)^2} \Rightarrow \dfrac{x^3}{(25)^3} = 1[/tex]
or
[tex]x^3 =(25)^3 \Rightarrow x = \pm25[/tex]
Since we are rotating the functions around the y-axis, we are going to use the x = 25 solution as one of the limits. So the expression for the volume of revolution around the y-axis is
[tex]\displaystyle V = 2\pi\int_0^{25}{x\left(\sqrt{25x} - \frac{x^2}{25}\right)}dx[/tex]
[tex]\displaystyle\:\:\:\:=10\pi\int_0^{25}{x^{3/2}}dx - \frac{2\pi}{25}\int_0^{25}{x^3}dx[/tex]
[tex]\:\:\:\:=\left(4\pi x^{5/2} - \dfrac{\pi}{50}x^4\right)_0^{25}[/tex]
[tex]\:\:\:\:=4\pi(3125) - \pi(7812.5) = 14726.2[/tex]
If f(4x-15)=8x-27,find f(x)?
Answer:
If we put x=17/4
f(4×17/4-15)=8×17/4-27
f(2x=34-27
f(x)=7.
Hope i helped you.
The length of a rectangle is five times its width. If the perimeter of the rectangle is 108 in, find its area.
Answer:
Step-by-step explanation:multiple 5 times 108 and that gives you your answer..
Anyone knows the answer?
Please!
Answer:
C
Step-by-step explanation:
sin(theta)=7/8, theta=arcsin(7/8)=61
The distance from the green point on the parabola to the parabolas focus is 11. What is the distance from green point to the directrix?
Answer:
answer 11
Step-by-step explanation:
I think it the right answer
 Solve each system by graphing.
9514 1404 393
Answer:
(x, y) = (4, -4)
Step-by-step explanation:
A graphing calculator makes graphing very easy. The attachment shows the solution to be (x, y) = (4, -4).
__
The equations are in slope-intercept form, so it is convenient to start from the y-intercept and use the slope (rise/run) to find additional points on the line.
The first line can be drawn by staring at (0, -2) and moving down 1 grid unit for each 2 to the right.
The second line can be drawn by starting at (0, 2) and moving down 3 grid units for each 2 to the right.
The point of intersection of the lines, (4, -4), is the solution to the system of equations.
0.14 converted as a fraction simplest form.
Answer: 7 / 50
Step-by-step explanation:
Given
0.14
Convert to 100-denominator fraction
= 14 ÷ 100
= 14/100
Divide both numerator and denominator by 2
=(14 ÷ 2) / (100 ÷ 2)
=7 / 50
Hope this helps!! :)
Please let me know if you have any questions
Multiply and simplify the following complex numbers (-4-5i)•(1-i)
Answer:
Step-by-step explanation:
(-4 - 5i)⋅(1 - i) = (-4)(1) + (-4)(-i) + (-5i)(1) + (-5i)(-i)
= -4 + 4i - 5i + 5i²
= -4 - i -5
= -9 - i
Diane must choose a number between 49 and 95 that is a multiple of 2, 3, and 9. Write all the numbers that she could choose. If
there is more than one number, separate them with commas?
The set of numbers that Diane can choose is:
{54, 60, 66, 72, 78, 84, 90}
Finding common multiples of 2, 3, and 6:
A number is a multiple of 2 if the number is even.
A number is a multiple of 3 if the sum of its digits is multiples of 3.
A number is a multiple of 6 if it is a multiple of 2 and 3.
Then we only need to look at the first two criteria.
First, let's see all the even numbers in the range (49, 95)
These are:
{50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94}
All of these are multiples of 2.
Now we need to see which ones are multiples of 3.
To do it, we sum its digits and see if that sum is also a multiple of 3.
50: 5 + 0 = 5 this is not multiple of 3.
52: 5 + 2 = 7 this is not multiple of 3.
54: 5 + 4 = 9 this is multiple of 3, so 54 is a possible number.
And so on, we will find that the ones that are multiples of 3 are:
54: 5 + 4 = 9.
60: 6 + 0 = 6
66: 6 + 6 = 12
72: 7 + 2 = 9
78: 7 + 8 = 15
84: 8 + 4 = 12
90:9 + 0 = 9
Then the numbers that Diane could choose are:
{54, 60, 66, 72, 78, 84, 90}
If you want to learn more about multiples, you can read:
https://brainly.com/question/1553674
the formula for finding the circumference of a circle with radius,r, is circumference= 2πr. What is the formula for the circumference of a circle with a radius r/2?
Answer:
πr
Step-by-step explanation:
radius = r/2
so circumference = 2π(r/2)
= 2πr/2
= πr
Answer:
The answer is B which is C=2πr
Step-by-step explanation:
i just did it
IS THSI RIGHTTTTTTTT??????????????
Answer:
No. It is EF and GH
Step-by-step explanation:
Answer:
No
Step-by-step explanation:
The answer will be EF and GH, both are 7 units long.
Prove that A.M, G.M. and H.M between any two unequal positive numbers satisfy the following relations.
i. (G.M)²= (A.M)×(H.M)
ii.A.M>G.M>H.M
Answer:
See below
Step-by-step explanation:
we want to prove that A.M, G.M. and H.M between any two unequal positive numbers satisfy the following relations.
(G.M)²= (A.M)×(H.M) A.M>G.M>H.Mwell, to do so let the two unequal positive numbers be [tex]\text{$x_1$ and $x_2$}[/tex] where:
[tex] x_{1} > x_{2}[/tex]the AM,GM and HM of [tex]x_1[/tex] and[tex] x_2[/tex] is given by the following table:
[tex]\begin{array}{ |c |c|c | } \hline AM& GM& HM\\ \hline \dfrac{x_{1} + x_{2}}{2} & \sqrt{x_{1} x_{2}} & \dfrac{2}{ \frac{1}{x_{1} } + \frac{1}{x_{2}} } \\ \hline\end{array}[/tex]
Proof of I:[tex] \displaystyle \rm AM \times HM = \frac{x_{1} + x_{2}}{2} \times \frac{2}{ \frac{1}{x_{1} } + \frac{1}{x_{2}} } [/tex]
simplify addition:
[tex] \displaystyle \frac{x_{1} + x_{2}}{2} \times \frac{2}{ \dfrac{x_{1} + x_{2}}{x_{1} x_{2}} } [/tex]
reduce fraction:
[tex] \displaystyle x_{1} + x_{2} \times \frac{1}{ \dfrac{x_{1} + x_{2}}{x_{1} x_{2}} } [/tex]
simplify complex fraction:
[tex] \displaystyle x_{1} + x_{2} \times \frac{x_{1} x_{2}}{x_{1} + x_{2}} [/tex]
reduce fraction:
[tex] \displaystyle x_{1} x_{2}[/tex]
rewrite:
[tex] \displaystyle (\sqrt{x_{1} x_{2}} {)}^{2} [/tex]
[tex] \displaystyle AM \times HM = (GM{)}^{2} [/tex]
hence, PROVEN
Proof of II:[tex] \displaystyle x_{1} > x_{2}[/tex]
square root both sides:
[tex] \displaystyle \sqrt{x_{1} }> \sqrt{ x_{2}}[/tex]
isolate right hand side expression to left hand side and change its sign:
[tex]\displaystyle\sqrt{x_{1} } - \sqrt{ x_{2}} > 0[/tex]
square both sides:
[tex]\displaystyle(\sqrt{x_{1} } - \sqrt{ x_{2}} {)}^{2} > 0[/tex]
expand using (a-b)²=a²-2ab+b²:
[tex]\displaystyle x_{1} -2\sqrt{x_{1} }\sqrt{ x_{2}} + x_{2} > 0[/tex]
move -2√x_1√x_2 to right hand side and change its sign:
[tex]\displaystyle x_{1} + x_{2} > 2 \sqrt{x_{1} } \sqrt{ x_{2}}[/tex]
divide both sides by 2:
[tex]\displaystyle \frac{x_{1} + x_{2}}{2} > \sqrt{x_{1} x_{2}}[/tex]
[tex]\displaystyle \boxed{ AM>GM}[/tex]
again,
[tex]\displaystyle \bigg( \frac{1}{\sqrt{x_{1} }} - \frac{1}{\sqrt{ x_{2}}} { \bigg)}^{2} > 0[/tex]
expand:
[tex]\displaystyle \frac{1}{x_{1}} - \frac{2}{\sqrt{x_{1} x_{2}} } + \frac{1}{x_{2} }> 0[/tex]
move the middle expression to right hand side and change its sign:
[tex]\displaystyle \frac{1}{x_{1}} + \frac{1}{x_{2} }> \frac{2}{\sqrt{x_{1} x_{2}} }[/tex]
[tex]\displaystyle \frac{\frac{1}{x_{1}} + \frac{1}{x_{2} }}{2}> \frac{1}{\sqrt{x_{1} x_{2}} }[/tex]
[tex]\displaystyle \rm \frac{1}{ HM} > \frac{1}{GM} [/tex]
cross multiplication:
[tex]\displaystyle \rm \boxed{ GM >HM}[/tex]
hence,
[tex]\displaystyle \rm A.M>G.M>H.M[/tex]
PROVEN
Simplify the given expression.
Answer:
8x-21
----------------------
(2x-7)(2x+7)
Step-by-step explanation:
7 4
----------- + ------------
4x^2 -49 2x+7
Factor ( notice that it is the difference of squares)
7 4
----------- + ------------
(2x)^2 - 7^2 2x+7
7 4
----------- + ------------
(2x-7)(2x+7) 2x+7
Get a common denominator
7 4(2x-7)
----------- + ------------
(2x-7)(2x+7) (2x-7)(2x+7)
Combine
7 +4(2x-7)
----------------------
(2x-7)(2x+7)
7 +8x-28
----------------------
(2x-7)(2x+7)
8x-21
----------------------
(2x-7)(2x+7)
Answer:
(8x - 21) / (2x + 7)(2x - 7)
Step-by-step explanation:
7 / (4x^2 - 49)+ 4 / (2x + 7)
= 7 / (2x + 7)(2x - 7) + 4 / (2x + 7)
LCM = (2x + 7)(2x - 7) so we have
(7 + 4(2x - 7) / (2x + 7)(2x - 7)
= (8x - 21) / (2x + 7)(2x - 7).
write your answer as an integer or as a decimal rounded to the nearest tenth
Answer:Mark Brainliest please
Answer is 4.86 which is rounded to 5
Step-by-step explanation:
Cos 40 degree = VW/7
0.694 =VW/7
0.694 * 7 =VW
4.858 =VW
VW=4.86 is the answer
A rocket is launched at t = 0 seconds. Its height, in meters above sea-level, is given by the equation
h = -4.9t2 + 112t + 395.
At what time does the rocket hit the ground? The rocket hits the ground after how many seconds
Answer:
Step-by-step explanation:
In order to find out how long it takes for the rocket to hit the ground, we only need set that position equation equal to 0 (that's how high something is off the ground when it is sitting ON the ground) and factor to solve for t:
[tex]0=-4.9t^2+112t+395[/tex]
Factor that however you are factoring in class to get
t = -3.1 seconds and t = 25.9 seconds.
Since time can NEVER be negative, it takes the rocket approximately 26 seconds to hit the ground.
Help due today
No links
Answer:
-6
Step-by-step explanation:
Answer:
[tex]24 + x = 13 \\ x = 13 - 24 \\ x = - 11 \\ thank \: you[/tex]