Answer:
6
Step-by-step explanation:
I think I just answered that question.
"image" 7 means the functional result is 7, and we need to find the value of x to make this happen.
7 = (3x - 4)/2
14 = 3x - 4
18 = 3x
x = 6
Question 11 of 25
If the point (1, 4) is on the graph of an equation, which statement
must be true?
A. There are solutions to the equation for the values x = 1 and
x = 4.
B. The values x = 1 and y = 4 are the only values that make the
equation true.
C. The values x = 4 and y= 1 make the equation true.
D. The values x = 1 and y = 4 make the equation true.
SUBMIT
Answer:
D
Step-by-step explanation:
simple : when we have a point defined as (1, 4), it means x = 1, y = 4.
and since the point is on the graph of a function/equation it means that when we use x = 1 and calculate the equation, we get 4 as result (= y). so yes, that means that both sides of the "=" sign are indeed equal for this pair of values, which makes the equation true.
but there will be usually many other pairs that do that too.
I am not sure. Is this right?
Answer:
14.4
Step-by-step explanation:
since the longest side is 24,find the shortest side
√20^2-12^2
√400-144
√256
=16
which means the other shortest side is 24-16
which is 8
then you have to use the 12 and 8 to find the unknown side
√12^2+8^2
144+64
√208
14.4
I hope this helps
please someone answer! i need it rn!
A viewfinder has a triangular lens. Some of the measurements of the lens are
shown below. Which of the following best represents the length of a?
B
26°
a
С
389
10
A
Triangle not drawn to scale
=========================================================
Explanation:
It's a bit strange why your teacher has the "26 degree" label pointing at a side length, rather than an actual angle. I'm assuming your teacher meant to aim it at angle C. In other words, I'm assuming they meant to say angle C = 26 degrees.
If that assumption is correct, then,
A+B+C = 180
38+B+26 = 180
B+64 = 180
B = 180-64
B = 116
Then we can use the law of sines like so:
a/sin(A) = b/sin(B)
a/sin(38) = 10/sin(116)
a = sin(38)*10/sin(116)
a = 6.84986152123146
a = 6.8
Side 'a' is approximately 6.8 inches long. So that's why the answer is choice A.
Which relation is not a function?
Answer:
A
For something to be a function every x value bust have at most 1 y value and in A 9 has 2 y values so it cant be a function
the best way to learn math formulas
Writing down the formulas on charts and pasting it in your room,by seeing this daily it helps to memorize the formulas.
Saying the formulas louder also helps to memorize the formula.
Watching videos related to maths formulas and equations helps to remember the formulas easier.
Doing many problems regularly will helps you to remember the formulas.
lastly study to Understand The Formula not to memorize
191+13=13+191191+13=13+191
what type of property is that
what nice question that we can understand ok
Pls help if u only know the correct answer!! Thanks!! :))
Answer:
3.5, 4.2
Step-by-step explanation:
reflect make it not negative and its on y axis so y not affected
Please hurry I will mark you brainliest
What is the equation of the line parallel to y = 2x - 4 and with the same x - intercept as 3x – 4y = 12?
Answer:
y=2x-8
Step-by-step explanation:
Hi there!
We want to find an equation of the line parallel to y=2x-4 but has the same x intercept as 3x-4y=12
Parallel lines have the same slope, but different y intercepts
In y=2x-4, which is written in y=mx+b form, m is the slope and b is the y intercept
2 is in the place of where the slope would be, so the slope of that line is 2
That means the slope of the line parallel to it would also have a slope of 2
Here is the equation of the parallel line so far:
y=2x+b
We need to find b, the y intercept
Typically, we'll substitute a point into the equation to solve for b, but we don't have a point, yet
We're given that the new line has the same x intercept as 3x-4y=12
The x intercept is the point where the line passes through the x axis, and so the value of y at that point is 0
Let's substitute 0 for y in 3x-4y=12 and solve for x to find the x intercept
3x-4(0)=12
Multiply
3x=12
Divide both sides by 3
x=4
So the value of the x intercept is 4. As a point, it's (4,0)
So now substitute the values of the point (4,0) into y=2x+b to find b
0=2(4)+b
Multiply
0=8+b
Subtract 8 from both sides
-8=b
Substitute -8 as b into the equation
y=2x-8
Hope this helps!
5. There are 5,280 feet in a mile. What part of a mile, in decimal form, will you drive until you reach the exit? I NEED THIS QUICK PLZ HELP I’LL GIVE YOU 30
Answer:
5.280
Step-by-step explanation:
i did this question and got it
Please help explanation if possible
Answer:
[tex]y = 2x + 7[/tex]
Step-by-step explanation:
Use Point Slope Form since we are given the slope and coordinates. Why is the slope 2x?
In Depth: Parallel lines never touch so they are Lines that have same slope but different y intercept. An example is a square. A square has four parallel sides. The upper and lower sides will never touch because they are the same slope and they both have a finite distance vertically between them.
Back to the question, let use the Point Slope Form,
[tex]y - y_{1} = m(x - x_{1})[/tex]
Where y1 is the y coordinate of the given point, m is the slope and x is the x coordinates of the given points.
Substitute
[tex]y - ( - 1) = 2(x - ( - 4)[/tex]
[tex]y + 1 = 2(x + 4)[/tex]
Simplify
[tex]y + 1 = 2x + 8[/tex]
[tex]y = 2x + 7[/tex]
Solve for X. Geometry
Answer:
x=12
Step-by-step explanation:
QS=QR+RS
2x-11=7+x-6
x=12
A. Explain why the point (100,2) is on the graph.
B. What is the x-intercept of the graph? Explain how you know.
49
C. When will the graph meet the line y = 5? Explain how you know.
Answer:
the log function is the "inverse" function of an exponential function
by definition [tex]log_{a} b = c[/tex] then [tex]a^{c} = b[/tex]
in this problem you have [tex]log_{10} 100[/tex]
thus what x solves this ? [tex]10^{x} = 100[/tex] the answer is [tex]10^{2}[/tex]
thus (100,2)
B) the x intercept is when y = 0
[tex]10^{0} = 1[/tex]
x intercept at (1,0)
C) at 100, the curve will hit y = 5000
Step-by-step explanation:
Which of the following statements best describes the relationship between
any point on an ellipse and each of its two foci?
A. The quotient of the distances to each focus equals a certain
constant.
B. The difference of the distances to each focus equals a certain
constant.
C. The sum of the distances to each focus equals a certain constant.
D. The product of the distances to each focus equals a certain
constant.
Answer:
C
Step-by-step explanation:
The sum of distances from any point on the ellipse to each foci equals a certain amount, no matter what point on the ellipse it starts from. The foci are on the major radius of the ellipse (the longer length of horizontal/vertical). The foci are of equal distance from the center, with one on each side.
If you wanted to find where the foci are using the major and minor radius, we can find that, representing the distance between the center and any foci as g,
g² = major radius² - minor radius². Then, the distance between the center and the foci is equal to g
find the missing length indicated
Answer:
192
Step-by-step explanation:
Apply the geometric mean formula to solve for x, which is the altitude of the right triangle.
The formula is:
h = √(mn)
h = x = ?
m = 144
n = 400 - 144 = 256
Substitute
h = √(256*144)
h = √36,864
h = 192
Therefore, x = 192
A cylindrical paint can has a diameter of 12 centimeters and height of centimetrs which is closest to the volume of the paint can in cubic centimeters
Answer:
The correct answer is "1808.64 cm³".
Step-by-step explanation:
Seems that the given query is incomplete. Below find the attachment of the complete problem.
Given:
Diameter,
d = 12 cm
Radius,
r = [tex]\frac{d}{2}[/tex]
= [tex]\frac{12}{2}[/tex]
= [tex]6 \ cm[/tex]
Height,
h = 16 cm
As we know,
The volume of cylinder is:
= [tex]\pi r^2 h[/tex]
By substituting the values, we get
= [tex]3.16\times (6)^2\times 16[/tex]
= [tex]3.14\times 36\times 16[/tex]
= [tex]1808.64 \ cm^3[/tex]
Which is the equation of a parabola with Vertex (0,0) and focus (0, 2)?
a. ya = 8x
c. x2 = 8
b. y2 = 4x
d. x2 = 4y
Answer:
So the equation of the parabola is x2=8y i don't really know
8.52 The heights of 2-year-old children are normally distributed with a mean of 32 inches and a standard deviation of 1.5 inches. Pediatricians regularly measure the heights of toddlers to determine whether there is a problem. There may be a problem when a child is in the top or bottom 5% of heights. Determine the heights of 2-year-old children that could be a problem.
Answer:
Heights of 29.5 and below could be a problem.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
The heights of 2-year-old children are normally distributed with a mean of 32 inches and a standard deviation of 1.5 inches.
This means that [tex]\mu = 32, \sigma = 1.5[/tex]
There may be a problem when a child is in the top or bottom 5% of heights. Determine the heights of 2-year-old children that could be a problem.
Heights at the 5th percentile and below. The 5th percentile is X when Z has a p-value of 0.05, so X when Z = -1.645. Thus
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]-1.645 = \frac{X - 32}{1.5}[/tex]
[tex]X - 32 = -1.645*1.5[/tex]
[tex]X = 29.5[/tex]
Heights of 29.5 and below could be a problem.
As above, let
$$f(x) = 3\cdot\frac{x^4+x^3+x^2+1}{x^2+x-2}.$$Give a polynomial $g(x)$ so that $f(x) + g(x)$ has a horizontal asymptote of $y=0$ as $x$ approaches positive infinity.
Answer:
Hello,
Step-by-step explanation:
[tex]\dfrac{f(x)}{3} =\dfrac{x^4+x^3+x^2+1}{(x-1)(x+2)} \\\\=\dfrac{(x^2+3)(x-1)(x+2)-3x+7}{(x-1)(x+2)} \\=x^2+3-\dfrac{3x-7}{(x-1)(x+2)} \\\\=x^2+3-\dfrac{3}{x-1} +\dfrac{1}{(x-1)(x-2)} \\\\\dfrac{f(x)}{3}-\dfrac{3x^2+9}{3} =-\dfrac{3}{x-1} +\dfrac{1}{(x-1)(x-2)} \\\\\\ \lim_{x \to +\infty} (\dfrac{f(x)}{3}-\dfrac{3x^2+9}{3} )\\\\=0+0=0\\\\\\P(x)=-x^2-3[/tex]
Answer:
[tex]g(x)=-3x^2-9[/tex]
Explanation:
[tex]3\frac{x^4+x^3+x^2+1}{x^2+x-2}[/tex]
+[tex]\frac{p(x)(x^2+x-2)}{x^2+x-2}[/tex]
We need p(x) need to be a degree 2 polynomial so the numerator of the second fraction is degree 4. Our goal is to cancel the terms of the first fraction's numerator that are of degree 2 or higher.
So let p(x)=ax^2+bx+c.
[tex]3\frac{x^4+x^3+x^2+1}{x^2+x-2}[/tex]
+[tex]\frac{p(x)(x^2+x-2)}{x^2+x-2}[/tex]
Plug in our p:
[tex]3\frac{x^4+x^3+x^2+1}{x^2+x-2}[/tex]
+[tex]\frac{(ax^2+bx+c)(x^2+x-2)}{x^2+x-2}[/tex]
Take a break to multiply the factors of our second fraction's numerator.
Multiply:
[tex](ax^2+bx+c)(x^2+x-2)[/tex]
=[tex]ax^4+ax^3-2ax^2[/tex]
+[tex]bx^3+bx^2-2bx[/tex]
+[tex]cx^2+cx-2c[/tex]
=[tex]ax^4+(a+b)x^3+(-2a+b+c)x^2+(-2b+c)-2c[/tex]
Let's go back to the problem:
[tex]3\frac{x^4+x^3+x^2+1}{x^2+x-2}[/tex]
+[tex]\frac{ax^4+(a+b)x^3+(-2a+b+c)x^2+(-2b+c)x-2c}{x^2+x-2}[/tex]
Let's distribute that 3:
[tex]\frac{3x^4+3x^3+2x^2+3}{x^2+x-2}[/tex]
+[tex]\frac{ax^4+(a+b)x^3+(-2a+b+c)x^2+(-2b+c)x-2c}{x^2+x-2}[/tex
So this forces [tex]a=-3[/tex].
Next we have [tex]a+b=-3[/tex]. Based on previous statement this forces [tex]b=0[/tex].
Next we have [tex]-2a+b+c=-3[/tex]. With [tex]b=0[/tex] and [tex]a=-3[/tex], this gives [tex]6+0+c=-3[/tex].
So [tex]c=-9[tex].
Next we have the x term which we don't care about zeroing out, but we have [tex]-2b+c[/tex] which equals [tex]-2(0)+-9=-9[/tex].
Lastly, [tex]-2c=-2(-9)=18[/tex].
This makes [tex]p(x)=-3x^2-9[/tex].
This implies [tex]g(x)\frac{(-3x^2-9)(x^2+x-2)}{x^2+x-2}[/tex] or simplified [tex]g(x)=-3x^2-9[/tex]
(x+4)^2 - (x-6)^2 - (x-1)*(x+1)
Answer:
-9
Step-by-step explanation:
four less than the product of a number and 7 is eight more than that number
Answer:
2
Step-by-step explanation:
Replace the number with x, then the equation would be:
7x-4=x+8
7x-x=8+4
6x=12
6x/6=12/6
x=2
If the lengths of the legs of a right triangle are 4 and 8, what is the length of the hypotenuse?
PLEASE HELP
Answer:
[tex]4\sqrt{5}[/tex]
Step-by-step explanation:
In order to solve this problem, we can use the pythagorean theorem, which is
a^2 + b^2 = c^2, where and b are the legs of a right triangle and c is the hypotenuse. Since we are given the leg lengths, we can substitute them in. So, where a is we can put in a 4 and where b is we can put in an 8:
a^2 + b^2 = c^2
(4)^2 + (8)^2 = c^2
Now, we can simplify and solve for c:
16 + 64 = c^2
80 = c^2
c = [tex]\sqrt{80}[/tex]
Our answer is not in simplified radical form because the number under is divisible by a perfect square, 16. We can divide the inside, 80, by 16, and add a 4 on the outside, as it is the square root of 16:
c = [tex]4\sqrt{5}[/tex]
The length of the hypotenuse in the given right triangle, with legs measuring 4 and 8, is approximately 8.94.
To find the length of the hypotenuse in a right triangle, we can use the Pythagorean theorem. According to the theorem, in a right triangle, the square of the hypotenuse's length is equal to the sum of the squares of the lengths of the other two sides.
In this case, let's label the lengths of the legs as 'a' and 'b', with 'a' being 4 and 'b' being 8. The hypotenuse, which we need to find, can be represented as 'c'.
Applying the Pythagorean theorem, we have:
[tex]a^2 + b^2 = c^2[/tex]
Substituting the given values:
[tex]4^2 + 8^2 = c^2[/tex]
16 + 64 = [tex]c^2[/tex]
80 = [tex]c^2[/tex]
To find the length of the hypotenuse 'c', we need to take the square root of both sides:
√80 = √ [tex]c^2[/tex]
√80 = c
The square root of 80 is approximately 8.94.
Therefore, the length of the hypotenuse in the given right triangle, with legs measuring 4 and 8, is approximately 8.94.
To know more about hypotenuse , here
https://brainly.com/question/2217700
#SPJ2
state the following true or false
Answer:
c. false (it should always be neg.)
d. false
Step-by-step explanation:
Answer:
(c) True, (d) False
Step-by-step explanation:
3a
[tex] \frac{3a + a {}^{2} }{a} [/tex]
Simplify.
Answer:
(3+a)
Step-by-step explanation:
3a + a^2
-------------
a
Factor out an a in the numerator
a(3+a)
-------------
a
Cancel like terms
(3+a)
Step-by-step explanation:
[tex] \frac{3a + {a}^{2} }{a} \\ = \frac{3a}{a} + \frac{ {a}^{2} }{a} \\ = 3 + a \\ thank \: you[/tex]
write down amultiple of 4 and 14 which is less than 30
28
How?
Multiples of 4=8,12,16,20,24,28Multiples of 14=28,42We can see that 28 is the lowest common multiple also it is <30
Answer: 28.
Step-by-step explanation: 28 is divisible by 4: 28 / 4 = 7. 28 is divisible by 14: 28 / 14 = 2. And 28 is less than 30
please help:
give an example of an undefined term and how it relates to a circle.
(x^2+1)(x-1)=0 help me pls
Answer:
x = ±i , x=1
Step-by-step explanation:
(x^2+1)(x-1)=0
Using the zero product property
x^2 +1 = 0 x-1= 0
x^2 = -1 x=1
Taking the square root of the equation on the left
sqrt(x^2) = sqrt(-1)
x = ±i where i is the imaginary number
We still have x=1 from the equation on the right
Find the number in which 9 has greater value.
0.5689
5.6890
56.89
569.80
Answer:
569.80Step-by-step explanation:
Among all the choices, the digit 9 has the greatest value in number 569.80. For the reason that 9 got ones value - which are greatest than other.[tex]\tt{ \green{P} \orange{s} \red{y} \blue{x} \pink{c} \purple{h} \green{i} e}[/tex]
amusement park is 1.50$ for children and $4 for adults. on certain day 220 people entered the park, and the admission fee collected totalled 630.00. how many children and how many adults were admitted? write and use an equation to solve
230.000 childrenㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
Answer:
230 children
Step-by-step explanation:
Find the nth term of the arithmetic
sequence - 1,2,5, ....
A. 3n - 2
B. -2n + 1
C. 2n + 2
D. 3n - 4
Answer:
3n -4
Step-by-step explanation:
We are adding 3 each time
-1+3 =2
2+3 = 5
The formula for an arithmetic sequence is
an = a1+d(n-1) where a1 is the first term and d is the common difference
an = -1+3(n-1)
= -1 +3n -3
= 3n -4