Two plastic bowling balls, 1 and 2, are rubbed with cloth until they each carry a uniformly distributed charge of magnitude 0.50 nC . Ball 1 is negatively charged, and ball 2 is positively charged. The balls are held apart by a 900-mm stick stuck through the holes so that it runs from the center of one ball to the center of the other.
Required:
What is the magnitude of the dipole moment of the arrangement?
Answer:
The right solution is "[tex]4.5\times 10^{-10} \ Cm[/tex]".
Explanation:
Given that,
q = 0.50 nC
d = 900 mm
As we know,
⇒ [tex]P=qd[/tex]
By putting the values, we get
⇒ [tex]=0.50\times 900[/tex]
⇒ [tex]=(0.50\times 10^{-9})\times 0.9[/tex]
⇒ [tex]=4.5\times 10^{-10} \ Cm[/tex]
Answer:
The dipole moment is 4.5 x 10^-10 Cm.
Explanation:
Charge on each ball, q = 0.5 nC
Length, L = 900 mm = 0.9 m
The dipole moment is defined as the product of either charge and the distance between them.
It is a vector quantity and the direction is from negative charge to the positive charge.
The dipole moment is
[tex]p = q L\\\\p = 0.5 \times 10^{-9}\times 0.9\\\\p = 4.5\times 10^{-10} Cm[/tex]
Strategies for good health management involve:
A Avoiding stressful situations that may cause depression or moodiness insomnia, or lack motivation.
B) Denying, ignoring, or repressing feelings or problems, so that you don't have to face them.
Eating your favorite foods, imagining yourself working out (mind is power), sleeping a few hours a day, so as to make
the most of party time.
D Eating healthy, maintaining and ideal weight, resting, exercising, and establishing healthy relationships.
Answer:
D
Explanation:
This is a great way to manage health.
A would be avoiding everything which isnt good.
B. would be emotionally draining and damaging to bottle feelings and ignore them.
C. is unhealthy to not exercise and eat food while doing nothing.
Solids diffuse because the particles cannot move.
A. Can
B. Not enough info
C. Cannot
D. Sometimes will
Solids cannot diffuse.
An automobile engine has an efficiency of 22.0% and produces 2510 J of work. How much heat is rejected by the engine
Answer:
If efficiency is .22 then W = .22 * Q where Q is the heat input
Heat Input Q = 2510 / .22 = 11,400 J
Heat rejected = 11.400 - 2510 = 8900 J of heat wasted
Also, 8900 J / (4.19 J / cal) = 2120 cal
An efficiency is the measure of productivity of an engine. The heat rejected by the engine is 8900 Joules.
What is efficiency?An efficiency of a heat engine is the ratio of the work done and heat supplied.
Given is the automobile engine has the efficiency 22% and Work done is 2510 Joules.
The efficiency is written as,
η= W / Qs.
The work done is W= Qs - Qr, where Qr is the rejected heat.
The heat rejected can be represented as
Qr = W ( 1/η -1)
Substituting the value into the equation, we get the rejected heat.
Qr = 2510 (1/0.22 -1)
Qr = 8900 Joules.
Thus, the heat rejected by the engine is 8900 Joules.
Learn more about efficiency.
#SPJ2
George Frederick Charles Searle
Answer:
George Frederick Charles Searle FRS was a British physicist and teacher. He also raced competitively as a cyclist while at the University of Cambridge. WikipediaExplanation:
GIVE BRAINLISTA person with a near point of 85 cm, but excellent distant vision, normally wears corrective glasses. But he loses them while traveling. Fortunately, he has his old pair as a spare.
(a) If the lenses of the old pair have a power of +2.25 diopters, what is his near point (measured from his eye) when he is wearing the old glasses if they rest 2.0 cm in front of his eye?
(b) What would his near point be if his old glasses were contact lenses instead?
Answer:
a) p = 95.66 cm, b) p = 93.13 cm
Explanation:
For this problem we use the constructor equation
[tex]\frac{1}{f} = \frac{1}{p} + \frac{1}{q}[/tex]
where f is the focal length, p and q are the distances to the object and the image, respectively
the power of the lens is
P = 1 / f
f = 1 / P
f = 1 / 2.25
f = 0.4444 m
the distance to the object is
[tex]\frac{1}{p} = \frac{1}{f} -\frac{1}{q}[/tex]
the distance to the image is
q = 85 -2
q = 83 cm
we must have all the magnitudes in the same units
f = 0.4444 m = 44.44 cm
we calculate
[tex]\frac{1}{p} = \frac{1}{44.44} - \frac{1}{83}[/tex]
1 / p = 0.010454
p = 95.66 cm
b) if they were contact lenses
q = 85 cm
[tex]\frac{1}{p} = \frac{1}{44.44} - \frac{1}{85}[/tex]
1 / p = 0.107375
p = 93.13 cm
Diffuse reflection occurs when parallel light waves strike which surface? a mirror a rippling fountain a polished silver plate a still pond
Answer: a rippling fountain
Explanation: diffuse reflection happens on rough surfaces, so using the process of elimination, that leaves us with b, a rippling fountain (I also just took this test I'm pretty sure I'm right)
A body initially at rest travels a distance 100 m in 5 s with a constant acceleration. calculate
(i) Acceleration
(ii) Final velocity at the end of 5 s.
Answer:
(i)8m/s²(ii)40m/s
Explanation:
according to the formula
½at²=s.
then substituting the data
½a•5²=100
a=8m/s²
v=at=8•5=40m/s
Answer:
(I)
[tex]{ \bf{s = ut + \frac{1}{2} a {t}^{2} }} \\ 100 = (0 \times 5) + \frac{1}{2} \times a \times {5}^{2} \\ 200 = 25a \\ { \tt{acceleration = 8 \: m {s}^{ -2} }}[/tex]
(ii)
[tex]{ \bf{v = u + at}} \\ v = 0 + (8 \times 5) \\ { \tt{final \: velocity = 40 \: m {s}^{ - 1} }}[/tex]
A proton is held at rest in a uniform electric field. When it is released, the proton will gain:_________
a) electrical potential energy.
b) kinetic energy.
c) both kinetic energy and electric potential energy.
d) either kinetic energy or electric potential energy.
An object is 2.0 cm from a double convex lens with a focal length of 1.5 cm. Calculate the image distance
Answer:
0.857 cm
Explanation:
We are given that:
The focal length for a convex lens to be (f) = 1.5cm
The object distance (u) = - 2.0 cm
We are to determine the image distance (v) = ??? cm
By applying the lens formula:
[tex]\dfrac{1}{f} = \dfrac{1}{u}+\dfrac{1}{v}[/tex]
By rearrangement and making (v) the subject of the above formula:
[tex]v = \dfrac{uf}{u-f}[/tex]
replacing the given values:
[tex]v = \dfrac{(-2.0)(1.5)}{(-2.0 -1.5)}[/tex]
[tex]v = \dfrac{-3.0}{(-3.5)}[/tex]
v = 0.857 cm
A mass attached to the end of a spring is oscillating with a period of 2.25 s on a horizontal frictionless surface. The mass was released from rest at
t = 0
from the position
x = 0.0480 m.
Determine the location of the mass at
t = 5.85 s?
Answer:
[tex]X=0.0389m[/tex]
Explanation:
From the question we are told that:
Period of spring [tex]T_s=2.25s[/tex]
Initial Position of Mass [tex]x=0.0480m[/tex]
Final Mass period [tex]T_f=5.85s[/tex]
Generally the equation for the Mass location is mathematically given by
[tex]X=xcos*\frac{2\pi T_s}{T_f}[/tex]
[tex]X=0.048*cos*\frac{2\pi 5.85}{2.25}[/tex]
[tex]X=0.0389m[/tex]
An electric eel can generate a 180-V, 0.1-A shock for stunning its prey. What is the eel's power output
Power output = volts x amps
Power output = 170 volts x 0.1 amps
Power output = 18 watts
A ball drops from a height, bounces three times, and then rolls to a stop when it reaches the ground the fourth time.
At what point is its potential energy greatest?
At what points does it have zero kinetic energy?
At what point did it have maximum kinetic energy?
Answer:
Greatest potential: moment before being dropped
Zero Kinetic: when it comes to rest
Greatest Kinetic: moment before first bounce
Explanation:
In a television set the power needed to operate the picture tube comes from the secondary of a transformer. The primary of the transformer is connected to a 120-V receptacle on a wall. The picture tube of the television set uses 76 W, and there is 5.5 mA of current in the secondary coil of the transformer to which the tube is connected. Find the turns ratio Ns/Np of the transformer.
Ns/Np = ______.
Answer:
c) N_s / N_p = 115.15
Explanation:
Let's look for the voltage in the secondary, they do not indicate the power dissipated
P = V_s i
V_s = P / i
V_s = 76 / 5.5 10⁻³
V_s = 13.818 10³ V
the relationship between the primary and secondary of a transformer is
[tex]\frac{V_p}{N_p} = \frac{V_s}{N_s}[/tex]
[tex]\frac{N_s}{N_p} = \frac{V_s}{V_p}[/tex]
Ns / Np = 13,818 10³ /120
N_s / N_p = 115.15
Give an example of a substance with an amorphous structure.
Answer:
Tempered glass
Explanation:
When warmed, an amorphous substance has a non-crystalline architecture that differentiates from its isochemical liquid, but this does not go through structural breakdown or the glass transition.
Explain why the flow from the battery increases when the switch is closed. Give the label of the concept(s) that you use from the model of electricity. [
Answer:
Due to the applied filed the electrons move in a particular direction.
Explanation:
Initially when the switch is off, the free electrons move here and there in any random directions in the conductor with the random speeds called thermal velocity. So, tat the net flow is almost zero.
When the battery is connected is switch is ON, the random motion of the electrons aligned in a particular direction due to the force applied by the electric filed, so the net flow is not zero it increases and thus the current flow.
Oxygen is obtained through various methods. Which of the following methods involves a chemical
change?
1. Electrolysis of water
2. Distillation of liquid air
3. Heating of KCIO,
02
1 and 2
1 and 3
Answer:
1
Explanation:
Electrolysis is the passing of an current through a conducting solution, when the occurs, a chemical reaction takes place.
Heating a chemical will always cause a chemical reaction, which is why 3 is also correct
Some information as to why 2 is NOT correct.
2 is NOT a chemical reaction, but rather a process of physical separation. It uses selective boiling and condensation, but is not considered a chemical reaction.
as with 3, heating is not considered a chemical reaction, but rather a physical temperature change. This is always what it is considered to be (e.g boiling water is a physical temperature change, not a chemical reaction)
Hope this helps.
Hope this helps.
The total resistance of a parallel circuit is 25 ohms. If the total current is 100mA, how much current is through a 220 ohm resistor that makes up part of the parallel circuit?
Answer:
The current across the resistance is 0.011 A.
Explanation:
Total resistance, R = 25 ohms
Total current, I = 100 mA = 0.1 A
Let the voltage is V.
By the Ohm's law
V = I R
V = 0.1 x 25 = 2.5 V
Now the resistance is R' = 220 ohm
As they are in parallel so the voltage is same. Let the current is I'.
V = I' x R'
2.5 = I' x 220
I' = 0.011 A
In the following calculations, be sure to express the answer in standard scientific notation with the appropriate number of
significant figures.
3.88 x 1079 - 4.701 x 1059
x 10
g
Answer:
-45,597.07
Explanation:
if not in scientific calculator and yung answer nung sa scientific sa comment na lang dinadownload ko ka eh
A 1200 kg car traveling east at 4.5 m/s crashes into the side of a 2100 kg truck that is not moving. During the collision, the vehicles get stuck together. What is their velocity after the collision? A. 2.9 m/s east B. 1.6 m/s east m C. 2.6 m/s east D. 1.8 m/s east
Answer:
Explanation:
This is a simple Law of Momentum Conservation problem of the inelastic type. The equation for this is
[tex][m_1v_1+m_2v_2]_b=[(m_1+m_2)v]_a[/tex] Filling in:
[tex][1200(4.5)+2100(0)]=[(1200+2100)v][/tex] which simplifies to
5400 + 0 = 3300v
so v = 1.6 m/s to the east, choice B
1. What is the total distance the car moves until it stops?
a. 250 m
b. 450 m
c. 300 m
d. 600 m.
Determine the absolute pressure on the bottom of a swimming pool 27.0 m by 8.9 m whose uniform depth is 1.8 m . Express your answer using two significant figures.
Answer:
[tex]P=17658Pa[/tex]
Explanation:
From the question we are told that:
Dimension
[tex]L*B=27.0*8.9[/tex]
Depth [tex]d=1.8m[/tex]
Generally the equation for Volume of water is mathematically given by
[tex]V=L*B*D[/tex]
[tex]V=27.0*8.9*1.8[/tex]
[tex]V=432.54m^3[/tex]
Therefore
Force at the bottom of the Pool
[tex]F=\rho Vg[/tex]
Where
[tex]\rho \ density\ of \ water(1000kg/m^3)[/tex]
[tex]F=1000*432.54m^3*9.81[/tex]
[tex]F=4.2*10^{6}N[/tex]
Generally the equation for Pressure at the bottom is mathematically given by
[tex]P=\frac{Forece }{Area}[/tex]
[tex]P=\frac{4.2*10^{6}N}{27.0*8.9}[/tex]
[tex]P=17658Pa[/tex]
How do the magnitudes of the currents through the full circuits compare for Parts I-III of this exercise, in which resistors are combined in series, in parallel, and in combination
Answer: hello tables and data related to your question is missing attached below are the missing data
answer:
a) I = I₁ = I₂ = I₃ = 0.484 mA
b) I₁ = 0.016 amps
I₂ = 0.0016 amps
I₃ = 7.27 * 10^-4 amps
c) I₁ = 1.43 * 10^-3 amp
I₂ = 0.65 * 10^-3 amps
Explanation:
A) magnitude of current for Part 1
Resistors are connected in series
Req = r1 + r2 + r3
= 3300 Ω ( value gotten from table 1 ) ,
V = 1.6 V ( value gotten from table )
hence I ( current ) = V / Req = 1.6 / 3300 = 0.484 mA
The magnitude of current is the same in the circuit
Vi = I * Ri
B) magnitude of current for part 2
Resistors are connected in parallel
V = 1.6 volts
Req = [ ( R1 * R2 / R1 + R2 ) * R3 / ( R1 * R2 / R1 + R2 ) + R3 ]
= [ ( 100 * 1000 / 100 + 1000) * 2200 / ( 100 * 1000 / 100 + 1000 ) + 2200]
= 87.30 Ω
For a parallel circuit the current flow through each resistor is different
hence the magnitude of the currents are
I₁ = V / R1 = 1.6 / 100 = 0.016 amps
I₂ = V / R2 = 1.6 / 1000 = 0.0016 amps
I₃ = V / R3 = 1.6 / 2200 = 7.27 * 10^-4 amps
C) magnitude of current for part 3
Resistors are connected in combination
V = 1.6 volts
Req = R1 + ( R2 * R3 / R2 + R3 )
= 766.66 Ω
Total current ( I ) = V / Req = 1.6 / 766.66 = 2.08 * 10^-3 amps
magnitude of currents
I₁ = ( I * R3 ) / ( R2 + R3 ) = 1.43 * 10^-3 amps
I₂ = ( I * R2 ) / ( R2 + R3 ) = 0.65 * 10^-3 amps
If Katie swims from one end of the pool, to the other side, and then swims back to her original spot, her average velocity is half of her average speed when she swam to the other side.a) trueb) false
Answer:
false.
Explanation:
Ok, we define average velocity as the sum of the initial and final velocity divided by two.
Remember that the velocity is a vector, so it has a direction.
Then when she goes from the 1st end to the other, the velocity is positive
When she goes back, the velocity is negative
if both cases the magnitude of the velocity, the speed, is the same, then the average velocity is:
AV = (V + (-V))/2 = 0
While the average speed is the quotient between the total distance traveled (twice the length of the pool) and the time it took to travel it.
So we already can see that the average velocity will not be equal to half of the average speed.
The statement is false
Stars have different colors. What causes stars to have colors?
A. location
B. temperature
C. oxygen
D. carbon dioxide
Answer:
temperature
Explanation:
temperature change forms different elements and different element sustain different colour
A gymnast falls from a height onto a trampoline. For a moment, both the gymnast’s kinetic energy and gravitational potential energy are zero. How is the gymnast’s mechanical energy stored for that moment? Question 12 options: rest energy chemical energy elastic energy thermal energy
Answer:
elastic energy
Explanation:
When a gymnast falls on a trampoline from a height, after coming in contact with the trampoline, both the gymnast and the trampoline start to move down due to the elastic property of the trampoline.
During this stretching of the trampoline there comes a maximum point up to which the trampoline is stretched. At this point, both the kinetic energy and the gravitational potential energy of the gymnast are zero due to zero speed and zero height, respectively.
The only energy stored in the gymnast's body at this point is the elastic potential energy due to stretching of the trampoline. Hence,the correct option is:
elastic energy
A tennis player receives a shot with the ball (0.0600 kg) traveling horizontally at 59.4 m/s and returns the shot with the ball traveling horizontally at 37.2 m/s in the opposite direction. (Take the direction of the ball's final velocity (toward the net) to be the +x-direction).
(a) What is the impulse delivered to the ball by the racket?
(b) What work does the racket do on the ball?
5 9 . 4
- 3 7 . 2
2 2 . 2
Explanation:
Use the algorithm method.
5 9 . 4
- 3 7 . 2
2 2 . 2
2 Therefore, 59.4-37.2=22.259.4−37.2=22.2.
22.2
22.2
A wheel has a diameter of 10m and weight 360N what minimum horizontal force is necessary to pull the wheel over a brick 0.1m when a force is applied at the wheel
PLEASE HELP ME WITH THIS ONE QUESTION
What is the rest energy of a proton? (c = 2.9979 x 10^9 m/s, mp = 1.6726 x 10^-27)
[tex]E_0=1.5033×10^{-10}\:\text{J}[/tex]
Explanation:
The rest energy [tex]E_0[/tex] of a proton of mass [tex]m_p[/tex] is given by
[tex]E_0 = m_pc^2[/tex]
[tex]\:\:\:\:\:\:\:=(1.6726×10^{-27}\:\text{kg})(2.9979×10^8\:\text{m/s})^2[/tex]
[tex]\:\:\:\:\:\:\:=1.5033×10^{-10}\:\text{J}[/tex]
Cold air rises because it is denser than water, is this true?
Answer:
true
Explanation:
im not sure please dont attack me