Answer:
ZnO(s) + 2HCl(aq) ------> ZnCl2(aq) + H2O(l)
Na2O(s) + 2HCl(aq) -----> 2NaCl(aq) + H2O(l)
Rb2O(s) + 2HCl(aq) -----> 2RbCl(aq) + H2O(l)
NiO(s) + 2HCl(aq) --------> NiCl2(aq) + H2O(l)
MgO(s) + 2HI(aq) -----> MgI2(aq) + H2O(l)
Na2O(s) + 2HI(aq) -----> 2NaI(aq) + H2O(l)
CaO(s) + 2HI(aq) ----> CaI2(aq) + H2O(l)
Explanation:
Let us recall that the oxides of metals are basic in nature. These basic metal oxides can react with acids to form salt and water only.
In the reactions above, HCl and HI were reacted with different metal oxides and the corresponding salts of each metal and water was formed as shown.
How do I balance this equation? ?KClO3 → ?KCl + ?O2(g) and what type of reaction is it?
Explanation:
the reaction is a decomposition reaction since potassium hypochlorite is decomposed into potassium chloride and oxygen
How much energy is released when 31.0 g of water freezes? The heat of fusion for water is 6.02 kJ/mol.
Express your answer in kilojoules to three significant figures.
Answer:
The molar heat of fusion for a given substance basically tells you how much heat is required to melt one mole of that substance at its melting point from two angles.
Explanation:
:)
Acetylene gas is often used in welding torches because of the very high heat produced when it reacts with oxygen gas, producing carbon dioxide gas and water vapor. Calculate the moles of water produced by the reaction of of acetylene. Be sure your answer has a unit symbol, if necessary, and round it to significant digits.
Answer:
0.60 mol
Explanation:
The equation is as stated below;
2 C2H2 + 5 O2----> 4 CO2 +2 H2O
5 mole amount of Oxygen produces 2 mole of water. Then upon reaction of 1.5mol of O2.
thus, number of mole = (1.5*2)/5 =0.60mol
Write the net ionic equation for the reaction that occurs when equal volumes of 0.546 M aqueous acetylsalicylic acid (aspirin) and sodium acetate are mixed. It is not necessary to include states such as (aq) or (s).
Answer:
[tex]C_9H_8O_4+C_2H_3O_2^-\rightarrow C_2H_4O_2+C_9H_7O_4^-[/tex]
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to figure out the required net ionic equation by firstly writing out the complete molecular equation between aspirin and sodium acetate:
[tex]C_9H_8O_4+NaC_2H_3O_2\rightarrow C_2H_4O_2+NaC_9H_7O_4[/tex]
Whereas acetic acid and sodium acetylsalicylate are formed. Now, we write the complete ionic equation whereby sodium acetate and sodium acetylsalicylate are ionized because they are salts yet neither aspirin nor acetic acid are ionized as they are weak acids:
[tex]C_9H_8O_4+Na^++C_2H_3O_2^-\rightarrow C_2H_4O_2+Na^++C_9H_7O_4^-[/tex]
Finally, for the net ionic equation we cancel out the sodium spectator ions to obtain:
[tex]C_9H_8O_4+C_2H_3O_2^-\rightarrow C_2H_4O_2+C_9H_7O_4^-[/tex]
Regards!
What is the pH of a 0.85 M solution of N(CH3)3?
Note: Kb = 6.4 x 10^-5 for N(CH3)3
Include a reaction and a Ka or Kb expression
Propane is a major component of natural gas used as fuel in homes. Write a balanced equation for the complete oxidation reaction that occurs when propane () burns in air.
Answer:
C₃H₈(g) + 5 O₂(g) → 3 CO₂(g) + 4 H₂O(g)
Explanation:
The chemical formula of propane is C₃H₈. When it burns in air, it reacts with gaseous oxygen (O₂), so carbon dioxide (CO₂) and water (H₂O) are formed. The combustion reaction is the following:
C₃H₈(g) + O₂(g) → CO₂(g) + H₂O(g)
Finally, we have to balance the equation. For this, we write a coefficient 3 in CO₂, then a coefficient 4 in H₂O, and a coefficient 5 in O₂. We obtain the balanced equation:
C₃H₈(g) + 5 O₂(g) → 3 CO₂(g) + 4 H₂O(g)
What type of energy does a skier stopped at the top of a hill have because of
his or her position?
A. Kinetic energy
B. Gravitational potential energy
C. Heat energy
D. Chemical energy
Answer:
B
Explanation:
If 13.50 mL of an aluminum chloride solution is needed to reach the equivalence point with 10.00 mL of 0.109 M silver nitrate solution, determine the molarity of the aluminum chloride solution.
Answer:
If 13.50 mL of an aluminum chloride solution is needed to reach the equivalence point with 10.00 mL of 0.109 M silver nitrate solution, determine the molarity of the aluminum chloride solution.
Explanation:
The balanced chemical equation of the reaction is:
[tex]AlCl_3(aq)+3AgNO_3(aq)->3AgCl(s)+Al(NO_3)_3(aq)[/tex]
So, one mole of aluminum chloride reacts with three moles of silver nitrate.
At the equivalence point,
the number of moles of each reactant must be equal.
The number of moles = molarity x volume in L.
Number of moles of AlCl3 = volume x molarity
=0.0135Lx Molarity
The number of moles of AgNO3 = 3 x 0.010Lx 0.109M
Thus,
0.0135Lx Molarity = 3 x 0.010Lx 0.109M
Molarity of AlCl3 :
[tex]Molarity of Alcl_3=3 x 0.010Lx 0.109M/0.0135\\=0.242M[/tex]
Answer is : 0.242M.
Please help
Explain why a molecule that has polar bonds can be a polar molecule.
Answer:
Explanation:
Well, obviously a molecule with polar bonds can be polar in itself. It's like saying I am an atheltic person who can just reach the basketball rim with my head and also I can dunk.
But if the question is how can a molecule that in non-polar have polar bonds, well, its because the polar bonds' dipole cancels each other out. It's like a tight rope. If a person pulls in one direction, it intuitively, the rope would go in that direction. However, if a person pulls in the other direction with the same amount of force, the rope stays still. This is the same case. Although molecules can have different electronegativities, the pull of electrons in one direction is cancelled out by a pull in the opposite direction, making the net dipole 0.
This is common for main VSERP shaped molecules like linear, trigonal planar, tetrahedral, trigonal bipyramidal, and octahedral.
What is the molality of a glucose solution prepared by dissolving 16.7 g of glucose, C6H12O6, in 133.6 g of water
Answer:
0.696 m
Explanation:
We'll begin by calculating the number of mole in 16.7 g of C₆H₁₂O₆. This can be obtained as follow:
Mass of C₆H₁₂O₆ = 16.7 g
Molar mass of C₆H₁₂O₆ = (6×12) + (12×1) + (6×16)
= 72 + 12 + 96
= 180 g/mol
Mole of C₆H₁₂O₆ =?
Mole = mass / molar mass
Mole of C₆H₁₂O₆ = 16.7 / 180
Mole of C₆H₁₂O₆ = 0.093 mole
Next, we shall convert 133.6 g of water to Kg. This can be obtained as follow:
1000 g = 1 Kg
Therefore,
133.6 g = 133.6 g × 1 Kg / 1000 g
133.6 g = 0.1336 Kg
Thus, 133.6 g is equivalent to 0.1336 Kg.
Finally, we shall determine the molality of the solution. This can be obtained as illustrated below:
Mole of C₆H₁₂O₆ = 0.093 mole
Mass of water = 0.1336 Kg
Molality =?
Molality = mole / mass of water (in Kg)
Molality = 0.093 / 0.1336
Molality = 0.696 m
Therefore, the molality of the solution is 0.696 m
Identify each of the following properties as more typical of organic or inorganic compound
a. contains Li and F
b. is a gas at room temperature
c. contains covalent bonds
d. produces ion in water
this is the difference between organic and inorganic if this doesn't help you can research more on it
Gold’s natural state has a definite shape and a definite volume. What is gold’s natural state
If Gold's natural state has a definite shape and a definite volume, then its natural state is solid.
Rank the following series of molecules or ions in order of decreasing bond energy using their bond order to predict relative magnitude: chlorine: Cl2, sulfur: S2, phosphorus: P2.
Answer:
P2>S2>Cl2 is the order of bond energy of the given molecules.
Explanation:
The bonding in each molecule is shown below:
Thus, between each P-atom, there exists a triple bond.
Between two S-atoms there exists a double bond.
Between two chlorine atoms, there exists a single bond.
As the number of bonds increases between the given atoms, then bond energy required to break the bonds also increases.
Thus, the bond order is shown below:
[tex]P_2>S_2>Cl_2[/tex].
A dehydration reaction starting with 3.0 g cyclohexanol produces 1.9 g cyclohexene. Calculate the theoretical yield for this reaction. Report your answer with two significant figures.
Answer:
77%
Explanation:
First we convert 3.0 g of cyclohexanol (C₆H₁₂O) to moles, using its molar mass:
Molar mass of C₆H₁₂O = 100.158 g/mol3.0 g ÷ 100.158 g/mol = 0.030 molThen we convert 1.9 g of cyclohexene (C₆H₁₀) to moles, using its molar mass:
Molar mass of C₆H₁₀ = 82.143 g/mol1.9 g ÷ 82.143 g/mol = 0.023 molFinally we calculate the theoretical yield:
0.023 mol / 0.030 mol * 100% = 77%What is the volume of 1.5 moles of gas at STP ?
0 9.02 L
0 20.0 L
0 33.6 L
0 22.4L
The volume of 1.5 moles of gas at STP is 33.6 L.
Volume of the gas at STPThe volume of the gas at STP is calculated as follows;
I mole of gas at STP = 22.4 L
1.5 moles of the gas at STP = ?
= 1.5 moles x 22.4 L/mole
= 33.6 L
Thus, the volume of 1.5 moles of gas at STP is 33.6 L.
Learn more about volume of gas here: https://brainly.com/question/27100414
#SPJ1
Question 47
4 pts
Dimensional analysis & conversions. If you need scientific notation in you answer, copy this for the
exponential part: "x10^". An example would be 6.022x10^23 for Avogadro's number.
Your answers need to have the correct number of significant figures.
How many grams of hydrogen are in 10.45 moles of C&Hg? (The molar mass is not
needed for this problem.)
Answer:
84.27 g
Explanation:
How many grams of hydrogen are in 10.45 moles of C₃H₈?
Step 1: Calculate the moles of atoms of hydrogen
The molar ratio of C₃H₈ to H is 1:8.
10.45 mol C₃H₈ × 8 mol H/ 1mol C₃H₈ = 83.60 mol H
Step 2: Calculate the mass corresponding to 83.60 moles of hydrogen
The molar mass of hydrogen is 1.008 g/mol.
83.60 mol × 1.008 g/mol = 84.27 g
What is the mass of a piece of iron if its density is 1.98 g/mL and its volume is 2.45 mL?
0.80 g
4.858
1.248
5.998
2.71 g
Answer:
4.858 g
Explanation:
Start with the formula
density = [tex]\frac{mass}{volume}[/tex]
density = 1.98 g/mL
volume = 2.45 mL
mass = ??
rearrange the formula to solve for mass
(density) x (volume) = mass
Add in the substitutes and solve for mass
1.98 g/mL x 2.45 mL = 4.858 g
Balance the following skeleton reaction and identify the oxidizing and reducing agents:
CrO42- (aq) + N2O(g)+ H+(aq) + OH-(aq) + H2O(l) ⟶ Cr3+(aq) + NO(g) + H+(aq) + OH-(aq) + H2O(l)
oxidizing agent is (enter just the formula of the species, e.g. CrO42-,N2O, Cr3+,NO, H2O, H+, OH-)
reducing agent is (enter just the formula of the species, e.g. CrO42-,N2O, Cr3+,NO, H2O, H+, OH-)
Answer:
The balanced net ionic equation is as follows:
CrO₄²- (aq) + 3 N₂O (g) + 2 H+ (aq) ----> Cr³+ (aq) + 6 NO (g) + H₂O (l)
The oxidizing agent is CrO₄²- as Cr⁶+ in CrO₄²- is reduced to Cr³+.
The reducing agent is N₂O as the nitrogen (i) is oxidized to nitrogen (ii).
Explanation:
The skeleton equation is given as follows:
CrO₄²- (aq) + N₂O(g)+ H+(aq) + OH-(aq) + H2O(l) ----> Cr³+(aq) + NO(g) + H+(aq) + OH-(aq) + H₂O(l)
The balanced net ionic equation with the spectator ions removed is as follows:
CrO₄²- (aq) + 3 N₂O (g) + 2 H+ (aq) ----> Cr³+ (aq) + 6 NO (g) + H₂O (l)
In a redox reaction, oxidizing agents are reduced while reducing agents are oxidized.
The oxidizing agent is CrO₄²- as Cr⁶+ in CrO₄²- is reduced to Cr³+.
One mole of CrO₄²- accepts three moles of electrons from three moles of N₂O to become reduced to 1 mole of Cr³+.
The reducing agent is N₂O as the nitrogen (i) is oxidized to nitrogen (ii).
Three moles of N₂O will each donate one mole of electrons to one mole of CrO₄²- to become oxidized to nitrogen (ii) oxide.
Hydrogen ions and a water molecule is added to the left-hand side and right-hand side of the equation respectively, in order to balance the number of oxygen atoms in the equation of the reaction.
What is the relationship (formula) and proportionality
between frequency, and wavelength?
Answer:
Frequency and wavelength are inversely proportional. c=f⋅λ (The speed of light is directly proportional to f and λ)
Melanie has completed the analysis of her data for the reaction of KMnO4 with malonic acid and data for a reaction of KMnO4 with tartaric acid. She compared the activation energies, Ea, she calculated for the two reactions and found the Ea for the malonic acid reaction to be greater than the Ea for the tartaric acid reaction.
Required:
What does this mean about the magnitude of the rate constant, k, and the rate of the reaction?
Answer:
See explanation
Explanation:
The relationship between the activation energy and rate of reaction is best captured by the Arrhenius equation;
k= Ae^-Ea/RT
Where;
k= rate constant
A= pre-exponential factor
Ea=activation energy
R= gas constant
T= temperature
We can see from the foregoing that, as the activation energy increases, the rate of reaction decreases and vice versa. reactions that have a very high activation energy are markedly slow.
Since the activation energy for the malonic acid reaction is found to be greater than the activation energy for the tartaric acid reaction, then the rate of the malonic acid reaction(k) will be slower than that of the tartaric acid reaction.
The study of chemistry and bonds is called chemistry. There are two types of elements metal and nonmetals.
The correct answer is mentioned below.
What is the Arrhenius equation?The relationship between the activation energy and rate of reaction is best captured by the Arrhenius equationThe equation is as follows:-
[tex]k= Ae^{-Ea/RT[/tex] Where;
k= rate constantA= pre-exponential factorEa=activation energyR= gas constantT= temperatureWe can see from the foregoing that, as the activation energy increases, the rate of reaction decreases and vice versa. reactions that have very high activation energy are markedly slow. Since the activation energy for the malonic acid reaction is found to be greater than the activation energy for the tartaric acid reaction, then the rate of the malonic acid reaction(k) will be slower than that of the tartaric acid reaction.
Hence, the correct answer is mentioned above.
For more information about the equation, refer to the link:-
https://brainly.com/question/1388366
Please help thank you
Answer:
[tex]K=1.7x10^{-3}[/tex]
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to solve this problem by firstly setting up the equilibrium expression for the given reaction, in agreement to the law of mass action:
[tex]K=\frac{[NO]^2}{[N_2][O_2]}[/tex]
Next, we plug in the given concentrations on the data table to obtain:
[tex]K=\frac{(0.034)^2}{(0.69)(0.98)}\\\\K=1.7x10^{-3}[/tex]
Regards!
Which statement bets describes the liquid state of matter
Answer:
It has no fixed shape and therefore takes the shape of the part of the container in which it is placed
Please help me order these bonds
Answer:
From least polar covalent to most polar covalent;
S-I< Br-Cl < N-H< Te-O
From most ionic to least ionic
Cs-F> Sr-Cl> Li- N> Al-O
Explanation:
Electro negativity is the ability of an atom in a bonding situation to attract the electron pair of a bond towards itself.
Electro negativity difference between two atoms determines the nature of bond existing between any two atoms. When this difference is large, an ionic bond exists in the compound. However, an intermediate difference in electro negativity implies the existence of a polar covalent bond.
Hence, going by electro negativity differences as mentioned in the question, the bonds in the answer were arranged in order of increasing polar covalent nature or decreasing ionic nature as shown.
Complete the table by assigning variable or fixed to the shape and volume of solids, liquids, and gases.
You are currently in a labeling module. Turn off browse mode or quick nav, Tab to items, Space or Enter to pick up, Tab to move, Space or Enter to drop.
Shape Volume
solids
liquids
gases
Answer Bank
Fixed or variable
The properties of solids, liquids and gases regarding their shapes and volumes are:
Shape Volume
Solids Fixed Fixed
Liquids Variable Fixed
Gases Variable Variable
Solids have strong attraction forces between their molecules. Thus, the molecules are closely packed with little movement. As a consequence, both shape and volume are fixed.
In liquids, attraction and repulsion forces are similar. They have a little more movement than the solid state. Then, they do have a fixed volume but they adopt the shape of the container.
Gases have very weak attraction forces between their molecules. They move very freely and expand trying to occupy as much volume as possible. So, they have a variable volume and shape (adopt the shape of the container).
You can learn more about states of matter here:
https://brainly.com/question/18538345
Compound X has a molar mass of 266.64 g/mol and the following composition: aluminum 20.24% chlorine 79.76% Write the molecular formula of X
Answer:
Explanation:
Assume we have 100g of this substance. That means we would have 20.24g of Cl and 79.76g of Al. Now we can find how many moles of each we have:
[tex]\frac{79.76 \:g}{35.45 \: g/mol}[/tex] = 2.25 mol of chlorine
[tex]\frac{20.24 \: g}{26.98 \: g/mol}[/tex] = 0.750 mol of Al.
To form a integer ratio, do 2.25/0.75 = 2.99999 ~= 3.
So the ratio is essentially Al : Cl => 1 : 3. To the compound is possibly [tex]AlCl_3[/tex].
However, it says it has a molar mass of 266.64 g/mol, and since AlCl3 has a molar mass of 133.32, it must be [tex]Al_2Cl_6[/tex].
Actually this molecule isn't exactly AlCl3 (which is ionic). Al2Cl6 forms a banana bond where Cl acts as a hapto-2 ligand. But that's a bit advanced. All you need to know is X = Al2Cl6
The molecular formula of the compound is Al₂Cl₆
To solve the question given above, we'll begin by obtaining the empirical formula of the compound. This can be obtained as follow:
Aluminum (Al) = 20.24%
Chlorine (Cl) = 79.76%
Empirical formula =?Al = 20.24%
Cl = 79.76%
Divide by their molar mass
Al = 20.24 / 27 = 0.75
Cl = 79.76 / 35.5 = 2.25
Divide by the smallest
Al = 0.75 / 0.75 = 1
Cl = 2.25 / 0.75 = 3
Thus, the empirical formula of the compound is AlCl₃
Finally, we shall determine the the molecular formula of the compound.
Molar mass of compound = 266.64 g/mol
Empirical formula = AlCl₃
Molecular formula =? Molecular formula = [AlCl₃]ₙ = molar mass of compound[AlCl₃]ₙ = 266.64
[27 + (3×35.5)]n = 266.64
[27 + 106.5]n = 266.64
133.5n = 266.64
Divide both side by 133.5
n = 266.64 / 133.5
n = 2Molecular formula = [AlCl₃]ₙ
Molecular formula = [AlCl₃]₂
Molecular formula = Al₂Cl₆Therefore, the molecular formula of the compound is Al₂Cl₆
Learn more: https://brainly.com/question/13309361
Anyone can help me out please?!
For consumption of each gram of reactant released=37.9 kJ/g
Therefore, for consumption of 4kg of reactant heat released=37.9x4 kJ/g
The numerical value of 0.001 is written with the prefix:
Answer:
Milli, m.
Explanation:
Hey there!
In this case, according to the given information, it turns out possible for us to answer to this question by bearing to mind the attached file whereas the most common prefixes and their factors are shown both in standard and scientific notation.
In such a way, we will be able to infer that the prefix related to the numerical value of 0.001 is milli, m, for example 1 mm which is 0.001 m.
Regards!
Jane performed the following trials in an experiment.
Trial 1: Heat 80.0 grams of water at 15.0 °C to a final temperature of 65.0 °C.
Trial 2: Heat 80.0 grams of water at 10.0 °C to a final temperature of 65.0 °C.
Which statement is true about the experiments?
The same amount of heat is absorbed in both the experiments because the mass is same.
The same amount of heat is absorbed in both the experiments because the final temperature is same.
The heat absorbed in Trial 2 is about 1,240 J greater than the heat absorbed in Trial 1.
The heat absorbed in Trial 2 is about 1,674 J greater than the heat absorbed in Trial 1.
Answer:
The heat absorbed in Trial 2 is about 1,240 J greater than the heat absorbed in Trial 1.
The heat absorbed in Trial 2 is about 1,674 J greater than the heat absorbed in Trial 1.
The amount of heat absorbed or released by a substance can be calculated using the formula Q = mcΔT, where Q represents heat, m is the mass, c is the specific heat capacity, and ΔT is the change in temperature.
In this case, the mass (m) is the same in both trials, but the initial and final temperatures (ΔT) differ. By comparing the values of ΔT in both trials, we can determine the difference in the amount of heat absorbed.
In Trial 1, the initial temperature is 15.0 °C and the final temperature is 65.0 °C, resulting in a ΔT of 65.0 - 15.0 = 50.0 °C.
In Trial 2, the initial temperature is 10.0 °C and the final temperature is 65.0 °C, resulting in a ΔT of 65.0 - 10.0 = 55.0 °C.
Since the specific heat capacity of water is approximately 4.18 J/g°C, we can calculate the difference in heat absorbed:
ΔQ = mcΔT = (80.0 g)(4.18 J/g°C)(55.0 °C - 50.0 °C) = 1,674 J
Therefore, the heat absorbed in Trial 2 is approximately 1,674 J greater than the heat absorbed in Trial 1.
To learn more about specific heat capacity, here
https://brainly.com/question/29766819
#SPJ2
0.45 mole of krypton gas occupies a volume of 1.6 L. What volume will 1.8 moles of krypton occupy assuming the temperature and pressure remain the same
Answer:
6.4 L
Explanation:
As the temperature and pressure are assumed to remain the same, we can solve this problem by using Avogadro's law, which states:
V₁n₂ = V₂n₁Where in this case:
V₁ = 1.6 Ln₂ = 1.8 molV₂ = ?n₁ = 0.45 molWe input the data given by the problem:
1.6 L * 1.8 mol = V₂ * 0.45 molAnd solve for V₂:
V₂ = 6.4 LFor each of the scenarios, determine if the ionic strength of the solution would increase, decrease, or not change.
a. If a solution of HNO3 were added to a solution of KOH , the ionic strength of the KOH solution would:_________
1. Increase
2. Decrease
3. Not change
b. If a dilute solution of KOH were added to a solution of CaCl2 (Ca(OH)2 (s) is formed), the ionic strength would:
1. Increase
2. Decrease
3. Not change
Answer:
Increase
Decrease
Explanation:While in solution, ionic substances produce ions. The ions in solution determine the conductivity of the solution.
The ionic strength of a solution shows the concentration of ions in a given solution. The more the number of ions in the solution, the greater the ionic strength of the solution and vice versa.
When HNO3 is added to a solution of KOH, the number of ions in the solution increases and so does the ionic strength of the solution.
When KOH is added to a solution of CaCl2 then Ca(OH)2 is formed. The formation of a solid precipitate decreases the concentration of ions in solution as well as the ionic strength of the solution.