Answer:
the product and the reactant must be balanced
if u are required to give the mechanism if the reaction it must be written
What are the uses of Sulphuric acid?
Answer:
The major use of sulfuric acid is in the production of fertilizers, e.g., superphosphate of lime and ammonium sulfate. It is widely used in the manufacture of chemicals, e.g., in making hydrochloric acid, nitric acid, sulfate salts, synthetic detergents, dyes and pigments, explosives, and drugs.
The major use of sulfuric acid is in the production of fertilizers, e.g., superphosphate of lime and ammonium sulfate. It is widely used in the manufacture of chemicals, e.g., in making hydrochloric acid, nitric acid, sulfate salts, synthetic detergents, dyes and pigments, explosives, and drugs.
The speed of sound depends on the __?_____ and ____?____ of the medium through which it travels
Answer:
Density and rigidity
>
Which statement describes an electron?
EEEE
It has a positive charge and is located in the nucleus.
O It has a positive charge and is located in orbitals around the nucleus.
It has a negative charge and is located in the nucleus.
O It has a negative charge and is located in orbitals around the nucleus.
Answer:
It has a negative charge and is located in orbitals around the nucleus
Explanation:
The statement describes an electron is " It has a negative charge and is located in orbitals around the nucleus."
What is electron?The electron would be a subatomic particle with a negatively one elementary charge electric charge.
What is nucleus?Protons, that have a positive charge, as well as neutrons, which have no electrical charge, make up the nucleus. Quarks were subatomic particles that make up protons but also neutrons.
Electrons were present surrounding the atom's nucleus, in contrast to protons as well as neutrons, that are contained within the nucleus at its core. Negative electrons were drawn to the positive nucleus since the electric charges of opposite polarity attract one another.
To know more about electrons and nucleus.
https://brainly.com/question/23366064
#SPJ3
I need help with the practice question at the bottom. Thank you.
Explanation:
For this question, we apply the equation: Q = mCp AT Where m is the mass of the substance, Cp
is its specific heat capacity and AT is the
temperature change. Q = 896 x 0.45 x (5-94)
Q = -35884.8 Joules
So about -36 kilojoules of heat is released.
mark as brainliest
Que es la actividad física y en qué mejora
Rank each of the following gases in order of increasing urms assuming equivalent amounts and all gases are at the same temperature and pressure where 1 has the lowest urms and 4 has the highest urms.
a. Gas 1 : H2S
b. Gas: He
c. Gas 3: NF3
d. Gas 4: H2O
The Urms refers to the root mean square speed of the gas. The order of increasing Urms for the gases shown in the question; NF3 < H2S < H2O < He.
What is the Urms?The Urms refers to the root mean square speed of the gas. This is ultimately dependent on the relative molecular mass of the gases when they are maintained at the same temperature.
Now, let us look at the order of increasing Urms for the gases shown in the question; NF3 < H2S < H2O < He.
Learnmore about Urms: https://brainly.com/question/365923
Draw structures corresponding to the following IUPAC names:(a) (Z)-2-Ethyl-2-buten-1-ol (b) 3-Cyclohexen-1-ol(c) trans-3-Chlorocycloheptanol (d) 1,4-Pentanediol(e) 2,6-Dimethylphenol (f ) o-(2-Hydroxyethyl)phenol
Answer:
Draw structures corresponding to the following IUPAC names:(a) (Z)-2-Ethyl-2-buten-1-ol (b) 3-Cyclohexen-1-ol(c) trans-3-Chlorocycloheptanol (d) 1,4-Pentanediol(e) 2,6-Dimethylphenol (f ) o-(2-Hydroxyethyl)phenol
Explanation:
According to IUPAC rules, the name of a compound is:
Prefix+root word+suffix
1) Select the longest carbon chain and it gives the root word.
2) The substituents give the prefix.
3) The functional group gives the secondary suffix and the type of carbon chain gives the primary suffix.
The structure of the given compounds are shown below:
If 0.250 L of a 5.90 M HNO₃ solution is diluted to 2.00 L, what is the molarity of the new solution?
Answer:
0.74 M
Explanation:
From the question given above, the following data were obtained:
Molarity of stock solution (M₁) = 5.90 M
Volume of stock solution (V₁) = 0.250 L
Volume of diluted solution (V₂) = 2 L
Molarity of diluted solution (M₂) =?
The molarity of the diluted solution can be obtained by using the dilution formula as illustrated below:
M₁V₁ = M₂V₂
5.90 × 0.250 = M₂ × 2
1.475 = M₂ × 2
Divide both side by 2
M₂ = 1.475 / 2
M₂ = 0.74 M
Thus, the molarity of the diluted solution is 0.74 M
what is the machine used to check melting point called?
Answer:
Melting-point apparatus
If a hydrogen atom and a helium atom have the same kinetic energy:________
a. the wavelength of the hydrogen atom will be about 4 times longer than the wavelength of the helium atom.
b. the wavelength of the hydrogen atom will be about 2 times longer than the wavelength of the helium.
c. the wavelength of the hydrogen atom will be roughly equal to the wavelength of the helium atom.
d. the wavelength of the helium atom will be about 2 times longer than the wavelength of the hydrogen atom.
e. the wavelength of the helium atom will be about 4 times longer than the wavelength of the hydrogen atom.
Answer: If a hydrogen atom and a helium atom have the same kinetic energy then the wavelength of the hydrogen atom will be roughly equal to the wavelength of the helium atom.
Explanation:
The relation between energy and wavelength is as follows.
[tex]E = \frac{hc}{\lambda}\\[/tex]
This means that energy is inversely proportional to wavelength.
As it is given that energy of a hydrogen atom and a helium atom is same.
Let us assume that [tex]E_{hydrogen} = E_{helium} = E'[/tex]. Hence, relation between their wavelengths will be calculated as follows.
[tex]E_{hydrogen} = \frac{hc}{\lambda_{hydrogen}}[/tex] ... (1)
[tex]E_{helium} = \frac{hc}{\lambda_{helium}}[/tex] ... (2)
Equating the equations (1) and (2) as follows.
[tex]E_{hydrogen} = E_{helium} = E'\\\frac{hc}{\lambda_{hydrogen}} = \frac{hc}{\lambda_{helium}} = E'\\\lambda_{helium} = \lambda_{hydrogen} = E'[/tex]
Thus, we can conclude that if a hydrogen atom and a helium atom have the same kinetic energy then the wavelength of the hydrogen atom will be roughly equal to the wavelength of the helium atom.
Di- n- pentyl ether can be converted to 1- bromopentane by treatment with HBr through essentially a(n) ________ mechanism.
Answer:
SN1 mechanism
Explanation:
The mechanism of this reaction is shown in the image attached.
The Di- n- pentyl ether is first protonated. The CH3(CH2)4OH is now a good leaving group as shown.
The attack of the bromide ion on the cation formed completes the mechanism to yield 1- bromopentane as shown in the mechanism.
Identify the possible quantitative analysis you can do using only the 28.02 g/mol as a unit factor. Select one or more:
Answer:
Calculate the moles of N2 molecules in 3.94 grams of nitrogen.
Calculate the grams of N2 in 5.03 x 1020 moles of nitrogen molecules.
Explanation:
Calculate the moles of N2 molecules in 4.73 liters of nitrogen gas. FALSE. You can't make this conversion using only the conversion factor with units of g/mol. To convert liters to moles are necessaries pressure, temperature and volume of the gas to use PV = nRT
Calculate the grams of N2 in 10.58 liters of nitrogen gas. FALSE. As explained, you need, P,V and T to find the moles of the gas. With the moles you can find the mass using the conversion factor of 28.02g/mol
Calculate the moles of N2 molecules in 3.94 grams of nitrogen. TRUE. You can find the moles of N2 as follows:
3.94g N2 * (1mol/28.02g) = 0.14 moles of N2 molecules
Calculate the grams of N2 in 5.03 x 1020 moles of nitrogen molecules. TRUE. The mass in 5.03x10²⁰ moles of nitrogen molecules is:
5.03x10²⁰ moles * (28.02g/mol) = 1.4x10²²g of nitrogen.
To what volume (in mL) would you need to dilute 20.0 mL of a 1.40 M solution of LiCN to make a 0.0880 M solution of LiCN?
Answer:
To 318.18 mL would you need to dilute 20.0 mL of a 1.40 M solution of LiCN to make a 0.0880 M solution of LiCN
Explanation:
Dilution is the reduction of the concentration of a chemical in a solution and consists simply of adding more solvent.
In a dilution the amount of solute does not vary. But as more solvent is added, the concentration of the solute decreases, as the volume (and weight) of the solution increases.
In a solution it is fulfilled:
Ci* Vi = Cf* Vf
where:
Ci: initial concentration Vi: initial volume Cf: final concentration Vf: final volumeIn this case:
Ci= 1.40 MVi= 20 mLCf= 0.088 MVf= ?Replacing:
1.40 M* 20 mL= 0.088 M* Vf
Solving:
[tex]Vf=\frac{1.40 M* 20 mL}{0.088 M}[/tex]
Vf= 318.18 mL
To 318.18 mL would you need to dilute 20.0 mL of a 1.40 M solution of LiCN to make a 0.0880 M solution of LiCN
4.005 X 74 X 0.007 = 2.10049
Answer:
2.07459
Explanation:
this is the correct answer.
Cal is titrating 57.7 mL of 0.311 M HBr with 0.304 M Ba(OH)2. How many mL of Ba(OH)2 does Cal need to add to reach the equivalence point?
Answer:
118.06 mL
Explanation:
The neutralization reaction between HBr (acid) and Ba(OH)₂ (base) is the following:
2HBr + Ba(OH)₂ → BaBr₂ + 2H₂O
According to the equation, 2 moles of HBr react with 1 mol Ba(OH)₂. Thus, at the equivalence point the moles of acid and base react completely:
2 moles HBr = 1 mol Ba(OH)₂
We can replace the moles by the product of the molar concentration (M) and volume (V):
2 x (M HBr) x (V HBr) = M Ba(OH)₂ x V Ba(OH)₂
Now, we introduce the data in the equation to calculate the volume in mL of Ba(OH)₂:
V Ba(OH)₂ = (2 x (M HBr) x (V HBr))/M Ba(OH)₂
= (2 x 0.311 M x 57.7 mL)/(0.304 M)
= 118.06 mL
Therefore, 118 mL of Ba(OH)₂ are needed.
Which equation obeys the law of conservation of
mass?
Answer:2C4H10+2C12+12O2 4CO2+CC14+H20
Given the following list of densities, which materials would float in a molten vat of lead provided that they do not themselves melt? Densities (g/mL): lead = 11.4, glass = 2.6, gold = 19.3, charcoal = 0.57, platinum = 21.4.
a. gold and platinum
b. glass and charcoal
c. gold, platinum, glass and coal
d. gold and charcoal
e. None of these
Answer:
b. glass and charcoal
Explanation:
Step 1: Given data
Density of Pb: 11.4 g/mLDensity of Glass: 2.6 g/mLDensity of Au: 19.3 g/mLDensity of charcoal: 0.57 g/mLDensity of platinum: 21.4 g/mLStep 2: Determine which material will float in molten lead
Density is an intrinsic property of matter. Less dense materials float in more dense materials. The materials whose density is lower than that of lead and will therefore float on it are glass and charcoal.
bio-chemisty of protain
Answer:
Protein biochemistry is the study of proteins. Protein biochemistry is a scientific field dedicated to the study of proteins, complex chains of amino acids which make up the building blocks of all living organisms.
Explanation:
I hope that helped
Copy and Pasted!
Answer:
Listen to what guy said on top.
Explanation:
polypeptide structures consisting of one or more long chains of amino acids residue.....
or my answer
You are asked to prepare a buffer solution with a pH of 3.50. The following solutions, all 0.100 M, are available to you: HCOOH, CH3COOH, H3PO4 , NaCHOO, NaCH3COO, and NaH2PO4. What would be the best combination to make the required buffer solution? Select one:
a. NaH2PO4 and NaCHOO
b. H3PO4 and NaH2PO4
c. NaH2PO4 and HCOOH
d. CH3COOH and NaCH3COO e. HCOOH and NaCHOO
can someone helo me with this
Answer:
e. HCOOH and NaCHOO
Explanation:
For a buffer solution, both an acid and its conjugate base are required.
With the information above in mind, we can discard options a) and c), as those combinations are not of an acid and its conjugate base.
Now it is a matter of comparing the pKa (found in literature tables) of the acids of the remaining three acids:
H₃PO₄ pKa = 2.12CH₃COOH pKa = 2.8HCOOH pKa = 3.74The acid with the pKa closest to the desired pH is HCOOH, so the correct answer is e. HCOOH and NaCHOO
A quantity of 1.435 g of naphthalene , was burned in a constant-volume bomb calorimeter. Consequently, the temperature of the water rose from 20.28oC to 25.95oC If the heat capacity of the bomb plus water was , calculate the heat of combustion of naphthalene on a molar basis; that is, find the molar heat of combustion.
Answer:
molar heat of combustion = -5156 *10³ kJ/mol
Explanation:
A quantity of 1.435 g of naphthalene , was burned in a constant-volume bomb calorimeter. Consequently, the temperature of the water rose from 20.28oC to 25.95oC If the heat capacity of the bomb plus water was 10.17 kJ/°C, calculate the heat of combustion of naphthalene on a molar basis; that is, find the molar heat of combustion.
Step 1: Data given
Mass of naphthalene = 1.435 grams
Initial temperature of water = 20.28 °C
Final temperature of water = 25.95 °C
heat capacity of the bomb plus water was 10.17 kJ/°C
Molar mass naphtalene = 128.2 g/mol
Step 2:
Qcal = Ccal * ΔT
⇒with Qcal =the heat of combustion
⇒with Ccal = heat capacity of the bomb plus water = 10.17 kJ/°C
⇒with ΔT = the difference in temperature = T2 - T1 = 25.95 - 20.28 = 5.67°C
Qcal = 10.17 kJ/°C * 5.67 °C
Qcal = 57.7 kJ
Step 3: Calculate moles
Moles naphthalene = 1.435 grams / 128.2 g/mol
Moles naphthalene = 0.01119 moles
Step 4: Calculate the molar heat of combustion
molar heat of combustion = Qcal/ moles
molar heat of combustion = -57.7 kJ/ 0.01119 moles
molar heat of combustion = -5156 *10³ kJ/mol
The metal tantalum becomes superconducting at temperatures below 4.483 K. Calculate the temperature at which tantalum becomes superconducting in degrees Celsius.
Answer:
The correct answer is "-268.667°C".
Explanation:
Given:
Temperature,
= 4.483 K (below)
Now,
The formula of temperature conversion will be:
⇒ [tex]T(^{\circ} C)=T(K)-273.15[/tex]
By putting the values, we get
⇒ [tex]=4.483-273.15[/tex]
⇒ [tex]=-268.667^{\circ} C[/tex]
Thus the above is the correct answer.
What type of a liquid will have a pH value equal to 12? (1 point)
Basic
Neutral
Strong acid
Weak aci
Answer: it will be basic
pH that ranges from 0-6 are acid
pH of EXACTLY 7 is neutral
pH greater than 7 are strongly basic or base
An unknown weak acid with a concentration of 0.530 M has a pH of 5.600. What is the Ka of the weak acid
Answer:
Ka = 3.45x10⁻⁶
Explanation:
First we calculate [H⁺], using the given pH:
pH = -log[H⁺][H⁺] = [tex]10^{-pH}=10^{-5.6}[/tex] [H⁺] = 2.51x10⁻⁶ MTo solve this problem we can use the following formula describing a monoprotic weak acid:
[H⁺] = [tex]\sqrt{C*Ka}[/tex]We input the data that we already know:
2.51x10⁻⁶ = [tex]\sqrt{0.530*Ka}[/tex]And solve for Ka:
Ka = 3.45x10⁻⁶
A scientific hypothesis is
ANSWER:
predictive.
testable.
explanatory.
all of the above.
Answer:
All of the above.
Explanation:
For a scientific hypothesis to be considered a hypothesis, it has to be testable. When conducting a lab experiment, it also allows the tester to predict what might occur during and after the experimentation. They are also explanatory. For example, theories are hypotheses that have been verified and can explain why something in nature takes place.
In water, Vanillin, C8H8O3, has a solubility of 0.070 moles of vanillin per liter of solution at 25C. What will be produced if 5.00 g of vanillin are added to 1 L of water at 25 C?
Answer:
The full amount (5.00 g) will be dissolved in 1 L of water at 25°C.
Explanation:
The molecular weight (MW) of Vanillin (C₈H₈O₃) is calculated from the chemical formula as follows:
MW(C₈H₈O₃) = (12 g/mol x 8) + (1 g/mol x 8) + (16 g/mol x 3) = 152 g/mol
If 0.070 mol of C₈H₈O₃ are soluble per liter of water at 25°C, the maximum mass that can be dissolved in 1 L is:
0.070 mol x 152 g/mol = 10.64 g
Since 5.00 g is lesser than the maximum amount that can be dissolved (10.64 g), the added amount will be completely dissolved in 1 L of water at 25°C.
By how many times would you expect Al2(SO4)3 to depress the F.P of water compared to sucrose C12H22011 ?
Answer:
By how many times would you expect Al2(SO4)3 to depress the F.P of water compared to sucrose C12H22011 ?.
Explanation:
The freezing point of a pure solvent decreases further by adding a nonvolatile solute.
This is called depression in freezing point.
When an ionic solute is dissolved then the depression in the freezing point is proportional to the number of ions present in the solution.
In aluminum sulfate, there are five ions formed as shown below:
[tex]Al_2(SO_4)_3(aq)->2Al^3^+(aq)+3SO_4^2^-(aq)[/tex]
But sucrose is a covalent compound and it does not undergo dissociation.
Hence, aluminum sulfate decreases the freezing point of water by five times compared to sucrose.
Explanation:
En la fermentación del alcohol, la levadura convierte la glucosa en etanol y dióxido de carbono:
C6H12O6(s) → 2C2H5OH(l) + 2CO2(g)
Si reaccionan 5.97 g de glucosa y se recolectan 1.44 L de CO2 gaseoso, a 293 K y 0.984 atm, ¿cuál
es el rendimiento porcentual de la reacción
Answer:
88.9%
Explanation:
Primero convertimos 5.97 g de glucosa a moles, usando su masa molar:
5.97 g ÷ 180 g/mol = 0.0332 molDespués calculamos la cantidad máxima de moles de CO₂ que se hubieran podido producir:
0.0332 mol C₆H₁₂O₆ * [tex]\frac{2molCO_2}{1molC_6H_{12}O_6}[/tex] = 0.0664 mol CO₂Ahora calculamos los moles de CO₂ producidos, usando los datos de recolección dados y la ecuación PV=nRT:
0.984 atm * 1.44 L = n * 0.082 atm·L·mol⁻¹·K⁻¹ * 293 Kn = 0.0590 molFinalmente calculamos el rendimiento porcentual:
0.0590 mol / 0.0664 mol * 100% = 88.9%the force of attraction between non polar molecules are what (a)electrovalent bond (b)covalent bond (c)Hydrogen bond (d)Van der waals forces
Answer:
d. van der waals force
Explanation:
Van der Waals force :
the weakest intermolecular forceand consist of dipole-dipole force and dispersion force.
Which one of the following molecule is planer?
a. NF3 c. PH3
b. BH3 d. NCl3
Answer:
option a
hope helps you
have a great day
Pls pls help me me pls
Answer:
Danger
Explanation: