Answer:
(y - 2)² = -12(x - 5)
Step-by-step explanation:
A parabola is a locus of points, which are equidistant from the focus and directrix;
Generic cartesian equation of a parabola:
y² = 4ax, where the:
Focus, S, is: (a, 0)
Directrix, d, is: x = -a
a > 0
Put simply, a is the horinzontal difference between the directrix and the vertex or between the vertex and focus;
Always a good idea to do a quick drawing of the graph;
We are the told the focus, F, is: (2, 2) and directrix, d, is: x = 8;
First thing to note, the vertex, or turning point will be in line with the focus vertically, i.e. they will share the same y-coordinate;
Horizonatally, it will be halfway between the focus and the directrix, i.e. halfway between 8 and 2;
Therefore, the vertex will be will be (5, 2);
We can also work out a:
a = 8 - 5 = 5 - 2
a = 3
Substituting this value of a into the generic cartesian equation:
y² = 4(3)x
y² = 12x
The focus and directrix will be:
S: (3, 0)
d: x = -3
Next thing to note, a parabola curves away from the directrix;
In this case, the directrix is x = 8, so the vertex will be the right-most point on the parabola, it will curve off to the left and the focus will also be to the left;
What we want to do is compare with y² = 12x;
This parabola, has a vertex (0, 0), which is the left-most point that curves off to the right and a focus also to the right;
Since we know the formula of this parabola, if we figure out how to transform it into the one in the question, we can find out it's equation;
What we should recognise first is that the parabola in the question is reflected in the y-axis, compared to y² = 12x;
So we apply the transformation that corresponds to this, i.e. use the f(-x) rule:
y² = 12(-x)
y² = -12x
Now the two graphs will have the same shape and orientation;
The focus and directrix will also be affected:
S: (-3, 0)
d: x = 3
Now, the only remaining difference would be the coordinates of the focus and directrix of the two graphs;
The focus of the graph in the question is 5 units to the right and 2 units upwards compared to the focus of y² = -12x;
The directrix is 5 units to the right of that of y² = -12x;
So we apply a translation transformation of 5 units right and 2 units up, like so:
(y - 2)² = -12(x - 5)
Replace y with (y - 2) to translate up 2 units;
Replace x with (x - 5) to translate 5 units right.
We know have a parabola with focus, (2, 2), directrix, x = 8 and vertex, (5, 2), i.e. the parabola in the question;
Hence, the equation of the parabola in the question is:
(y - 2)² = -12(x - 5)
It might seem a bit long and complicated to begin with, but can be done very quickly if you can get used to it.
if A is 20% more than B, by what percent is B less than A?
Answer:
Jika A adalah 20% lebih banyak dari B, maka dapat dituliskan sebagai:
A = B + 0.2B
Dalam bentuk sederhana, hal ini dapat disederhanakan menjadi:
A = 1.2B
Kita dapat menggunakan persamaan ini untuk mencari persentase B yang lebih kecil dari A. Misalnya, jika kita ingin mengetahui berapa persen B lebih kecil dari A, maka kita dapat menggunakan rumus persentase sebagai berikut:
(B lebih kecil dari A) / A x 100%
Substitusikan nilai A = 1.2B dan kita dapatkan:
(B lebih kecil dari 1.2B) / 1.2B x 100%
Maka:
0.2B / 1.2B x 100%
= 0.1667 x 100%
= 16.67%
Jadi, B adalah 16.67% lebih kecil dari A.
Untuk Konsultasi: 0813-7200-6413
can anyone help with this triangle question
Step-by-step explanation:
Set it up as a ratio:
14 is to (14 +6) as 21 is to ?
14/20 = 21/?
? = 21 * 20 / 14 = 30 units
what is true and what is not for this right triangle need help
Step-by-step explanation:
For RIGHT triangles, using S-O-H-C-A-H-T-O-A
A sinA= cosB yes 12/13 = 12/13
B. sinA=tanB no 12 /13 not equal to 5/12
C. sinB= tanA no 5/13 not equal to 12/5
D. sinB= cosB no 5/13 not equal to 12/13
A) sinA= cοsB statement is true. Fοr RIGHT triangles, using S-O-H-C-A-H-T-O-A.
What is a triangle?A triangle is a twο-dimensiοnal geοmetric shape that cοnsists οf three straight line segments, called sides, that cοnnect three nοn-cοllinear pοints, called vertices.
Based οn the given image, the fοllοwing statements are true:
1. The triangle is a right triangle, which means that οne οf the angles is a right angle (90 degrees).
2. The side οppοsite the right angle is called the hypοtenuse, which is the lοngest side οf the triangle. In this case, it is the side that is labeled "c".
3. The οther twο sides οf the triangle are called legs. In this case, they are labelled "a" and "b".
4. The Pythagοrean theοrem applies tο this triangle, which states that the sum οf the squares οf the lengths οf the legs is equal tο the square οf the length οf the hypοtenuse. In οther wοrds, [tex]a^{2}[/tex] + [tex]b^{2}[/tex] = [tex]c^{2}[/tex].
Fοr RIGHT triangles, using S-O-H-C-A-H-T-O-A
A sinA= cοsB yes 12/13 = 12/13
B. sinA=tanB nο 12 /13 nοt equal tο 5/12
C. sinB= tanA nο 5/13 nοt equal tο 12/5
D. sinB= cοsB nο 5/13 nοt equal tο 12/13.
To learn more about triangle from given link:
https://brainly.com/question/2773823
#SPJ1
Complete Question:
In Δ ABC , angle C is right Angle
Which Statement must be True?
A sinA= cosB
B. sinA=tanB
C. sinB= tanA
D. sinB= cosB
BRAINEST IF CORRECT! 25 POINTS.
What transformation of Figure 1 results in Figure 2?
Select from the drop-down menu to correctly complete the statement.
A ______ of Figure 1 results in Figure 2.
Answer:
its reflection
Step-by-step explanation:
a reflection is known as a flip. A reflection is a mirror image of the shape. An image will reflect through a line, known as the line of reflection. A figure is said to reflect the other figure, and then every point in a figure is equidistant from each corresponding point in another figure.
Answer:
It is Reflection. Check if it is in the list.
Find the surface area of the figure on the right.
The fig's right side of total surface = 42yds.
What is surface area?
A solid object's surface area is a measurement of the total area that the surface of the object takes up.
The definition of arc length for one-dimensional curves and the definition of surface area for polyhedra (i.e., objects with flat polygonal faces), where the surface area is the sum of the areas of its faces, are both much simpler mathematical concepts than the definition of surface area when there are curved surfaces.
A smooth surface's surface area is determined using its representation as a parametric surface, such as a sphere.
This definition of surface area uses partial derivatives and double integration and is based on techniques used in infinitesimal calculus.
Henri Lebesgue and Hermann Minkowski at the turn of the century sought a general definition of surface area.
According to our question-
(17+17+8)yds
42yds
learn more about surface area click here:
https://brainly.com/question/16519513
#SPJ1
You are crossing two pea plants. One is heterozygous for yellow. The second pea plant is homozygous for green. Use "G/g" as the letter to represent the gene for this problem.
The result of the cross breeding between the heterozygous and homozygous pea plant is the offspring will have a 50% chance of inheriting the dominant "G" allele and displaying yellow color, and a 50% chance of inheriting the recessive "g" allele and displaying green color.
What is the result of crossbreeding?In this problem, the heterozygous pea plant with yellow color is represented as "Gg" (where "G" is the dominant allele for yellow color and "g" is the recessive allele for green color). The homozygous pea plant with green color is represented as "gg" (where both alleles are recessive).
When these two plants are crossed, their offspring will inherit one allele from each parent, which will determine their phenotype (observable trait).
The possible combinations of alleles that the offspring can inherit from their parents are:
Gg x gg
Gametes from the Gg plant: G, gGametes from the gg plant: g, gPossible genotypes of offspring: Gg, gg (50% chance for each)Possible phenotypes of offspring: yellow (Gg) or green (gg) in a 1:1 ratioTherefore, in this cross, the offspring will have a 50% chance of inheriting the dominant "G" allele and displaying yellow color, and a 50% chance of inheriting the recessive "g" allele and displaying green color.
Learn more on crossbreeding here;
https://brainly.com/question/8588470
#SPJ1
Help please need to pass this
Answer:
45%
Step-by-step explanation:
86 people play an instrument out of 192 students.
86/192 = .4479
.4479 x 100% = 44.79% = 45%
Answer: 45 percent
Step-by-step explanation:
HELP PLEASEEE 30 POINTS!!
Answer:
m<1 = 63° (Exterior alternating Angles)
m<2 = 62°
m<3 = 118°
Step-by-step explanation:
[tex]{ \tt{m \angle 2 + 63 \degree + 55 \degree = 180 \degree}} \\ { \sf{(exterior \: corresponding \: angles)}} \\ { \tt{m \angle 2 = 180 - (63 + 55)}} \\ { \tt{ \underline{ \: m \angle 2 = 62 \degree \: }}}[/tex]
[tex]{ \tt{m \angle 3 = m \angle 1 + 55 \degree}} \\ { \tt{m \angle 3 = 63 + 55}} \\ { \tt{ \underline{ \: m \angle 3 = 118 \degree \: }}}[/tex]
What is the integral expression for the volume of the solid formed by revolving the region bounded by the graphs of y = x2 - 3x and y = x about the horizontal line y = 6? * 18 (6 - x2 + 3x)2-(6- x)?dx o Tejo (6-x2+3x)2 - (6 - x)?dx OTS (6 - 12 - (6 - x2 + 3xPdx Orla (6 - XP2 – (6-x2 + 3x)
The integral expression for the volume of the solid formed by revolving the region bounded by the graphs of y = x₂ - 3x and y = x about the horizontal line y = 6 is 2πx(6 - x² + 3x)dx, which is integrated from x=0 to x=3, which gives us 81π/2.
To find the integral expression for the volume of the solid formed by revolving the region bounded by the graphs of y=x² - 3x and y=x about the horizontal line y=6, we can use the method of cylindrical shells.
First, we need to find the limits of integration, The graphs of y = x² - 3x and y=x intersect at x=0 and x=3. Therefore, we integrate from x=0 to x=3.
Next, we consider a vertical strip of width dx at a distance x from the y- boxes. the height of the strip is the difference between the height of the curve y= x² - 3x and the line y=6, which is 6 - (x² - 3x) = 6 - x² + 3x. the circumference of the shell is 2π times the distance x from the y-axis, and the thickness of the shell is dx. the volume of the shell is the product of the height, circumference, and thickness which is
dV = 2πx(6 - x² + 3x)dx
To find the total volume, we integrate this expression from x=0 to x=3.
V = ∫₀³ 2πx(6 - x² + 3x)dx, after simplifying the integrand we get :
V = 2π ∫₀³ (6x - x³ + 3x²)dx, integrating term by term we get :
V = 2π [(3x²/2) - (x⁴/4) + (x^3)] from 0 to 3, now evaluation at the limits of integration we get:
V = 2π [(3(3)²/2) - ((3)⁴/4) + (3)³] - 2π [(0)^2/2 - ((0)⁴/4) + (0)^3]= 2π [(27/2) - (27/4) + 27] - 0 = 81π/2
To know more about cylindrical shells refer to the link brainly.com/question/2263921
#SPJ4
The area of a trapezium is 156cm2, the parallel sides are 17cm and 35cm respectively. What is the height of the trapezium
Answer:
6 cm
Step-by-step explanation:
You want the height of a trapezium with bases 17 cm, 35 cm and area 156 cm².
Area formulaThe formula for the are of a trapezium is ...
A = 1/2(b1 +b2)h
Filling in the given values, we have ...
156 = 1/2(17 +35)h = 26h
6 = h . . . . . . . . . . divide by 26
The height of the trapezium is 6 cm.
Answer:
6cm
Step-by-step explanation:
To find:-
The height of the trapezium.Answer:-
We are here given that the area of the trapezium is 156cm² and two of the parallel sides are 17cm and 35cm .We are interested in finding out the height of the trapezium.
The area of the trapezium is given by the formula,
[tex]:\implies \sf Area =\dfrac{1}{2}\times (s_1+s_1)\times h \\[/tex]
where s1 and s2 are the || sides of the trapezium and h is the height of the trapezium.
Now on substituting the respective values in the given formula, we have;
[tex]:\implies \sf 156cm^2 =\dfrac{1}{2} (17cm+35cm)\times h \\[/tex]
[tex]:\implies \sf 156cm^2(2) = 52cm (h) \\[/tex]
[tex]:\implies \sf h =\dfrac{156(2)}{52} cm\\[/tex]
[tex]:\implies \sf \pink{ height = 6 cm }\\[/tex]
Hence the height of the trapezium is 6cm .
An initial deposit of $800 is put into an account that earns 5% interest, compounded annually. Each year, an additional deposit of $800 is added to the account.
Assuming no withdrawals or other deposits are made and that the interest rate is fixed, the balance of the account (rounded to the nearest dollar) after the seventh deposit is __________.
The balance of the account after the seventh deposit can be calculated using the formula below:
A = P (1 + r/n)ⁿ
where:
A = the balance of the account
P = The initial deposit of $800
r = the interest rate of 5%
n = the number of times the interest is compounded annually
n = 1
Therefore, the balance of the account after the seventh deposit is:
A = 800 (1 + 0.05/1)⁷
A = 800 (1.05)⁷
A = 800 (1.4176875)
A = 1128.54
Rounded to the nearest dollar, the balance of the account after the seventh deposit is $1128.
A brand new stock is called an initial public offering or IPO. Remember that in this model the period immediately after the stock is issued offers excess returns on the stock(ie it is selling for more than its actually worth). One such model for a class of internet IPOS predicts the percentage overvaluation of a stock as a function of time, as R(t)=2501^2/e^3t where R(t) is the overvaluation in percent and t is the time in months after issue. Use the information provided by the first derivative and second derivate, and asymptotes to prepare advice for clients as to when they should expect a signal to buy or sell (Inflection point), the exact time when they should buy or sell(max/min) and any false signals prior to an as- ymptote. Explain your reasoning. Make a rough sketch of the function.
The Function of maximum or minimum for t is infinity.
What is first and second subsidiary test?While the principal subordinate can let us know if the capability is expanding or diminishing, the subsequent subsidiary. tells us in the event that the primary subsidiary is expanding or diminishing. On the off chance that the subsequent subsidiary is positive, the first.
To analyze the function R(t) = 2501² / e(3t), we can take the first and second derivatives:
R'(t) = -7503 * 2501² / e(3t)
R''(t) = 22509 * 2501² / e(3t)
To find the inflection point, we can set R''(t) = 0 and solve for t:
22509 * 2501² / e(3t) = 0
t = ln(0) / -3 = undefined
Since there is no real solution to this equation, there is no inflection point for this function.
To find the maximum or minimum, we can set R'(t) = 0 and solve for t:
-7503 * 2501² / e(3t) = 0
t = infinity
To know more about Function visit:-
https://brainly.com/question/12431044
#SPJ1
A camera has a list price of
$
579.99
before tax. If the sales tax rate is
7.25
%
, find the total cost of the camera with sales tax included.
Round your answer to the nearest cent, as necessary
Answer:
622.04
Step-by-step explanation:
579.99 x 7.25% = 42.049 or 42.05
579.99 + 42.05 = 622.04
The total cost of the camera with sales tax included is $622.04.
What is the sales tax?A sales tax is a government-imposed consumption tax levied upon that purchase of goods and services. A standard sales tax is assessed at the moment of sale, received by the shop, and paid to the government.
Now according to the question;
The Listed price of the camera is $579.99.
The sales tax rate is 7.25%,
[tex]7.25\% \ \text{of} \ \$579.99 = (7.25\times579.99)\div100[/tex]
Sales tax = $42.04
[tex]\text{Total cost of camera = Listed price + sales tax amount}[/tex]
[tex]= \$579.99 + \$42.04[/tex]
[tex]\text{Total cost of camera} = \$622.04[/tex]
Therefore, the total cost of the camera with sales tax included is $622.04.
To know more about the sales tax, here
https://brainly.com/question/9437038.
What is the value of the underlined digit?
5(3)
Enter the correct answer in the box.
Answer: tens
Step-by-step explanation:
The definition of differentiable also defines an error term E(x,y). Find E(x,y) for the function f(x,y)=8x^2 − 8y at the point (−1,−7).E(x,y)=
The value of error term E(x,y) = 8x^2 - 8x - 56.
The definition of differentiability states that a function f(x,y) is differentiable at a point (a,b) if there exists a linear function L(x,y) such that:
f(x,y) - f(a,b) = L(x,y) + E(x,y)
where E(x,y) is an error term that approaches 0 as (x,y) approaches (a,b).
In the case of the function f(x,y) = 8x^2 - 8y, we want to find E(x,y) at the point (-1,-7).
First, we need to calculate f(-1,-7):
f(-1,-7) = 8(-1)^2 - 8(-7) = 56
Next, we need to find the linear function L(x,y) that approximates f(x,y) near (-1,-7). To do this, we can use the gradient of f(x,y) at (-1,-7):
∇f(-1,-7) = (16,-8)
The linear function L(x,y) is given by:
L(x,y) = f(-1,-7) + ∇f(-1,-7) · (x+1, y+7)
where · denotes the dot product.
Substituting the values, we get:
L(x,y) = 56 + (16,-8) · (x+1, y+7)
= 56 + 16(x+1) - 8(y+7)
= 8x - 8y
Finally, we can calculate the error term E(x,y) as:
E(x,y) = f(x,y) - L(x,y) - f(-1,-7)
= 8x^2 - 8y - (8x - 8y) - 56
= 8x^2 - 8x - 56
Therefore, the error term E(x,y) for the function f(x,y) = 8x^2 - 8y at the point (-1,-7) is E(x,y) = 8x^2 - 8x - 56.
To know more about differentiable:
https://brainly.com/question/29894954
#SPJ4
true/false. the continuity correction must be used because the normal distribution assumes variables whereas the binomial distribution uses discrete variables
The statement " the continuity correction must be used because the normal distribution assumes variables whereas the binomial distribution uses discrete variables" is true because continuity correction is used to adjust for the discrepancy between continuous and discrete variables when approximating a discrete distribution
The continuity correction is used when approximating a discrete distribution, such as the binomial distribution, with a continuous distribution, such as the normal distribution. The normal distribution assumes continuous variables, while the binomial distribution uses discrete variables.
The continuity correction helps to account for the fact that the normal distribution is continuous, whereas the binomial distribution is not. It adjusts the boundaries of the intervals used in the approximation, to better reflect the underlying discrete nature of the data.
Learn more about continuity correction here
brainly.com/question/29577344
#SPJ4
The weight of a miniature Tootsie roll is normally distributed with a mean of 3.30 grams and standard deviation of .13 gram
We can estimate that the middle 95% of all miniature Tootsie rolls will fall within the range of 3.04 grams to 3.56 grams for standard deviation of 0.13 gram.
What is a normal distribution?A normal distribution is a symmetric, bell-shaped continuous probability distribution that is defined by its mean and standard deviation. The majority of the data in a normal distribution is located close to the mean, and the number of data points decreases as you deviate from the mean in either direction. Because many real-world events, like human height or test scores, have a tendency to follow a normal distribution, the normal distribution is frequently utilised in statistics. A helpful technique for determining the range of values within a normal distribution based on the mean and standard deviation is the empirical rule, commonly known as the 68-95-99.7 rule.
Given that, the mean of 3.30 grams and standard deviation of 0.13 gram.
Using the empirical formula the range that falls in 95% is associated to two standard deviations.
Mean + 2 standard deviations = 3.30 + 2(0.13) = 3.56 grams
Mean - 2 standard deviations = 3.30 - 2(0.13) = 3.04 grams
Hence, we can estimate that the middle 95% of all miniature Tootsie rolls will fall within the range of 3.04 grams to 3.56 grams.
Learn more about normal distribution here:
https://brainly.com/question/12421652
#SPJ1
The lunch special at Maria's Restaurant is a sandwich and a drink. There are 2 sandwiches and 5 drinks to choose from. How many lunch specials are possible?
Answer:
the question is incomplete, so I looked for similar questions:
There are 3 sandwiches, 4 drinks, and 2 desserts to choose from.
the answer = 3 x 4 x 2 = 24 possible combinations
Explanation:
for every sandwich that we choose, we have 4 options of drinks and 2 options of desserts = 1 x 4 x 2 = 8 different options per type of sandwich
since there are 3 types of sandwiches, the total options for lunch specials = 8 x 3 = 24
If the numbers are different, all we need to do is multiply them. E.g. if instead of 3 sandwiches there were 5 and 3 desserts instead of 2, the total combinations = 5 x 4 x 3 = 60.
For this question's answer, there are 2 x 5 = 10 lunch specials are possible.
The number of lunch specials possible are 10.
How many ways k things out of m different things (m ≥ k) can be chosen if order of the chosen things doesn't matter?We can use combinations for this case,
Total number of distinguishable things is m.
Out of those m things, k things are to be chosen such that their order doesn't matter.
This can be done in total of
[tex]^mC_k = \dfrac{m!}{k! \times (m-k)!} ways.[/tex]
If the order matters, then each of those choice of k distinct items would be permuted k! times.
So, total number of choices in that case would be:
[tex]^mP_k = k! \times ^mC_k = k! \times \dfrac{m!}{k! \times (m-k)!} = \dfrac{m!}{ (m-k)!}\\\\^mP_k = \dfrac{m!}{ (m-k)!}[/tex]
This is called permutation of k items chosen out of m items (all distinct).
We are given that;
Number of sandwiches=2
Number of drinks=5
Now,
To find the total number of lunch specials, we need to multiply the number of choices for sandwiches by the number of choices for drinks.
Number of sandwich choices = 2
Number of drink choices = 5
Total number of lunch specials = 2 x 5 = 10
Therefore, by combinations and permutations there are 10 possible lunch specials.
Learn more about combinations and permutations here:
https://brainly.com/question/16107928
#SPJ2
Alberto believes that because all squares can be called
rectangles, then all rectangles must be called squares.
Explain why his reasoning is flawed. Use mathematical
terminology to help support your reasoning.
Alberto's statement is flawed because all squares can be called rectangles, but not vice versa
Reason why Alberto's statement is flawedAlberto's reasoning is flawed because all squares can be called rectangles, but not all rectangles are squares.
While it is true that squares meet the definition of rectangles, not all rectangles meet the definition of squares.
A square is a special type of rectangle with all sides equal in length.
Therefore, Alberto's argument violates the logical concept of implication, where the truth of one proposition (squares can be called rectangles) does not necessarily imply the truth of the converse (all rectangles must be called squares).
Read more about rectangles at
https://brainly.com/question/25292087
#SPJ1
Martin has a spinner that is divided into four sections labeled A, B, C, and D. He spins the spinner twice. PLEASE ANSWER RIGHT HELP EASY THANK UU
Drag the letter pairs into the boxes to correctly complete the table and show the sample space of Martin's experiment..
The diagram included shows the letter pairs that should go into each box to appropriately finish the table and display the sample area of Martin's experiment.
Explain about the sample space of an event?A common example of a random experiment is rolling a regular six-sided die. For this action, all possible outcomes/sample space can be specified, but the actual result on any given experimental trial cannot be determined with certainty.
When this happens, we want to give each event—like rolling a two—a number that represents the likelihood of the occurrence and describes how probable it is that it will occur. Similar to this, we would like to give any event or group of outcomes—say rolling an even number—a probability that reflects how possible it is that the occurrence will take place if the experiment is carried out.Martin features a spinner with four compartments marked A, B, C, and D.
To get the correct result of the filling, first take the value of the horizontal bar and write the value from the corresponding vertical bar where both column are meeting.
Thus, the diagram included shows the letter pairs that should go into each box to appropriately finish the table and display the sample area of Martin's experiment.
know more about the sample space
https://brainly.com/question/2117233
#SPJ1
The Khan Shatyr Entertainment Center in Kazakhstan is the largest tent in the world. The spire on top is 60 m in length. The distance from the center of the tent to the outer edge is 97.5 m. The angle between the ground and the side of the tent is 42.7°.
Find the total height of the tent (h), including the spire.
Find the length of the side of the tent (x)
i. The total height of the tent including the spire is 150 m.
ii. The length of the side of the tent x is 132.7 m.
What is a trigonometric function?Trigonometric functions are required functions in determining either the unknown angle of length of the sides of a triangle.
Considering the given question, we have;
a. To determine the total height of the tent, let its height from the ground to the top of the tent be represented by x. Then:
Tan θ = opposite/ adjacent
Tan 42.7 = h/ 97.5
h = 0.9228*97.5
= 89.97
h = 90 m
The total height of the tent including the spire = 90 + 60
= 150 m
b. To determine the length of the side of the tent x, we have:
Cos θ = adjacent/ hypotenuse
Cos 42.7 = 97.5/ x
x = 97.5/ 0.7349
= 132.67
The length of the side of the tent x is 132.7 m.
Learn more about the trigonometric functions at https://brainly.com/question/30860427
#SPJ1
Two containers designed to hold water are side by side, both in the shape of a cylinder. Container A has a diameter of 12 feet and a height of 9 feet. Container B has a diameter of 8 feet and a height of 20 feet. Container A is full of water and the water is pumped into Container B until Container B is completely full.
After the pumping is complete, what is the volume of the empty space inside Container A, to the nearest tenth of a cubic foot?
Step-by-step explanation:
the volume of container B is Travers from A to B.
so, the volume of the empty space in A is exactly the volume of container B.
the volume of a cylinder is
base area × height = pi×r² × height.
the reside is as always half of the diameter.
r = 8/2 = 4 ft
the volume of the empty space in A = the volume of container B =
= pi×4² × 20 = pi×16 × 20 = 320pi = 1,005.309649... ≈
≈ 1,005.3 ft³
Find the center and radius of the circle whose equation is x^2+y^2+4y=32
Answer:
center: (0, -2)
radius: 6
Step-by-step explanation:
You have to "complete the square" this allows you to fold up the expressions and put the equation in a standard kinda of format where you can pick the center and radius right out of the equation.
see image.
A sports car accelerates from a stopped position (0 m/s) to 27.7 m/s in 2.4 seconds. What is the acceleration of the car?
Using simple division we know that the acceleration per second is 11.54 m/s.
What is division?Multiplication is the opposite of division.
If 3 groups of 4 add up to 12, then 12 divided into 3 groups of equal size results in 4 in each group.
Creating equal groups or determining how many people are in each group after a fair distribution is the basic objective of division.
The division is a mathematical process that includes dividing a sum into groups of equal size.
For instance, "12 divided by 4" translates to "12 shared into 4 equal groups," which would be 3 in our example.
So, to find the acceleration per second:
We need to perform division as follows:
= 27.7/2.4
= 11.54
Therefore, using simple division we know that the acceleration per second is 11.54 m/s.
Know more about division here:
https://brainly.com/question/25289437
#SPJ1
There are N distinct types of coupons, and each time one is obtained it will, independently of past choices, be of type i with probability P_i, i, .., N. Hence, P_1 + P_2 +... + P_N = 1. Let T denote the number of coupons one needs to select to obtain at least one of each type. Compute P(T > n).
If T denote the number of coupons one needs to select to obtain at least one of each type., P(T > n) = ∑(-1)^x * Σ_{1≤i₁<i₂<...<iₓ≤N} P{i₁} * P{i₂} * ... * P{iₓ}
The problem of finding the probability P(T > n), where T is the number of coupons needed to obtain at least one of each type, can be solved using the principle of inclusion-exclusion.
Let S be the event that the i-th type of coupon has not yet been obtained after selecting n coupons. Then, using the complement rule, we have:
P(T > n) = P(S₁ ∩ S₂ ∩ ... ∩ Sₙ)
By the principle of inclusion-exclusion, we can write:
P(T > n) = ∑(-1)^x * Σ_{1≤i₁<i₂<...<iₓ≤N} P{i₁} * P{i₂} * ... * P{iₓ}
where the outer sum is taken over all even values of k from 0 to N, and the inner sum is taken over all sets of k distinct indices.
This formula can be computed efficiently using dynamic programming, by precomputing all values of Σ_{1≤i₁<i₂<...<iₓ≤N} P{i₁} * P{i₂} * ... * P{iₓ} for all x from 1 to N, and then using them to compute the final probability using the inclusion-exclusion formula.
In practice, this formula can be used to compute the expected number of trials needed to obtain all N types of coupons, which is simply the sum of the probabilities P(T > n) over all n.
To learn more about probabilities click on,
https://brainly.com/question/14289336
#SPJ4
If F1 =(3,0), F2 =(−3,0) and P is any point on the curve 16x^2 + 25y^2 = 400, then PF1 + PF2 equals to:861012
The value of PF1 + PF2 equals to 10 for any point P on curve ellipse of equation 16x^2 + 25y^2 = 400. So, the correct answer is B).
We can start by finding the coordinates of the point P on curve of the ellipse. We can write the equation of the ellipse as:
16x^2 + 25y^2 = 400
Dividing both sides by 400, we get:
x^2/25 + y^2/16 = 1
So, the center of the ellipse is at the origin (0,0) and the semi-axes are a=5 and b=4.
Let the coordinates of point P be (x,y). Then, we can use the distance formula to find the distances PF1 and PF2:
PF1 = sqrt((x-3)^2 + y^2)
PF2 = sqrt((x+3)^2 + y^2)
Therefore, PF1 + PF2 = sqrt((x-3)^2 + y^2) + sqrt((x+3)^2 + y^2)
We can use the property that the sum of the distances from any point on an ellipse to its two foci is constant, and is equal to 2a, where a is the semi-major axis. So, we have:
PF1 + PF2 = 2a = 2(5) = 10
Therefore, PF1 + PF2 equals to 10 for any point P on the ellipse 16x^2 + 25y^2 = 400. So, the correct option is B).
To know more about Point on Curve:
https://brainly.com/question/22562758
#SPJ4
Fill in the missing values so that the fractions are equivalent
Step-by-step explanation:
1. 2/10
2.3/15
3.4/20
4. 5/25
5.6/30
6.7/35
Which of the following statements is true about an angle drawn in standard position?
Positive angles are measured clockwise.
The vertex of the angle is at point (1,1).
One side is always aligned with the positive y-axis.
One side is always aligned with the positive x-axis.
Answer:
Step-by-step explanation:
The statement that is true about an angle drawn in standard position is that one side is always aligned with the positive x-axis. The other side of the angle can be aligned with either the positive y-axis or the negative y-axis. The vertex of the angle does not necessarily have to be at point (1,1) and positive angles are measured counterclockwise.
Julian Nestor is ready to purchase a new stroller. It is regularly priced at $127.99. The sale price is $88.54. What is the markdown?
Answer:
$39.45, about 31%
Step-by-step explanation:
You want to know the markdown represented by a sale price of $88.54 on a regular price of $127.99.
MarkdownThe dollar amount of the markdown is ...
88.54 -127.99 = -39.45
The price was marked down $39.45.
The percentage markdown from the original price is ...
-39.45/127.99 × 100% ≈ -30.823% ≈ -31%
The original price was marked down about 31% to get the sale price.
__
Additional comment
The negative price change means the price was marked down. If the change were positive, it would signify a markup.
ne al Compute the derivative of the given function. TE f(x) = - 5x^pi+6.1x^5.1+pi^5.1
The derivative of f(x) is
[tex]f'(x) = -5pi x^(pi-1) + 6.1 * 5.1x^(5.1-1) + 5.1pi^(5.1-1)[/tex].
What is derivative?The derivative of a function is a measure of how that function changes as its input changes. Derivatives are also used in calculus to find the area under a curve, or to solve differential equations.
In this case, the function f(x) is a polynomial, which means it is a combination of terms of the form [tex]ax^b[/tex], where a and b are constants. The derivative of f(x) can be calculated by taking the derivative of each term in the function and then combining them together.
The derivative of a term [tex]ax^b[/tex] is [tex]abx^(b-1)[/tex]. For the first term of f(x),[tex]-5x^pi[/tex], the derivative is [tex]-5pi x^(pi-1)[/tex]. For the second term, [tex]6.1x^5.1[/tex] the derivative is[tex]6.1 * 5.1x^(5.1-1)[/tex]. For the third term, [tex]pi^5.1[/tex], the derivative is [tex]5.1pi^(5.1-1)[/tex].
Combining these terms together, the derivative of f(x) is
[tex]f'(x) = -5pi x^(pi-1) + 6.1 * 5.1x^(5.1-1) + 5.1pi^(5.1-1)[/tex].
This answer is the derivative of the given function. This is how the function changes as its input changes.
For more questions related to function
https://brainly.com/question/24748644
#SPJ1
The derivative of f(x)= [tex]-5x^{\pi}+6.1x^{5.1}+\pi^{5.1}[/tex] is [tex]-5\pi x^{\pi -1}[/tex]+ [tex]6.1*5.1x^{5.1-1}[/tex] +5.1[tex]\pi^{5.1-1}[/tex] which can be calculated with the power rule.
What is derivative?The derivative of a function is a measure of how that function changes as its input changes. Derivatives are also used in calculus to find the area under a curve, or to solve differential equations.
The derivative of the given function f(x) = [tex]-5x^{\pi}+6.1x^{5.1}+\pi^{5.1}[/tex] can be calculated with the power rule, which states that the derivative of xⁿ is nx⁽ⁿ⁻¹⁾
To calculate the derivative of the given function, we begin by applying the power rule to each term.
The first term is [tex]-5^{\pi }[/tex] which has a derivative of [tex]-5\pi x^{\pi -1}[/tex].
The second term is [tex]6.1x^{5.1}[/tex] which has a derivative of [tex]6.1*5.1x^{5.1-1}[/tex].
The third term is [tex]\pi^{5.1}[/tex], which has a derivative of 5.1[tex]\pi^{5.1-1}[/tex].
Therefore, the derivative of the given function
f(x)= [tex]-5x^{\pi}+6.1x^{5.1}+\pi^{5.1}[/tex] is [tex]-5\pi x^{\pi -1}[/tex]+ [tex]6.1*5.1x^{5.1-1}[/tex] +5.1[tex]\pi^{5.1-1}[/tex].
For more questions related to function
https://brainly.com/question/24748644
#SPJ1
Question:
Compute the derivative of the given function.
f(x) = - [tex]5x^{\pi }[/tex]+[tex]6.1x^{5.1}[/tex]+[tex]\pi^{5.1}[/tex]