Answer:
n = 8
Step-by-step explanation:
Follow the question when turning the word equation into an equation
Because we know this is a quadratic equation, the product is a result of n multiplied by itself
[tex]n^{2} -4=60[/tex]
Solve for n
[tex]n^{2} =64[/tex]
[tex]\sqrt{n^{2} } =\sqrt{64}[/tex]
n = 8
Paisley is playing with a yo-yo. The following graph traces the path of the yo-yo while it is in the air, where y is the height of the yo-yo above the
ground, and x is the time, in seconds, from when the yo-yo leaves Paisley's hand Five stages of the yo-yo's path are marked on the graph.
Which of the five stages shows the slowest rate of change in the yo-yo's height above the ground?
А
В
C
D
Answer:
C
Step-by-step explanation:
From the graph we can notice that the yo-yo crosses five positions: A,B,C,D and E.
The path created by the yo-yo has a parabolic form.
● In the area C, the yoyo crosses the vertex in wich the rate of change equals 0.
●In A the parabola decreases dramatically
● In B, the parabola is decreasing but slower than A.
● In D, the parabola is increasing in a fast way
● In E, the parabola is increasing faster than D.
● In the first half of C, the parabola is decreasing slower than B and A.
● At the vertex, the parabola has a null rate of change.
● In the second half of C, the parabola is increasing but slower than D and E.
So we deduce that C has the slowest rate of change.
Answer:
The answer is C i took the test
Step-by-step explanation:
X = y + 12
How to solve for variable
Answer:
x-y=12
Step-by-step explanation:
v divided by 5 is equal to 60.
Answer:
[tex]\boxed{v=300}[/tex]
Step-by-step explanation:
Hey there!
To find v we’ll set up the following,
v ÷ 5 = 60
To get v by itself we’ll do
5*60 = 300
v = 300
Hope this helps :)
The sum of two numbers is 15. One number is 101 less than the other. Find the numbers.
Answer:
The numbers:
-43 and 58
Step-by-step explanation:
a + b = 15
a = b - 101
then:
(b-101) + b = 15
2b = 15+101
2b = 116
b = 116/2
b = 58
a = b - 101
a = 58 - 101
a = -43
Check:
a + b = 15
-43 + 58 = 15
The Colonel spots a campfire at a bearing N 59∘59∘ E from his current position. Sarge, who is positioned 242 feet due east of the Colonel reckons the bearing to the fire to be N 34∘34∘ W from his current position.
Determine the distance from the campfire to each man, rounded to the nearest foot.
Colonel is about............................ feet away from the fire
Sarge is about............................... feet away from the fire
Answer:
i. Colonel is about 201 feet away from the fire.
ii. Sarge is about 125 feet away from the fire.
Step-by-step explanation:
Let the Colonel's location be represented by A, the Sarge's by B and that of campfire by C.
The total angle at the campfire from both the Colonel and Sarge = [tex]59^{0}[/tex] + [tex]34^{0}[/tex]
= [tex]93^{0}[/tex]
Thus,
<CAB = [tex]90^{0}[/tex] - [tex]59^{0}[/tex] = [tex]31^{0}[/tex]
<CBA = [tex]90^{0}[/tex] - [tex]34^{0}[/tex] = [tex]56^{0}[/tex]
Sine rule states;
[tex]\frac{a}{Sin A}[/tex] = [tex]\frac{b}{Sin B}[/tex] = [tex]\frac{c}{Sin C}[/tex]
i. Colonel's distance from the campfire (b), can be determined by applying the sine rule;
[tex]\frac{b}{Sin B}[/tex] = [tex]\frac{c}{Sin C}[/tex]
[tex]\frac{b}{Sin 56^{0} }[/tex] = [tex]\frac{242}{Sin 93^{0} }[/tex]
[tex]\frac{b}{0.8290}[/tex] = [tex]\frac{242}{0.9986}[/tex]
cross multiply,
b = [tex]\frac{0.8290*242}{0.9986}[/tex]
= 200.8993
Colonel is about 201 feet away from the fire.
ii. Sarge's distance from the campfire (a), can be determined by applying the sine rule;
[tex]\frac{a}{Sin A}[/tex] = [tex]\frac{c}{Sin C}[/tex]
[tex]\frac{a}{Sin 31^{0} }[/tex] = [tex]\frac{242}{Sin 93^{0} }[/tex]
[tex]\frac{a}{0.5150}[/tex] = [tex]\frac{242}{0.9986}[/tex]
cross multiply,
a = [tex]\frac{0.5150*242}{0.9986}[/tex]
= 124.8073
Sarge is about 125 feet away from the fire.
Find the value of x , 5x =625 , also find 3x and 2x-1
Answer:
That's your answer
x= 125
3x= 375
2x-1= 249
Find X using the Angle Sum Theorem
Answer:
x = 20°
Step-by-step explanation:
So when I learned it we called it the exterior angle theorem not the angle sum theorem but here goes.
Since exterior angle = 110 Degrees,
--> The Inner 2 angles's sum = 110 Degrees
so, 70 + 2x = 110
=> 2x = 40
x = 20
x = 20°
Hope this helps!
A salon and spa chain periodically analyzes its service times to check for variation in service processes using x-bar and R charts. Daily random samples, each containing service times observed with eight different customers are collected. The average mean and the average range of the service times for the past week were 27.2 and 3.76 minutes, respectively. The value of D4 for a sample size of eight is 1.864. What is the upper control limit (UCL) for the R-chart
Answer:
7.00864
Step-by-step explanation:
The upper control limit for R -chart can be computed by using following formula
UCL=Rbar*D4.
We are given that average range R bar is
Rbar=3.76.
The value of D4 for n=8 is also given that is
D4=1.864.
Thus, the required computed upper control limit is
UCL=3.76*1.864=7.00864.
Find the value of the test statistic to test for a difference in the areas. Round your answer to two decimal places, if necessary.
Answer:
hello your question has some missing parts attached below is a picture of the complete question
Answer : 3.59
Step-by-step explanation:
Calculating the standard deviation, mean and standard error of the hourly wages
Area 1 : mean = 12.75 , std = 4.9497 , std error = 1.75
Area 2 : mean = 18.25, std = 4.3671, std error = 1.54399
Area 3 : mean = 16.25, std = 2.8660, std error = 1.01330
mean = sum of terms / number of terms
std = [tex]\sqrt{}[/tex] (X − μ)2 / n
std error = std / [tex]\sqrt{n}[/tex]
The value of the test statistic to test for a difference in the areas is
3.59 ( using anova table attached below )
I need help with this math problem please (3x+2)(5x-7)
Answer:
Hey there!
Using the foil method: (3x+2)(5x-7)
15x^2+10x-21x-14
15x^2-11x-14
Let me know if this helps :)
i need help really bad
Answer:
see explanation
Step-by-step explanation:
If f(x) and [tex]f^{-1}[/tex] are inverse functions, then
f([tex]f^{-1}[/tex])(x) = x
Thus substitute x = [tex]f^{-1}[/tex] (x) into f(x)
f([tex]\frac{x+6}{5}[/tex] )
= 5 ([tex]\frac{x+6}{5}[/tex] ) - 6
= x + 6 - 6
= x
Thus f(x) and [tex]f^{-1}[/tex] (x) are inverse functions
A news article estimated that only 5% of those age 65 and older who prefer to watch the news, rather than to read or listen, watch the news online. This estimate was based on a survey of a large sample of adult Americans. Consider the population consisting of all adult Americans age 65 and older who prefer to watch the news, and suppose that for this population the actual proportion who prefer to watch online is 0.05. A random sample of n = 100 people will be selected from this population and p, the proportion of people who prefer to watch online, will be calculated.
(a) What are the mean and standard deviation of the sampling distribution of p? (Round your standard deviation to four decimal places.
(b) Is the sampling distribution of p approximately normal for random samples of size n 100? Explain.
i. The sampling distribution of p is approximately normal because np is less than 10.
ii. The sampling distribution of p is approximately normal because np is at least 10.
iii. The sampling distribution of p is not approximately normal because np is less than 10
iv. The sampling distribution of p is not approximately normal because np is at least 10
v. The sampling distribution of p is not approximately normal because n(1 - p) is less than 10.
(c) Suppose that the sample size is n = 400 rather than n = 100, what are the values for the mean and standard deviation when n=400?
Does the change in sample size affect the mean and standard deviation of the sampling distribution of p? If not, explain why not.
i. When the sample size increases, the mean increases.
ii. When the sample size increases, the mean decreases.
iii. When the sample size increases, the mean stays the same.
iv. The sampling distribution is always centered at the population mean, regardless of sample size.
v. When the sample size increases, the standard deviation increases.
vi. When the sample size increases, the standard deviation decreases.
Answer:
3.25
Step-by-step explanation:
Each side of a quilt square measures approximately 4.25 inches. If there are about 2.54 centimeters in 1 inch, how long is each side of the square in centimeters? Use complete sentences to explain your reasoning.
Answer: approximately 10.8 centimeters
Step-by-step explanation:
We have a square, where each side measures approx. 4.25 in
Now we know that 1in ≈ 2.54 cm
Then, in 4.25 in, we have 4.25 times 1 inch, so we have 4.25 times the length of 2.54 cm
So the approximate measure of the sides in centimeters is:
4.25*(2.54)cm = 10.8 cm
So we have that each side measures approximately 10.8 centimeters
The position of an object at time t is given by s(t) = -9 - 3t. Find the instantaneous velocity at t = 8 by finding the derivative. I think its either -3 or -36
Answer:
[tex] \boxed{\sf Instantaneous \ velocity \ (v) = -3} [/tex]
Given:
Relation between position of an object at time t is given by:
s(t) = -9 - 3t
To Find:
Instantaneous velocity (v) at t = 8
Step-by-step explanation:
To find instantaneous velocity we will differentiate relation between position of an object at time t by t:
[tex] \sf \implies v = \frac{d}{dt} (s(t))[/tex]
[tex] \sf \implies v = \frac{d}{dt} ( - 9 - 3t)[/tex]
Differentiate the sum term by term and factor out constants:
[tex] \sf \implies v = \frac{d}{dt} ( - 9) - 3 (\frac{d}{dt} (t))[/tex]
The derivative of -9 is zero:
[tex] \sf \implies v = - 3( \frac{d}{dt} (t)) + 0[/tex]
Simplify the expression:
[tex] \sf \implies v = - 3( \frac{d}{dt} (t))[/tex]
The derivative of t is 1:
[tex] \sf \implies v = - 3 \times 1[/tex]
Simplify the expression:
[tex] \sf \implies v = - 3 [/tex]
(As, there is no variable after differentiating the relation between position of an object at time t by t so at time t = 8 is of no use.)
So,
Instantaneous velocity (v) at t = 8 is -3
At the end of the day of teaching the skill of cutting and sewing to make capes, Ms. Ironperson and Mr. Thoro decided to go to the Shawarma Mediterranean Grill. Ms. Ironperson ordered 3 chicken shawarma wraps and 2 orders of spiced potatoes for a total bill of $42.95. Mr. Thoro ordered 5 chicken shawarma wraps and 4 orders of spiced potatoes for a total bill of $74.91. What is the cost of a chicken shawarma wrap? What is the cost of one order of spiced potatoes? If x denotes the cost of a chicken shawarma wrap and y denotes the cost of an order of spiced potatoes, what are the equations needed to solve this problem?
Answer:
a) What is the cost of a chicken shawarma wrap?
$10.99
b) What is the cost of one order of spiced potatoes?
$4.99
c) If x denotes the cost of a chicken shawarma wrap and y denotes the cost of an order of spiced potatoes, what are the equations needed to solve this problem?
3x + 2y = $42.95 .............Equation 1
5x + 4y = $74.91 ................Equation 2
Step-by-step explanation:
Let x denotes the cost of a chicken shawarma wrap and y denotes the cost of an order of spiced potatoes,
Cost of a chicken sharwarma wrap = x
Cost of an order of spiced potatoes = y
Ms. Ironperson ordered 3 chicken shawarma wraps and 2 orders of spiced potatoes for a total bill of $42.95.
3x + 2y = $42.95 .............Equation 1
Mr. Thoro ordered 5 chicken shawarma wraps and 4 orders of spiced potatoes for a total bill of $74.91.
5x + 4y = $74.91 ................Equation 2
Hence, the Equations needed to solve the question is:
3x + 2y = $42.95 .............Equation 1
5x + 4y = $74.91 ................Equation 2
We use Elimination method to solve for this.
Multiply Equation 1 by coefficient of x in Equation 2
Equation 2 by coefficient of x in Equation 1
3x + 2y = $42.95 .............Equation 1 × 5
5x + 4y = $74.91 ................Equation 2 × 3
15x + 10y = 214.75..............Equation 3
15x + 12y = 224.73..............Equation 4
Subtract Equation 3 from Equation 4
2y = 9.98
y = 9.98/2
y = 4.99
Therefore, y = Cost of an order of spiced potatoes = $4.99
Subtitute 4.99 for y in Equation 1
3x + 2y = $42.95 .............Equation 1
3x +2(4.99) = 42.95
3x + 9.98 = 42.95
3x = 42.95 - 9.98
3x = 32.97
x = 32.97/3
x = 10.99
x = Cost of a chicken sharwarma wrap = $10.99
Therefore,
The cost of a chicken sharwarma wrap = $10.99
The cost of an order of spiced potatoes = $4.99
donald is a taxi driver. for each ride in the taxi, the cost, c, is given by c = 500+130d, where c is in cents and d is the distance of the ride, in miles. what is the meaning of the value 500 in this equation? a) donald charges 500 cents per mile b) donald drives 500 customers per day c) donald charges at least 500 cents per taxi ride d) donald charges at most 500 cents per taxi ride
can u go to my page real quick and answer my question pls
An arithmetic sequence has this recursive formula: (a^1 =8, a^n= a^n-1 -6
A.a^n=8+(n-6)(-1)
B.a^n=8+(n-1)(-6)
C.
Answer:
[tex]a_n = 8 + (n - 1) (-6)[/tex]
Step-by-step explanation:
Given
[tex]a_1 = 8[/tex]
Recursive: [tex]a_{n} = a_{n-1} - 6[/tex]
Required
Determine the formula
Substitute 2 for n to determine [tex]a_2[/tex]
[tex]a_{2} = a_{2-1} - 6[/tex]
[tex]a_{2} = a_{1} - 6[/tex]
Substitute [tex]a_1 = 8[/tex]
[tex]a_2 = 8 - 6[/tex]
[tex]a_2 = 2[/tex]
Next is to determine the common difference, d;
[tex]d = a_2 - a_1[/tex]
[tex]d = 2 - 8[/tex]
[tex]d = -6[/tex]
The nth term of an arithmetic sequence is calculated as
[tex]a_n = a_1 + (n - 1)d[/tex]
Substitute [tex]a_1 = 8[/tex] and [tex]d = -6[/tex]
[tex]a_n = a_1 + (n - 1)d[/tex]
[tex]a_n = 8 + (n - 1) (-6)[/tex]
Hence, the nth term of the sequence can be calculated using[tex]a_n = 8 + (n - 1) (-6)[/tex]
Let $x=5$, $y=\frac{3}{4}$, and $z=-\frac{1}{7}$. What is $$\frac{xz}{y}?$$
Answer:
-20/21Step-by-step explanation:
Given x = 5, y = 3/4 and z = -1/7, 2=we are to calculate [tex]\frac{xz}{y}[/tex]. Substituting the value of x, y and z into the expression will give;
[tex]= \frac{xz}{y}\\\\ \frac{5(-1/7)}{3/4} \\= \frac{-5/7}{3/4}\\\\= \frac{-5}{7} * \frac{4}{3}\\ \\ = \dfrac{-20}{21}\\[/tex]
Hence the value of the expression is -20/21
Original price of a soda: $800 tax 7% selling price: $
Answer:
$856
Step-by-step explanation:
Find 7% of $800 and then add it to $800
wo independent samples have been selected, 100 observations from population 1 and 76 observations from population 2. The sample means have been calculated to be x⎯⎯⎯1=11.9 and x⎯⎯⎯2=12.9. From previous experience with these populations, it is known that the variances are σ21=27 and σ22=23. (a) Determine the rejection region for the test of
Answer:
[tex]\text{Critical Region} = z<-1.96\ \text{or}\ z>1.96[/tex]
Step-by-step explanation:
A test for the difference between two population means is to be performed.
As the population variances are known, the z-test will be used.
The hypothesis can be defined as follows:
H₀: μ₁ = μ₂ vs. Hₐ: μ₁ ≠ μ₂
Assume that the significance level of the test is, α = 0.05.
The critical region can be defined as follows:
The critical value of z for α = 0.05 is:
[tex]z_{\alpha/2}=z_{0.05/2}=z_{0.025} =-1.96\\\\z_{1-\alpha/2}=z_{1-0.05/2}=z_{0.975} =1.96[/tex]
Use a z-table.
[tex]\text{Critical Region} = z<-1.96\ \text{or}\ z>1.96[/tex]
Algebraic Expressions
Evaluate
The weight of a bag of oranges is 1.3 pounds. There are 9 bags of oranges. What is the total weight?
Help please :)
Answer:
11.7 pounds
Step-by-step explanation:
Multiply the weight of one bag of oranges by 9 bags.
Find the value of x. A: 15 B: 12 C: 10 D: 8
Answer:
[tex]\boxed{\sf C. \ 10}[/tex]
Step-by-step explanation:
[tex]\sf The \ intersecting \ chord \ theorem \ states \ that \ the \ products[/tex]
[tex]\sf of \ the \ lengths \ of \ the \ line \ segments \ on \ each \ chord \ are \ equal.[/tex]
[tex]NH \times HT = MH \times HY[/tex]
[tex](x+20) \times 8=12 \times 20[/tex]
[tex]\sf Expand \ brackets \ and \ multiply.[/tex]
[tex]8x+160=240[/tex]
[tex]\sf Subtract \ 160 \ from \ both \ sides.[/tex]
[tex]8x+160-160=240-160[/tex]
[tex]8x=80[/tex]
[tex]\sf Divide \ both \ sides \ by \ 8.[/tex]
[tex]\displaystyle \frac{8x}{8} =\frac{80}{8}[/tex]
[tex]x=10[/tex]
The value of x is 10.
We have a circle and inside it two chords MY and NT intersect at point H.
We have to find the value of x in the figure.
What is intersecting chord theorem?According to the intersecting chord theorem, when two chords say AB and CD intersect at point O, then
AO x OB = CO x OD
Applying the chord intersecting theorem to the figure in the question, we get -
MH x HY = NH x HT
12 x 20 = (x+20) x 8
240 = 8x + 160
8x = 80
x = 10
Hence the value of x is 10.
To solve more questions on Circles and chords, visit the link below -
https://brainly.com/question/15568573
#SPJ5
simplify use the multiplication rule
Answer:
3
Step-by-step explanation:
[tex] \sqrt[4] {27} \cdot \sqrt[4] {3} = [/tex]
[tex] = \sqrt[4] {27 \cdot 3} [/tex]
[tex] = \sqrt[4] {3^3 \cdot 3^1} [/tex]
[tex] = \sqrt[4] {3^4} [/tex]
[tex] = 3 [/tex]
In a frequency distribution of 290 scores, the mean is 99 and the median is 86. One would expect this distribution to be:
Answer:
positively skewed to the right
Step-by-step explanation:
The measure of the central tendency is a profound way to describe the mean, median and mode. The measure of central tendency indicates where the center of distribution tends to be. The measure of central tendency provide a validity and answers whether the scores are high or generally low.
In this measure,The mean is usually pulled to the tail. The skewed is determined by where the tail goes, to the right side , it is positively skewed and to the left side , it is known as negatively skewed distribution.
Given that:
In a frequency of distribution of 290 scores,
the mean = 99
the median = 86
One would expect this distribution to be; positively skewed to the right since the mean value is greater than the median value.
A die is rolled 200 times with the following results. Outcome 1 2 3 4 5 6 Frequency 32 36 44 20 30 38 What is the experimental probability of rolling the given result? 3 a. 0.22 c. 0.44 b. 0.78 d. 0.23
Answer:
.22
Step-by-step explanation:
The number of times a 3 was rolled is 44 out of 200
The experimental probability is 44/200 = .22
The frequency of rolling a 3 was 44.
So... 44/200
After dividing we get 0.22
Therefore, the answer is A
Best of Luck!
Suppose babies born in a large hospital have a mean weight of 3316 grams, and a standard deviation of 324 grams. If 83 babies are sampled at random from the hospital, what is the probability that the mean weight of the sample babies would differ from the population mean by greater than 54 grams?
Answer: 0.129
Step-by-step explanation:
Let [tex]\overline{X}[/tex] denotes a random variable that represents the mean weight of babies born.
Population mean : [tex]\mu= \text{3316 grams,}[/tex]
Standard deviation: [tex]\text{324 grams}[/tex]
Sample size = 83
Now, the probability that the mean weight of the sample babies would differ from the population mean by greater than 54 grams will be :
[tex]P(|\mu-\overline{X}|>54)=1-P(\dfrac{-54}{\dfrac{324}{\sqrt{83}}}<\dfrac{\overline{X}-\mu}{\dfrac{\sigma}{\sqrt{n}}}<\dfrac{-54}{\dfrac{324}{\sqrt{83}}})\\\\=1-[P(-1.518<Z<1.518)\ \ \ [Z=\dfrac{\overline{X}-\mu}{\dfrac{\sigma}{\sqrt{n}}}]\\\\=1-[P(Z<1.518)-P(z<-1.518)]\\\\=1-[P(Z<1.518)-(1-P(z<1.518))]\\\\=1-[2P(Z<1.518)-1]=2-2P(Z<1.518)\\\\=2-2(0.9355)\ [\text{By z-table}]\\\\=0.129[/tex]
hence, the required probability = 0.129
Please answer this correctly without making mistakes
Answer:
so first convert to fraction so
9 3/4 = 39/4
so it was spread among 3
so this is division so you do 39/4 divided by 3
so you keep switch flip
which is 39/4 *1/3
answer is 13/4
Answer:
3 1/4 bagsStep-by-step explanation:
[tex]9\frac{3}{4}= \frac{(4 \times 9)+3}{4}= \frac{39}{4} \\\\\frac{39}{4} = 3 \:vegetable \: beds\\x \:\:\:= 1 \: vegetable \:bed\\\\3x = \frac{39}{4} \\\\\frac{3x}{3} = \frac{\frac{39}{4} }{3} \\\\x = \frac{13}{4} \\\\x = 3\frac{1}{4}[/tex]
The number of weekly hours spent on a smart device varies inversely with the person's age. If a 20-year-old person spends 52 hours on their smart device each week, how many hours does a 50-year-old person spend on their smart device?
Answer:
20.8 hours
Step-by-step explanation:
Given that hours (h) varies inversely with age (a) then the equation relating them is
h = [tex]\frac{k}{a}[/tex] ← k is the constant of variation
To find k use the condition h = 52 when a = 20, thus
52 = [tex]\frac{k}{20}[/tex] ( multiply both sides by 20 )
1040 = k
h = [tex]\frac{1040}{a}[/tex] ← equation of variation
When a = 50, then
h = [tex]\frac{1040}{50}[/tex] = 20.8 hours
What is a categorical variable
It's a variable that deals with various labels, rather than the usual type of numeric variable you may be used to.
One example of a categorical variable is color. You could have red, green, blue, yellow, and orange as the five choices for your categorical variable. Each color is a label or category.
This is an example of a qualitative variable. We don't have any numeric data attached to color. They're simply names or labels. In contrast, a quantitative variable is something like a person's height since a number is attached here (more specifically its a continuous quantitative variable).
what is the least number to be added to 1500 to make it a perfect square?
Answer:
21
Step-by-step explanation:
√1500 = 38.7
Round to nearest whole number
≈39
39²-1500
= 1521 - 1500
= 21