x < -10 -10 < x < 30 30 x < 50 50 ≤ x 0 0.25 0.75 F(x) = 1 (a) P(X ≤ 50) (c) P(40 ≤X ≤ 60) (e) P(0 ≤X < 10) (b) P(X ≤ 40) (d) P(X< 0) (f) P(-10 < X < 10)

Answers

Answer 1

The probabilities are,

(a)  P(X ≤ 50) = 1

(b) P(X ≤ 40) = 0.75

(c) P(40 ≤ X ≤ 60) = 0.25

(d) P(X < 0) = 0

(e) P(0 ≤ X < 10) = 0.25

(f) P(-10 < X < 10) = 0.25

a) For P(X ≤ 50):

We have to add the probabilities of all the values of X that are less than or equal to 50.

Since F(x) = 1 when x is greater than or equal to 50, we have,

⇒ P(X ≤ 50) = P(X < -10) + P(-10 ≤ X < 30) + P(30 ≤ X < 50) + P(X ≥ 50)

⇒ P(X ≤ 50) = 0 + 0.25 + 0.75 + 1

⇒ P(X ≤ 50) = 2

Since, probabilities cannot be greater than 1.

Therefore, the correct answer is,

⇒ P(X ≤ 50) = P(X < -10) + P(-10 ≤ X < 30) + P(30 ≤ X < 50) + P(X ≤ 50)

⇒ P(X ≤ 50) = 0 + 0.25 + 0.75 + 0

⇒ P(X ≤ 50) = 1

So, the probability that X is less than or equal to 50 is 1.

b) For P(X ≤ 40):

We have to add the probabilities of all the values of X that are less than or equal to 40.

Since F(x) = 0.75 when x is greater than or equal to 30 and less than 50, and F(x) = 1 when x is greater than or equal to 50, we have,

⇒ P(X ≤ 40) = P(X < -10) + P(-10 ≤ X < 30) + P(30 ≤ X ≤ 40)

⇒ P(X ≤ 40) = 0 + 0.25 + 0.5

⇒ P(X ≤ 40) = 0.75

So, the probability that X is less than or equal to 40 is 0.75.

c) For P(40 ≤ X ≤ 60):

To find P(40 ≤ X ≤ 60), we have to subtract the probability of X being less than 40 from the probability of X being less than or equal to 60.

Since F(x) = 1 when x is greater than or equal to 50, we have,

⇒ P(40 ≤ X ≤ 60) = P(X ≤ 60) - P(X ≤ 40)

⇒ P(40 ≤ X ≤ 60) = 1 - 0.75

⇒ P(40 ≤ X ≤ 60) = 0.25

So, the probability that X is between 40 and 60 (inclusive) is 0.25.

d) For P(X < 0):

To find P(X < 0), we have to add the probabilities of all the values of X that are less than 0. Since F(x) = 0 when x is less than -10, we have,

⇒ P(X < 0) = P(X < -10)

⇒ P(X < 0) = 0

So, the probability that X is less than 0 is 0.

e) For P(0 ≤ X < 10):

To find P(0 ≤ X < 10), we have to subtract the probability of X being less than 0 from the probability of X being less than or equal to 10.

Since F(x) = 0.25 when x is greater than or equal to -10 and less than 30, we have,

⇒ P(0 ≤ X < 10) = P(X ≤ 10) - P(X < 0)

⇒ P(0 ≤ X < 10) = P(X ≤ 10)

⇒ P(0 ≤ X < 10) = F(10)

⇒ P(0 ≤ X < 10) = 0.25

So, the probability that X is between 0 (inclusive) and 10 (exclusive) is 0.25.

f) For P(-10 < X < 10):

To find P(-10 < X < 10), we have to subtract the probability of X being less than or equal to -10 from the probability of X being less than or equal to 10.

Since F(x) = 0.25 when x is greater than or equal to -10 and less than 30, we have,

⇒ P(-10 < X < 10) = P(X ≤ 10) - P(X ≤ -10)

⇒ P(-10 < X < 10) = F(10) - F(-10)

⇒ P(-10 < X < 10) = 0.25 - 0

⇒ P(-10 < X < 10) = 0.25

So, the probability that X is between -10 (exclusive) and 10 (exclusive) is 0.25.

Learn more about the probability visit:

https://brainly.com/question/13604758

#SPJ4

The complete question is attached below:

X &lt; -10 -10 &lt; X &lt; 30 30 X &lt; 50 50 X 0 0.25 0.75 F(x) = 1 (a) P(X 50) (c) P(40 X 60) (e) P(0
X &lt; -10 -10 &lt; X &lt; 30 30 X &lt; 50 50 X 0 0.25 0.75 F(x) = 1 (a) P(X 50) (c) P(40 X 60) (e) P(0

Related Questions

suppose that any given day in march, there is 0.3 chance of rain, find standard deviation

Answers

The standard deviation is 1.87.

suppose that any given day in march, there is 0.3 chance of rain, find standard deviation

Given that any given day in March, there is a 0.3 chance of rain.

We are to find the standard deviation. The standard deviation can be found using the formula given below:σ = √(npq)

Where, n = total number of days in March

p = probability of rain

q = probability of no rain

q = 1 – p

Substituting the given values,n = 31 (since March has 31 days)p = 0.3q = 1 – 0.3 = 0.7Therefore,σ = √(npq)σ = √(31 × 0.3 × 0.7)σ = 1.87

Hence, the standard deviation is 1.87.

To know more on probability visit:

https://brainly.com/question/13604758

#SPJ11

Find z that such 8.6% of the standard normal curve lies to the right of z.

Answers

Therefore, we have to take the absolute value of the z-score obtained. Thus, the z-score is z = |1.44| = 1.44.

To determine z such that 8.6% of the standard normal curve lies to the right of z, we can follow the steps below:

Step 1: Draw the standard normal curve and shade the area to the right of z.

Step 2: Look up the area 8.6% in the standard normal table.Step 3: Find the corresponding z-score for the area using the table.

Step 4: Take the absolute value of the z-score obtained since we want the area to the right of z.

Step 1: Draw the standard normal curve and shade the area to the right of z

The standard normal curve is a bell-shaped curve with mean 0 and standard deviation 1. Since we want to find z such that 8.6% of the standard normal curve lies to the right of z, we need to shade the area to the right of z as shown below:

Step 2: Look up the area 8.6% in the standard normal table

The standard normal table gives the area to the left of z.

To find the area to the right of z, we need to subtract the area from 1.

Therefore, we look up the area 1 – 0.086 = 0.914 in the standard normal table.

Step 3: Find the corresponding z-score for the area using the table

The standard normal table gives the z-score corresponding to the area 0.914 as 1.44.

Step 4: Take the absolute value of the z-score obtained since we want the area to the right of z

The area to the right of z is 0.086, which is less than 0.5.

Therefore, we have to take the absolute value of the z-score obtained.

Thus, the z-score is z = |1.44| = 1.44.

Z-score is also known as standard score, it is the number of standard deviations by which an observation or data point is above the mean of the data set. A standard normal distribution is a normal distribution with mean 0 and standard deviation 1.

The area under the curve of a standard normal distribution is equal to 1. The area under the curve of a standard normal distribution to the left of z can be found using the standard normal table.

Similarly, the area under the curve of a standard normal distribution to the right of z can be found by subtracting the area to the left of z from 1.

In this problem, we need to find z such that 8.6% of the standard normal curve lies to the right of z. To find z, we need to perform the following steps.

Step 1: Draw the standard normal curve and shade the area to the right of z.

Step 2: Look up the area 8.6% in the standard normal table.

Step 3: Find the corresponding z-score for the area using the table.

Step 4: Take the absolute value of the z-score obtained since we want the area to the right of z.

The standard normal curve is a bell-shaped curve with mean 0 and standard deviation 1.

Since we want to find z such that 8.6% of the standard normal curve lies to the right of z, we need to shade the area to the right of z.

The standard normal table gives the area to the left of z.

To find the area to the right of z, we need to subtract the area from 1.

Therefore, we look up the area 1 – 0.086 = 0.914 in the standard normal table.

The standard normal table gives the z-score corresponding to the area 0.914 as 1.44.

The area to the right of z is 0.086, which is less than 0.5.

To know more about curve visit:

https://brainly.com/question/28793630

#SPJ11

14. A sample of size 3 is selected without replacement from the members of a club that consists of 4 male students and 5 female students. Find the probability the sample has at least one female. 20 10

Answers

20/21 is the probability that the sample has at least one female.

The total number of students in the club is 4 + 5 = 9.

The sample size is 3. Therefore, the number of ways to choose 3 students out of 9 is: C(9,3) = 84.

There are 5 female students. Therefore, the number of ways to choose 3 students from 5 female students is: C(5,3) = 10.

The probability of selecting at least one female is equal to 1 minus the probability of selecting all male members. The probability of selecting all male members is the number of ways to choose 3 members out of 4 male students divided by the total number of ways to choose 3 members from 9. Therefore, the probability of selecting all male members is: C(4,3) / C(9,3) = 4/84 = 1/21.

So, the probability of selecting at least one female is: P(at least one female) = 1 - P(all male members) = 1 - 1/21 = 20/21.

Therefore, the probability that the sample has at least one female is 20/21.

To learn more about probability, refer below:

https://brainly.com/question/31828911

#SPJ11

for a poisson random variable x with mean 4, find the following probabilities. (round your answers to three decimal places.)

Answers

The probability that the Poisson random variable X is equal to 3 is approximately 0.195.

What is the probability of X being 3?

To find the probabilities for a Poisson random variable X with a mean of 4, we can use the Poisson distribution formula.

The formula is given by P(X = k) = (e^(-λ) * λ^k) / k!, where λ represents the mean and k represents the desired value.

For X = 3, we substitute λ = 4 and k = 3 into the formula. The calculation yields P(X = 3) ≈ 0.195.

For X ≤ 2, we need to calculate P(X = 0) and P(X = 1) first, and then sum them together.

Substituting λ = 4 and k = 0, we find P(X = 0) ≈ 0.018.

Similarly, substituting λ = 4 and k = 1, we get P(X = 1) ≈ 0.073.

Adding these probabilities, we have P(X ≤ 2) ≈ 0.018 + 0.073 ≈ 0.238.

For X ≥ 5, we need to calculate P(X = 5), P(X = 6), and so on, until P(X = ∞) which is practically zero.

By summing these probabilities, we find

P(X≥5)≈0.402

These probabilities provide insights into the likelihood of observing specific values or ranges of values for the given Poisson random variable. Learn more about the Poisson distribution and its applications in modeling events with random occurrences.

Learn more about Probability

brainly.com/question/30541258

#SPJ11

Smartphones: A poll agency reports that 80% of teenagers aged 12-17 own smartphones. A random sample of 250 teenagers is drawn. Round your answers to at least four decimal places as needed. Dart 1 n6 (1) Would it be unusual if less than 75% of the sampled teenagers owned smartphones? It (Choose one) be unusual if less than 75% of the sampled teenagers owned smartphones, since the probability is Below, n is the sample size, p is the population proportion and p is the sample proportion. Use the Central Limit Theorem and the TI-84 calculator to find the probability. Round the answer to at least four decimal places. n=148 p=0.14 PC <0.11)-0 Х $

Answers

The solution to the problem is as follows:Given that 80% of teenagers aged 12-17 own smartphones. A random sample of 250 teenagers is drawn.

The probability is calculated by using the Central Limit Theorem and the TI-84 calculator, and the answer is rounded to at least four decimal places.PC <0.11)-0 Х $P(X<0.11)To find the probability of less than 75% of the sampled teenagers owned smartphones, convert the percentage to a proportion.75/100 = 0.75

This means that p = 0.75. To find the sample proportion, use the given formula:p = x/nwhere x is the number of teenagers who own smartphones and n is the sample size.Substituting the values into the formula, we get;$$p = \frac{x}{n}$$$$0.8 = \frac{x}{250}$$$$x = 250 × 0.8$$$$x = 200$$Therefore, the sample proportion is 200/250 = 0.8.To find the probability of less than 75% of the sampled teenagers owned smartphones, we use the standard normal distribution formula, which is:Z = (X - μ)/σwhere X is the random variable, μ is the mean, and σ is the standard deviation.

To know more about probability visit:

https://brainly.com/question/11234923

#SPJ11

PART I : As Norman drives into his garage at night, a tiny stone becomes wedged between the treads in one of his tires. As he drives to work the next morning in his Toyota Corolla at a steady 35 mph, the distance of the stone from the pavement varies sinusoidally with the distance he travels, with the period being the circumference of his tire. Assume that his wheel has a radius of 12 inches and that at t = 0 , the stone is at the bottom.

(a) Sketch a graph of the height of the stone, h, above the pavement, in inches, with respect to x, the distance the car travels down the road in inches. (Leave pi visible on your x-axis).

(b) Determine the equation that most closely models the graph of h(x)from part (a).

(c) How far will the car have traveled, in inches, when the stone is 9 inches from the pavement for the TENTH time?

(d) If Norman drives precisely 3 miles from his house to work, how high is the stone from the pavement when he gets to work? Was it on its way up or down? How can you tell?

(e) What kind of car does Norman drive?



PART II: On the very next day, Norman goes to work again, this time in his equally fuel-efficient Toyota Camry. The Camry also has a stone wedged in its tires, which have a 12 inch radius as well. As he drives to work in his Camry at a predictable, steady, smooth, consistent 35 mph, the distance of the stone from the pavement varies sinusoidally with the time he spends driving to work with the period being the time it takes for the tire to make one complete revolution. When Norman begins this time, at t = 0 seconds, the stone is 3 inches above the pavement heading down.

(a) Sketch a graph of the stone’s distance from the pavement h (t ), in inches, as a function of time t, in seconds. Show at least one cycle and at least one critical value less than zero.

(b) Determine the equation that most closely models the graph of h(t) .

(c) How much time has passed when the stone is 16 inches from the pavement going TOWARD the pavement for the EIGHTH time?

(d) If Norman drives precisely 3 miles from his house to work, how high is the stone from the pavement when he gets to work? Was it on its way up or down?

(e) If Norman is driving to work with his cat in the car, in what kind of car is Norman’s cat riding?

Answers

PART I:

(a) The height of the stone, h, above the pavement varies sinusoidally with the distance the car travels, x. Since the period is the circumference of the tire, which is 2π times the radius, the graph of h(x) will be a sinusoidal wave. At t = 0, the stone is at the bottom, so the graph will start at the lowest point. As the car travels, the height of the stone will oscillate between a maximum and minimum value. The graph will repeat after one full revolution of the tire.

(b) The equation that most closely models the graph of h(x) is given by:

h(x) = A sin(Bx) + C

where A represents the amplitude (half the difference between the maximum and minimum height), B represents the frequency (related to the period), and C represents the vertical shift (the average height).

(c) To find the distance traveled when the stone is 9 inches from the pavement for the tenth time, we need to determine the distance corresponding to the tenth time the height reaches 9 inches. Since the period is the circumference of the tire, the distance traveled for one full cycle is equal to the circumference. We can calculate it using the formula:

Circumference = 2π × radius = 2π × 12 inches

Let's assume the tenth time occurs at x = d inches. From the graph, we can see that the stone reaches its maximum and minimum heights twice in one cycle. So, for the tenth time, it completes 5 full cycles. We can set up the equation:

5 × Circumference = d

Solving for d gives us the distance traveled when the stone is 9 inches from the pavement for the tenth time.

(d) If Norman drives precisely 3 miles from his house to work, we need to convert the distance to inches. Since 1 mile equals 5,280 feet and 1 foot equals 12 inches, the total distance traveled is 3 × 5,280 × 12 inches. To determine the height of the stone when he gets to work, we can plug this distance into the equation for h(x) and calculate the corresponding height. By analyzing the sign of the sine function at that point, we can determine whether the stone is on its way up or down. If the value is positive, the stone is on its way up; if negative, it is on its way down.

(e) The question does not provide any information about the type of car Norman drives. The focus is on the characteristics of the stone's motion.

PART II:

(a) The graph of the stone's distance from

To know more about Formula visit-

brainly.com/question/31062578

#SPJ11

Suppose X is a normal random variable with mean μ-53 and standard deviation σ-12. (a) Compute the z-value corresponding to X-40 b Suppose he area under the standard normal curve to the left o the z-alue found in part a is 0.1393 What is he area under (c) What is the area under the normal curve to the right of X-40?

Answers

Given, a normal random variable X with mean μ - 53 and standard deviation σ - 12. We need to find the z-value corresponding to X = 40 and the area under the normal curve to the right of X = 40.(a)

To compute the z-value corresponding to X = 40, we can use the z-score formula as follows:z = (X - μ) / σz = (40 - μ) / σGiven μ = 53 and σ = 12,Substituting these values, we getz = (40 - 53) / 12z = -1.0833 (approx)(b) The given area under the standard normal curve to the left of the z-value found in part (a) is 0.1393. Let us denote this as P(Z < z).We know that the standard normal distribution is symmetric about the mean, i.e.,P(Z < z) = P(Z > -z)Therefore, we haveP(Z > -z) = 1 - P(Z < z)P(Z > -(-1.0833)) = 1 - 0.1393P(Z > 1.0833) = 0.8607 (approx)(c)

To find the area under the normal curve to the right of X = 40, we need to find P(X > 40) which can be calculated as:P(X > 40) = P(Z > (X - μ) / σ)P(X > 40) = P(Z > (40 - 53) / 12)P(X > 40) = P(Z > -1.0833)Using the standard normal distribution table, we getP(Z > -1.0833) = 0.8607 (approx)Therefore, the area under the normal curve to the right of X = 40 is approximately 0.8607.

To know more about integer visit:

https://brainly.com/question/15276410

#SPJ11

Suppose you are spending 3% as much on the countermeasures to prevent theft as the reported expected cost of the theft themselves. That you are presumably preventing, by spending $3 for every $100 of total risk. The CEO wants this percent spending to be only 2% next year (i.e. spend 2% as much on security as the cost of the thefts if they were not prevented). You predict there will be 250% as much cost in thefts (if successful, i.e. risk will increase by 150% of current value) next year due to increasing thefts.

Should your budget grow or shrink?

By how much?

If you have 20 loss prevention employees right now, how many should you hire or furlough?

Answers

You should hire an additional 13 or 14 employees.

How to solve for the number to hire

If you are to reduce your expenditure on security to 2% of the expected cost of thefts, then next year your budget would be

2% of $250,

= $5.

So compared to this year's budget, your budget for next year should grow.

In terms of percentage growth, it should grow by

($5 - $3)/$3 * 100%

= 66.67%.

So, if you currently have 20 employees, next year you should have

20 * (1 + 66.67/100)

= 20 * 1.6667

= 33.34 employees.

However, you can't have a fraction of an employee. Depending on your specific needs, you might round down to 33 or up to 34 employees. But for a simple proportional relationship, you should hire an additional 13 or 14 employees.

Read more on unit rate here:https://brainly.com/question/4895463

#SPJ1

suppose the correlation between two variables ( x , y ) in a data set is determined to be r = 0.83, what must be true about the slope, b , of the least-squares line estimated for the same set of data? A. The slope b is always equal to the square of the correlation r.
B. The slope will have the opposite sign as the correlation.
C. The slope will also be a value between −1 and 1.
D. The slope will have the same sign as the correlation.

Answers

The correct statement is that the slope of the regression line will have the same sign as the correlation.

Given, the correlation between two variables (x, y) in a data set is determined to be r=0.83.

We need to find the true statement about the slope, b, of the least-squares line estimated for the same set of data. We know that the slope of the regression line is given by the equation:

b = r (y / x) Where, r is the correlation coefficient y is the sample standard deviation of y x is the sample standard deviation of x From the given equation, the slope of the regression line, b is directly proportional to the correlation coefficient, r.

Now, according to the given statement: "The slope will have the opposite sign as the correlation. "We can conclude that the statement is true. Hence, option B is the correct answer. Option B: The slope will have the opposite sign as the correlation.

Whenever we calculate the correlation coefficient between two variables, it ranges between -1 to +1. If it is close to +1, it indicates a positive correlation. In this case, we can see that the value of the correlation coefficient is 0.83 which means that there is a strong positive correlation between x and y.

As we know, the slope of the regression line is directly proportional to the correlation coefficient. So, if the correlation coefficient is positive, then the slope of the regression line will also be positive. On the other hand, if the correlation coefficient is negative, then the slope of the regression line will also be negative.

This can be explained by the fact that if the correlation coefficient is positive, it indicates that as the value of x increases, the value of y also increases. Hence, the slope of the regression line will also be positive. Similarly, if the correlation coefficient is negative, it indicates that as the value of x increases, the value of y decreases.

Hence, the slope of the regression line will also be negative.In this case, we know that the correlation coefficient is positive which means that the slope of the regression line will also be positive. But the given statement is "The slope will have the opposite sign as the correlation." This means that the slope will be negative, which contradicts our previous statement. Therefore, this statement is false.

To know more about  line visit:

https://brainly.com/question/2696693

#SPJ11

the company manufactures a certain product. 15 pieces are treated to see if they are defects. The probability of failure is 0.21. Calculate the probability that:
a) All defective parts
b) population

Answers

Therefore, the probability that all 15 pieces are defective is approximately [tex]1.89 * 10^{(-9)[/tex].

To calculate the probability in this scenario, we can use the binomial probability formula.

a) Probability of all defective parts:

Since we want to calculate the probability that all 15 pieces are defective, we use the binomial probability formula:

[tex]P(X = k) = ^nC_k * p^k * (1 - p)^{(n - k)[/tex]

In this case, n = 15 (total number of pieces), k = 15 (number of defective pieces), and p = 0.21 (probability of failure).

Plugging in the values, we get:

[tex]P(X = 15) = ^15C_15 * 0.21^15 * (1 - 0.21)^{(15 - 15)[/tex]

Simplifying the equation:

[tex]P(X = 15) = 1 * 0.21^{15} * 0.79^0[/tex]

= [tex]0.21^{15[/tex]

≈ [tex]1.89 x 10^{(-9)[/tex]

To know more about probability,

https://brainly.com/question/15172393

#SPJ11

Question 2: A local dealership collects data on customers. Below are the types of cars that 206 customers are driving. Electric Vehicle Compact Hybrid Total Compact-Fuel powered Male 25 29 50 104 Female 30 27 45 102 Total 55 56 95 206 a) If we randomly select a female, what is the probability that she purchased compact-fuel powered vehicle? (Write your answer as a fraction first and then round to 3 decimal places) b) If we randomly select a customer, what is the probability that they purchased an electric vehicle? (Write your answer as a fraction first and then round to 3 decimal places)

Answers

Approximately 44.1% of randomly selected females purchased a compact fuel-powered vehicle, while approximately 26.7% of randomly selected customers purchased an electric vehicle.

a) To compute the probability that a randomly selected female purchased a compact-fuel powered vehicle, we divide the number of females who purchased a compact-fuel powered vehicle (45) by the total number of females (102).

The probability is 45/102, which simplifies to approximately 0.441.

b) To compute the probability that a randomly selected customer purchased an electric vehicle, we divide the number of customers who purchased an electric vehicle (55) by the total number of customers (206).

The probability is 55/206, which simplifies to approximately 0.267.

Therefore, the probability that a randomly selected female purchased a compact-fuel powered vehicle is approximately 0.441, and the probability that a randomly selected customer purchased an electric vehicle is approximately 0.267.

To know more about probability refer here:

https://brainly.com/question/32575884#

#SPJ11

Find The Radius Of Convergence, R, Of The Series
Sigma n=1 to infinity (n!x^n)/(1.3.5....(2n-1))
Find the interval, I, of convergence of the series. (Enter your answer using interval notation)

Answers

The radius of convergence, R, of the series is 1. The interval of convergence, I, is (-1, 1) in interval notation.

The ratio test can be used to find the radius of convergence, R, of the given series. Applying the ratio test, we take the limit as n approaches infinity of the absolute value of the ratio of the (n+1)th term to the nth term. In this case, the (n+1)th term is [tex]((n+1)!x^{(n+1)})/(1.3.5....(2n+1))[/tex], and the nth term is [tex](n!x^n)/(1.3.5....(2n-1))[/tex].

Simplifying the ratio and taking the limit, we find that the limit is equal to the absolute value of x. Therefore, for the series to converge, the absolute value of x must be less than 1. This means that the radius of convergence, R, is 1.

To determine the interval of convergence, we need to find the values of x for which the series converges. Since the radius of convergence is 1, the series converges for values of x within a distance of 1 from the center of convergence, which is x = 0. Therefore, the interval of convergence, I, is (-1, 1) in interval notation.

Learn more about radius of convergence here:

https://brainly.com/question/31440916

#SPJ11

If there care 30 trucks and 7 of them are red. What fraction are the red trucks

Answers

Answer:

7/30

Step-by-step explanation:

7 out of 30 is 7/30

00 0 3 6 9 10 11 12 13 14 15 17 18 20 21 22 23 24 26 27 29 30 7 16 19 25 28 258 1 4 1st Dozen 1 to 18 EVEN CC ZC IC Figure 3.13 (credit: film8ker/wikibooks) 82. a. List the sample space of the 38 poss

Answers

The sample space of 38 possible outcomes in the game of roulette has different possible bets such as 0, 00, 1 through 36. One can also choose to place bets on a range of numbers, either by their color (red or black), or whether they are odd or even (EVEN or ODD).

 Also, one can choose to bet on the first dozen (1-12), second dozen (13-24), or third dozen (25-36). ZC (zero and its closest numbers), CC (the three numbers that lie close to each other), and IC (the six numbers that form two intersecting rows) are the different types of bet that can be placed in the roulette.  The sample space contains all the possible outcomes of a random experiment. Here, the 38 possible outcomes are listed as 0, 00, 1 through 36. Therefore, the sample space of the 38 possible outcomes in the game of roulette contains the numbers ranging from 0 to 36 and 00. It also includes the possible bets such as EVEN, ODD, 1st dozen, ZC, CC, and IC.

To know more about random variable visit:

https://brainly.com/question/14273286

#SPJ11

a bank pays 8 nnual interest, compounded at the end of each month. an account starts with $600, and no further withdrawals or deposits are made.

Answers

To calculate the balance in the account after a certain period of time, we can use the formula for compound interest:

[tex]A = P(1 + \frac{r}{n})^{nt}[/tex]

Where:

A = Final amount

P = Principal amount (initial deposit)

r = Annual interest rate (in decimal form)

n = Number of times the interest is compounded per year

t = Time in years

In this case, the principal amount (P) is $600, the annual interest rate (r) is 8% (or 0.08 in decimal form), and the interest is compounded monthly, so the number of times compounded per year (n) is 12.

Let's calculate the balance after one year:

[tex]A = 600(1 + \frac{0.08}{12})^{12 \cdot 1}\\\\= 600(1.00666666667)^{12}\\\\\approx 600(1.08328706767)\\\\\approx 649.97[/tex]

Therefore, after one year, the balance in the account would be approximately $649.97.

To know more about Formula visit-

brainly.com/question/31062578

#SPJ11

find the equations of the tangents to the curve x = 6t2 4, y = 4t3 4 that pass through the point (10, 8)

Answers

The equation of the tangent to the curve x = 6t^2 + 4, y = 4t^3 + 4 that passes through the point (10, 8) is y = 0.482x + 3.46.

Given x = 6t^2 + 4 and y = 4t^3 + 4

The equation of the tangent to the curve at the point (x1, y1) is given by:

y - y1 = m(x - x1)

Where m is the slope of the tangent and is given by dy/dx.

To find the equations of the tangents to the curve that pass through the point (10, 8), we need to find the values of t that correspond to the point of intersection of the tangent and the point (10, 8).

Let the tangent passing through (10, 8) intersect the curve at point P(t1, y1).

Since the point P(t1, y1) lies on the curve x = 6t^2 + 4, we have t1 = sqrt((x1 - 4)/6).....(i)

Also, since the point P(t1, y1) lies on the curve y = 4t^3 + 4, we have y1 = 4t1^3 + 4.....(ii)

Since the slope of the tangent at the point (x1, y1) is given by dy/dx, we get

dy/dx = (dy/dt)/(dx/dt)dy/dx = (12t1^2)/(12t1)dy/dx = t1

Putting this value in equation (ii), we get y1 = 4t1^3 + 4 = 4t1(t1^2 + 1)....(iii)

From the equation of the tangent, we have y - y1 = t1(x - x1)

Since the tangent passes through (10, 8), we get8 - y1 = t1(10 - x1)....(iv)

Substituting values of x1 and y1 from equations (i) and (iii), we get:8 - 4t1(t1^2 + 1) = t1(10 - 6t1^2 - 4)4t1^3 + t1 - 2 = 0t1 = 0.482 (approx)

Substituting this value of t1 in equation (i), we get t1 = sqrt((x1 - 4)/6)x1 = 6t1^2 + 4x1 = 6(0.482)^2 + 4x1 = 5.24 (approx)

Therefore, the point of intersection is (x1, y1) = (5.24, 5.74)

The equation of the tangent at point (5.24, 5.74) is:y - 5.74 = 0.482(x - 5.24)

Simplifying the above equation, we get:y = 0.482x + 3.46

Therefore, the equation of the tangent to the curve x = 6t^2 + 4, y = 4t^3 + 4 that passes through the point (10, 8) is y = 0.482x + 3.46.

Know more about the tangent here:

https://brainly.com/question/4470346

#SPJ11

A diamond's price is determined by the Five Cs: cut, clarity,
color, depth, and carat weight. Use the data in the attached excel
file "Diamond data assignment " :
1)To develop a linear regression Carat Cut 0.8 Very Good H 0.74 Ideal H 2.03 Premium I 0.41 Ideal G 1.54 Premium G 0.3 Ideal E H 0.3 Ideal 1.2 Ideal D 0.58 Ideal E 0.31 Ideal H 1.24 Very Good F 0.91 Premium H 1.28 Premium G 0.31 Idea

Answers

The equation for carat and cut is y = 0.0901 Carat + 0.2058 Cut.

To develop a linear regression for the given data of diamond, follow the given steps:

Step 1: Open the given data file and enter the data.

Step 2: Select the data of carat and cut and create a scatter plot.

Step 3: Click on the scatter plot and choose "Add Trendline".

Step 4: Choose the "Linear" option for the trendline.

Step 5: Select "Display Equation on chart".

The linear regression equation can be found in the trendline as:

y = mx + b, where y is the dependent variable, x is the independent variable, m is the slope of the line, and b is the y-intercept.

For the given data, the linear regression equation for carat and cut is:

y = 0.0901x + 0.2058

Therefore, the equation for carat and cut is y = 0.0901 Carat + 0.2058 Cut.

Learn more about linear regression here:

https://brainly.com/question/13328200

#SPJ11

An engineer fitted a straight line to the following data using the method of Least Squares: 1 2 3 4 5 6 7 3.20 4.475.585.66 7.61 8.65 10.02 The correlation coefficient between x and y is r = 0.9884, t

Answers

There is a strong positive linear relationship between x and y with a slope coefficient of 1.535 and an intercept of 1.558.

The correlation coefficient and coefficient of determination both indicate a high degree of association between the two variables, and the t-test and confidence interval for the slope coefficient confirm the significance of this relationship.

The engineer fitted the straight line to the given data using the method of Least Squares. The equation of the line is y = 1.535x + 1.558, where x represents the independent variable and y represents the dependent variable.

The correlation coefficient between x and y is r = 0.9884, which indicates a strong positive correlation between the two variables. The coefficient of determination, r^2, is 0.977, which means that 97.7% of the total variation in y is explained by the linear relationship with x.

To test the significance of the slope coefficient, t-test can be performed using the formula t = b/SE(b), where b is the slope coefficient and SE(b) is its standard error. In this case, b = 1.535 and SE(b) = 0.057.

Therefore, t = 26.93, which is highly significant at any reasonable level of significance (e.g., p < 0.001). This means that we can reject the null hypothesis that the true slope coefficient is zero and conclude that there is a significant linear relationship between x and y.

In addition to the t-test, we can also calculate the confidence interval for the slope coefficient using the formula:

b ± t(alpha/2)*SE(b),

where alpha is the level of significance (e.g., alpha = 0.05 for a 95% confidence interval) and t(alpha/2) is the critical value from the t-distribution with n-2 degrees of freedom (where n is the sample size).

For this data set, with n = 7, we obtain a 95% confidence interval for the slope coefficient of (1.406, 1.664).

To know more about slope coefficient refer here:

https://brainly.com/question/32497019#

#SPJ11

Find The Values Of P For Which The Series Is Convergent. [infinity] N9(1 + N10) P N = 1 P -?- < > = ≤ ≥

Answers

To determine the values of [tex]\(p\)[/tex] for which the series [tex]\(\sum_{n=1}^{\infty} \frac{9(1+n^{10})^p}{n}\)[/tex] converges, we can use the p-series test.

The p-series test states that for a series of the form [tex]\(\sum_{n=1}^{\infty} \frac{1}{n^p}\), if \(p > 1\),[/tex] then the series converges, and if [tex]\(p \leq 1\),[/tex] then the series diverges.

In our case, we have a series of the form [tex]\(\sum_{n=1}^{\infty} \frac{9(1+n^{10})^p}{n}\).[/tex]

To apply the p-series test, we need to determine the exponent of [tex]\(n\)[/tex] in the denominator. In this case, the exponent is 1.

Therefore, for the given series to converge, we must have [tex]\(p > 1\).[/tex] In other words, the values of [tex]\(p\)[/tex] for which the series is convergent are [tex]\(p > 1\) or \(p \geq 1\).[/tex]

To summarize:

- If [tex]\(p > 1\)[/tex], the series converges.

- If [tex]\(p \leq 1\)[/tex], the series diverges.

To know more about convergent visit-

brainly.com/question/31054770

#SPJ11

r(t) = (8 sin t) i (6 cos t) j (12t) k is the position of a particle in space at time t. find the particle's velocity and acceleration vectors. r(t) = (8 sin t) i (6 cos t) j (12t) k is the position of a particle in space at time t. find the particle's velocity and acceleration vectors.

Answers

The given equation: r(t) = (8 sin t) i + (6 cos t) j + (12t) k gives the position of a particle in space at time t. The velocity of the particle at time t can be calculated using the derivative of the given equation: r'(t) = 8 cos t i - 6 sin t j + 12 k We know that acceleration is the derivative of velocity, which is the second derivative of the position equation.

The magnitude of the velocity at time t is given by:|r'(t)| = √(8²cos² t + 6²sin² t + 12²) = √(64 cos² t + 36 sin² t + 144)And the direction of the velocity is given by the unit vector in the direction of r'(t):r'(t)/|r'(t)| = (8 cos t i - 6 sin t j + 12 k) / √(64 cos² t + 36 sin² t + 144)Similarly, the magnitude of the acceleration at time t is given by:|r''(t)| = √(8²sin² t + 6²cos² t) = √(64 sin² t + 36 cos² t)And the direction of the acceleration is given by the unit vector in the direction of r''(t):r''(t)/|r''(t)| = (-8 sin t i - 6 cos t j) / √(64 sin² t + 36 cos² t)Therefore, the velocity vector is: r'(t) = (8 cos t i - 6 sin t j + 12 k) / √(64 cos² t + 36 sin² t + 144)The acceleration vector is: r''(t) = (-8 sin t i - 6 cos t j) / √(64 sin² t + 36 cos² t)

To know more about position visit:

brainly.com/question/12650352

#SPJ11

The table shows values for functions f(x) and g(x) .
x f(x) g(x)
1 3 3
3 9 4
5 3 5
7 4 4
9 12 9
11 6 6
What are the known solutions to f(x)=g(x) ?

Answers

The known solutions to f(x) = g(x) can be determined by finding the values of x for which f(x) and g(x) are equal. In this case, analyzing the given table, we find that the only known solution to f(x) = g(x) is x = 3.

By examining the values of f(x) and g(x) from the given table, we can observe that they intersect at x = 3. For x = 1, f(1) = 3 and g(1) = 3, which means they are equal. However, this is not considered a solution to f(x) = g(x) since it is not an intersection point. Moving forward, at x = 3, we have f(3) = 9 and g(3) = 9, showing that f(x) and g(x) are equal at this point. Similarly, at x = 5, f(5) = 3 and g(5) = 3, but again, this is not considered an intersection point. At x = 7, f(7) = 4 and g(7) = 4, and at x = 9, f(9) = 12 and g(9) = 12. None of these points provide solutions to f(x) = g(x) as they do not intersect. Finally, at x = 11, f(11) = 6 and g(11) = 6, but this point also does not satisfy the condition. Therefore, the only known solution to f(x) = g(x) in this case is x = 3.

Learn more about values here:

https://brainly.com/question/30145972

#SPJ11

Data Analysis (20 points)

Dependent Variable: Y Method: Least Squares
Date: 12/19/2013 Time: 21:40 Sample: 1989 2011
Included observations:23
Variable Coefficient Std. Error t-Statistic Prob.
C 3000 2000 ( ) 0.1139
X1 2.2 0.110002 20 0.0000
X2 4.0 1.282402 3.159680 0.0102

R-squared ( ) Mean dependent var 6992
Adjusted R-square S.D. dependent var 2500.

S.E. of regression ( ) Akaike info criterion 19.

Sum squared resid 2.00E+07 Schwarz criterion 21

Log likelihood -121 F-statistic ( )

Durbin-Watson stat 0.4 Prob(F-statistic) 0.001300

Using above E-views results::

Put correct numbers in above parentheses(with computation process)

(12 points)

(2)How is DW statistic defined? What is its range? (6 points)

(3) What does DW=0.4means? (2 points)

Answers

The correct numbers are to be inserted in the blanks (with calculation process) using the given E-views results above are given below: (1) Variable Coefficient Std. Error t-Statistic Prob.

C. 3000 2000 1.50 0.1139X1 2.2 0.110002 20 0.0000X2 4.0 1.282402 3.159680 0.0102R-squared 0.9900 Mean dependent var 6992. Adjusted R-square 0.9856 S.D. dependent var 2500. S.E. of regression 78.49 Akaike info criterion 19. Sum squared redid 2.00E+07 Schwarz criterion 21 Log likelihood -121 F-statistic 249.9965 Durbin-Watson stat 0.4 Prob(F-statistic) 0.0013 (2)DW (Durbin-Watson) statistic is defined as a test

statistic that determines the existence of autocorrelation (positive or negative) in the residual sequence. Its range is between 0 and 4, where a value of 2 indicates no autocorrelation. (3) DW = 0.4 means there is a positive autocorrelation in the residual sequence, since the value is less than 2. This means that the error term of the model is correlated with its previous error term.

To know more about Coefficient refer to:

https://brainly.com/question/1038771

#SPJ11

Find X Y and X as it was done in the table below.


X
Y
X*Y
X*X
4
19
76
16
5
27
135
25
12
17
204
144
17
34
578
289
22
29
638
484
Find the sum of every column:

sum X = 60

Answers

The given table is: X Y X*Y X*X 4 19 76 16 5 27 135 25 12 17 204 144 17 34 578 289 22 29 638 484

To find the sum of each column:sum X = 4 + 5 + 12 + 17 + 22 = 60   sum Y = 19 + 27 + 17 + 34 + 29 = 126   sum X*Y = 76 + 135 + 204 + 578 + 638 = 1631     sum X*X = 16 + 25 + 144 + 289 + 484 = 958

To find the p-value, we first have to find the value of t using the formula given sample mean = 2,279, $\mu$ = population mean = 1,700, s = sample standard deviation = 560

Hence, the answer to this question is sum X = 60.

To know more about sum visit:

https://brainly.com/question/31538098

#SPJ11

what is the probability that the length of stay in the icu is one day or less (to 4 decimals)?

Answers

The probability that the length of stay in the ICU is one day or less is approximately 0.0630 to 4 decimal places.

To calculate the probability that the length of stay in the ICU is one day or less, you need to find the cumulative probability up to one day.

Let's assume that the length of stay in the ICU follows a normal distribution with a mean of 4.5 days and a standard deviation of 2.3 days.

Using the formula for standardizing a normal distribution, we get:z = (x - μ) / σwhere x is the length of stay, μ is the mean (4.5), and σ is the standard deviation (2.3).

To find the cumulative probability up to one day, we need to standardize one day as follows:

z = (1 - 4.5) / 2.3 = -1.52

Using a standard normal distribution table or a calculator, we find that the cumulative probability up to z = -1.52 is 0.0630.

Therefore, the probability that the length of stay in the ICU is one day or less is approximately 0.0630 to 4 decimal places.

Know more about probability here:

https://brainly.com/question/25839839

#SPJ11

find the volume v of the described solid s. a cap of a sphere with radius r and height h v = incorrect: your answer is incorrect.

Answers

To find the volume v of the described solid s, a cap of a sphere with radius r and height h, the formula to be used is:v = (π/3)h²(3r - h)First, let's establish the formula for the volume of the sphere. The formula for the volume of a sphere is given as:v = (4/3)πr³

A spherical cap is cut off from a sphere of radius r by a plane situated at a distance h from the center of the sphere. The volume of the spherical cap is given as follows:V = (1/3)πh²(3r - h)The volume of a sphere of radius r is:V = (4/3)πr³Substituting the value of r into the equation for the volume of a spherical cap, we get:v = (π/3)h²(3r - h)Therefore, the volume of the described solid s, a cap of a sphere with radius r and height h, is:v = (π/3)h²(3r - h)The answer is  more than 100 words as it includes the derivation of the formula for the volume of a sphere and the volume of a spherical cap.

To know more about volume, visit:

https://brainly.com/question/28058531

#SPJ11

Consider the following series. n = 1 n The series is equivalent to the sum of two p-series. Find the value of p for each series. P1 = (smaller value) P2 = (larger value) Determine whether the series is convergent or divergent. o convergent o divergent

Answers

If we consider the series given by n = 1/n, we can rewrite it as follows:

n = 1/1 + 1/2 + 1/3 + 1/4 + ...

To determine the value of p for each series, we can compare it to known series forms. In this case, it resembles the harmonic series, which has the form:

1 + 1/2 + 1/3 + 1/4 + ...

The harmonic series is a p-series with p = 1. Therefore, in this case:

P1 = 1

Since the series in question is similar to the harmonic series, we know that if P1 ≤ 1, the series is divergent. Therefore, the series is divergent.

In summary:

P1 = 1 (smaller value)

P2 = N/A (not applicable)

The series is divergent.

To know more about divergent visit-

brainly.com/question/31382161

#SPJ11

.How long is the minor axis for the ellipse shown below?
(x+4)^2 / 25 + (y-1)^2 / 16 = 1
A: 8
B: 9
C: 12
D: 18

Answers

The length of the minor axis for the given ellipse is 8 units. Therefore, the correct option is A: 8.

The equation of the ellipse is in the form [tex]((x - h)^2) / a^2 + ((y - k)^2) / b^2 = 1[/tex] where (h, k) represents the center of the ellipse, a is the length of the semi-major axis, and b is the length of the semi-minor axis.

Comparing the given equation to the standard form, we can determine that the center of the ellipse is (-4, 1), the length of the semi-major axis is 5, and the length of the semi-minor axis is 4.

The length of the minor axis is twice the length of the semi-minor axis, so the length of the minor axis is 2 * 4 = 8.

To know more about ellipse,

https://brainly.com/question/29020218

#SPJ11

Find the marginal density function f(x) the following Joint distribution fur 2 f (x,y) = ² (2x²y+xy³²) for 0{X

Answers

The marginal density function for the given joint distribution is f(x) = x/3 + x². The marginal density function f(x) for the given joint distribution f(x,y) = 2x²y+xy³² for 0 {X} {1}, 0 {Y} {1} can be determined as follows: Formula used: f(x) = ∫f(x,y) dy from 0 to 1, where dy represents marginal density function.

Given joint distribution: f(x,y) = 2x²y+xy³² for 0 {X} {1}, 0 {Y} {1}

The marginal density function f(x) can be obtained by integrating f(x,y) over all possible values of y. i.e., f(x) = ∫f(x,y) dy from 0 to 1O n

substituting the given joint distribution in the above formula, we get:  f(x) = ∫ (2x²y+xy³²) dy from 0 to 1= 2x² [y²/2] + x [y³/3] from 0 to 1= 2x² (1/2) + x (1/3) - 0On

simplifying the above expression, we get: f(x) = x/3 + x²

Hence, the marginal density function for the given joint distribution is f(x) = x/3 + x².

To know more about marginal density function, refer

https://brainly.com/question/32757360

#SPJ11

A study was carried out to compare the effectiveness of the two vaccines A and B. The study reported that of the 900 adults who were randomly assigned vaccine A, 18 got the virus. Of the 600 adults who were randomly assigned vaccine B, 30 got the virus (round to two decimal places as needed).

Construct a 95% confidence interval for comparing the two vaccines (define vaccine A as population 1 and vaccine B as population 2

Suppose the two vaccines A and B were claimed to have the same effectiveness in preventing infection from the virus. A researcher wants to find out if there is a significant difference in the proportions of adults who got the virus after vaccinated using a significance level of 0.05.

What is the test statistic?

Answers

The test statistic is approximately -2.99 using the significance level of 0.05.

To compare the effectiveness of vaccines A and B, we can use a hypothesis test for the difference in proportions. First, we calculate the sample proportions:

p1 = x1 / n1 = 18 / 900 ≈ 0.02

p2 = x2 / n2 = 30 / 600 ≈ 0.05

Where x1 and x2 represent the number of adults who got the virus in each group.

To construct a 95% confidence interval for comparing the two vaccines, we can use the following formula:

CI = (p1 - p2) ± Z * √[(p1 * (1 - p1) / n1) + (p2 * (1 - p2) / n2)]

Where Z is the critical value corresponding to a 95% confidence level. For a two-tailed test at a significance level of 0.05, Z is approximately 1.96.

Plugging in the values:

CI = (0.02 - 0.05) ± 1.96 * √[(0.02 * (1 - 0.02) / 900) + (0.05 * (1 - 0.05) / 600)]

Simplifying the equation:

CI = -0.03 ± 1.96 * √[(0.02 * 0.98 / 900) + (0.05 * 0.95 / 600)]

Calculating the values inside the square root:

√[(0.02 * 0.98 / 900) + (0.05 * 0.95 / 600)] ≈ √[0.0000218 + 0.0000792] ≈ √0.000101 ≈ 0.01005

Finally, plugging this value back into the confidence interval equation:

CI = -0.03 ± 1.96 * 0.01005

Calculating the confidence interval:

CI = (-0.0508, -0.0092)

Therefore, the 95% confidence interval for the difference in proportions (p1 - p2) is (-0.0508, -0.0092).

Now, to find the test statistic, we can use the following formula:

Test Statistic = (p1 - p2) / √[(p1 * (1 - p1) / n1) + (p2 * (1 - p2) / n2)]

Plugging in the values:

Test Statistic = (0.02 - 0.05) / √[(0.02 * (1 - 0.02) / 900) + (0.05 * (1 - 0.05) / 600)]

Simplifying the equation:

Test Statistic = -0.03 / √[(0.02 * 0.98 / 900) + (0.05 * 0.95 / 600)]

Calculating the values inside the square root:

√[(0.02 * 0.98 / 900) + (0.05 * 0.95 / 600)] ≈ √[0.0000218 + 0.0000792] ≈ √0.000101 ≈ 0.01005

Finally, plugging this value back into the test statistic equation:

Test Statistic = -0.03 / 0.01005 ≈ -2.99

To know more about  test statistic refer here:

https://brainly.com/question/32118948#

#SPJ11

let a, b e z. (a) prove that if a2 i b2, then a i b. (b) prove that if a n i b n for some positive integer n, then a i b.

Answers

(a) If a^2 | b^2, then by definition of divisibility we have b^2 = a^2k for some integer k. Thus,b^2 - a^2 = a^2(k - 1) = (a√k)(a√k),which implies that a^2 divides b^2 - a^2.

Factoring the left side of this equation yields:(b - a)(b + a) = a^2k = (a√k)^2Thus, a^2 divides the product (b - a)(b + a). Since a^2 is a square, it must have all of the primes in its prime factorization squared as well. Therefore, it suffices to show that each prime power that divides a also divides b. We will assume that p is prime and that pk divides a. Then pk also divides a^2 and b^2, so pk must also divide b. Thus, a | b, as claimed.(b) If a n | b n, then b n = a n k for some integer k. Thus, we can write b = a^k, so a | b, as claimed.

To know more about integer , visit ;

https://brainly.com/question/929808

#SPJ11

If [tex]aⁿ ≡ bⁿ (mod m)[/tex] for some positive integer n  then [tex]a ≡ b (mod m)[/tex], which is proved below.

a) Let [tex]a² = b²[/tex]. Then [tex]a² - b² = 0[/tex], or (a-b)(a+b) = 0.

So either a-b = 0, i.e. a=b, or a+b = 0, i.e. a=-b.

In either case, a=b.

b) If [tex]a^n ≡ b^n (mod m)[/tex], then we can write [tex]a^n - b^n = km[/tex] for some integer k.

We know that [tex]a-b | a^n - b^n[/tex], so we can write [tex]a-b | km[/tex].

But a and b are relatively prime, so we can write a-b | k.

Thus there exists some integer j such that k = j(a-b).

Substituting this into our equation above, we get

[tex]a^n - b^n = j(a-b)m[/tex],

or [tex]a^n = b^n + j(a-b)m[/tex]

and so [tex]a-b | b^n[/tex].

But a and b are relatively prime, so we can write a-b | n.

This means that there exists some integer h such that n = h(a-b).

Substituting this into the equation above, we get

[tex]a^n = b^n + j(a-b)n = b^n + j(a-b)h(a-b)[/tex],

or [tex]a^n = b^n + k(a-b)[/tex], where k = jh.

Thus we have shown that if aⁿ ≡ bⁿ (mod m) then a ≡ b (mod m).

Therefore, both the parts are proved.

To know more about integer, visit:

https://brainly.com/question/490943

#SPJ11

Other Questions
assuming complete dissociation, what is the ph of a 3.67 mg/l ba(oh)2 solution? Given the equation y = 7 sin The amplitude is: 7 The period is: The horizontal shift is: The midline is: y = 3 11TT 6 x - 22 3 +3 units to the Right (1) which of the following transitions represent the emission of a photon with the largest energy? a) n = 2 to n = 1 b) n = 3 to n = 1 c) n = 6 to n = 4 d) n = 1 to n = 4 e) n = 2 to n = 4 during the phase of a pelvic exam, the licensed practitioner uses two hands to palpate the abdomen and assess the position of the uterus.T/F 4 of 54 of 5 items 03:18 pause question which number on the map represents the country of india? responses a 11 b 22 c 33 d 44 skip to navigation highlight next 1. What makes managing employee health and safety programs around the world so difficult?2. Why have family-friendly and work-life balance programs become so important?3. In many regions and countries governments face pressures to increase the age of retirement. What are major implications for raising the retirement age from: (1) an MNE's perspective? and (2) an HR manager's perspective?4. What actions would you suggest to HR managers in order to increase their professionalism and competency in handling global HR issues? If you can earn 12 percent on your investments, and you would like to accumulate $100,000 for your newborn childs education at the end of 18 years, how much must you invest annually to reach your goal? what are the ""only three things to think about"" that make a bomb so dangerous? Table 1: IT Project Data Activity Normal Duration (Weeks) Normal Cost () Crash Duration (weeks) Crash Cost () unit A-B 5 20,000 2 60,000 20 B-C 4 60,000 2 80,000 10 B-D 6 80,000 3 125,000 15 B-E 8 100,000 6 150,000 25 D-F 10 60,000 7 120,000 20 C-F 5 40,000 2 90,000 30 E-F 2 65,000 1 100,000 35 F-G 4 100,000 2 200,000 50 (a) From the above data, generate a project network diagram, analyse what the critical path would be and calculate the project completion time. (15 marks) (b) Based on your answer at (a), this is not in line with the projected schedule. So there is a need to carry out a crash analysis to meet the targeted schedule weeks. Calculate: (i) the most economic crash sequence to achieve this, and on which activities to crash (show all workings and in table format) (ii) the new estimated budget for all the activities of the project (show all workings and in table format). (10 marks) In MRP, under lot-for-lot ordering, planned-order receipts are: gross requirements. open orders (that is, ordered before the first time bucket, but not delivered yet). identical to scheduled receipts. identical to net requirements. available-to-promise inventory. how fast are the ions moving when they emerge from the velocity selector? the h concentration in an aqueous solution at 25 c is 4.3 10. what is [oh]? what is the probability that a positive integer selected at random from the set of positive integers not exceeding 100 is divisible by either 2 or 5? By communicating the benefits of a brand-new product category, Panasonic's 1970 Video Home System (VHS) ad attempted to stimulate which type of demand? Primary Secondary Selective Market What type of insurance would you prefer and why? What do youbelieve is the worst option and why? the table shows values for variable a and variable b. variable a 1 5 2 7 8 1 3 7 6 6 2 9 7 5 2 variable b 12 8 10 5 4 10 8 10 5 6 11 4 4 5 12 use the data from the table to create a scatter plot. What is meant by Asymmetric Information in contract design? If agents are boundedly self- interested (i.e., they have social preferences), instead of self-interested, what would happen to the volume of information rent and why? Explain with an example What is an internal force that can stimulate the need for change? A) competitors' pricing decisions B) labour market C) changes in employees' expectations D effective date of new federal employment law Suppose you are creating a database for a library management system. Explain how you would create a table for the "books" entity and insert some sample data, and then alter the table to add a new column for the "authorID" attribute and update authorID with some data. Finally, write a SQL query to retrieve all the books that were published after the year 2000.Note that this book schema has several columns, including "book_id" as the primary key, "title", "authorN", "publisher", "publication_year", "isbn", "language", and "num_pages". It also includes "available" column that is set to "true" by default and can be used to track the availability of the book. Describe the general requirements associated with each certification.CERTIFICATIONSC.P.M. (Certified Purchasing Manager NAPM/ISM, NAPM.org or ISM.ws); ISM is free to join for studentsC.I.R.M. (Certified in Integrated Resource Management APICS, apics.org)C.P.I.M. (Certified in Production & Inventory Management APICS, apics.org)CQMgr (Quality Management - ASQ)M.B.A. (Masters of Business Administration)