Answer:
It doesn't intersect at that point
[tex]{ \bf{y = - 4x - 2}} \\ y = - (4 \times 4) - 2 \\ y = - 18[/tex]
Answer: N/A
Step-by-step explanation:
The line y = -4x - 2 does not go through the point (4, -1); it only passes through the point (4, -4(4) - 2) = (4, -18)
A boy leaves station X on a bearing of 035' to station Y. which is 21km away. He then travels to another station Z on a bearing of 125 degrees . If Z is directly East of X, what is the distance from X to his present position?
9514 1404 393
Answer:
36.6 km
Step-by-step explanation:
We assume the initial bearing of the boy is 35°. Then he will make a 90° turn to a heading of 125°. A diagram shows the distance of interest is the hypotenuse of a right triangle in which 35° is the angle opposite the side of length 21 km.
The relevant trig relation is ...
Sin = Opposite/Hypotenuse
sin(35°) = (21 km)/XZ
XZ = (21 km)/sin(35°) ≈ 36.61 km
The distance from X to Z is about 36.61 km.
_____
The attached diagram has the angles measured in the usual way for a Cartesian plane: CCW from the +x axis. This will correspond to bearing measures if we relabel the axes so that +x is North, and +y is East.
An airplane can travel 350 mph in still air. If it travels 1995 miles with the wind
in the same length of time it travels 1505 miles against the wind, what is the speed of the wind?
Answer:
49 mph
Step-by-step explanation:
RT=D
T = D/R
[tex]\frac{1995}{(350 + x) } =\frac{1505}{350-x}[/tex]
1995(350-x) = 1505(350+x)
x=49
An expression to convert 50 miles per hour to miles per minute is shown.
What value can be entered in the box to correctly make this conversion?
Answer:
[tex]{ \tt{ = \frac{50}{1 \times 60} }}[/tex]
Step-by-step explanation:
50 miles=50 miles
1 hour=60 minutes
50÷60
0.8333333333333333mile per minute
~1.0 mile per minute
(2x+3)(5x-8)
10x7€ 16x+158–24
10x2-x-24
Answer:
16X+134
Step-by-step explanation:
Which expression is equivalent to the following complex fraction?
Step-by-step explanation:
Option B is correct. Refer to the attachment!
Find the volume of the solid lying between two planes perpendicular to the x-axis at x = −1 and x = 1. The cross sections perpendicular to the x-axis are squares whose diagonals run from y = x 2 to y = 2 − x 2
I've attached a sketch of one such cross section (light blue) of the solid (shown at x = 0). The planes x = ±1 are shown in gray, and the two parabolas are respectively represented by the blue and orange curves in the (x, y)-plane.
For every x in the interval [-1, 1], the corresponding cross section has a diagonal of length (2 - x ²) - x ² = 2 (1 - x ²). The diagonal of any square occurs in a ratio to its side length of √2 : 1, so the cross section has a side length of 2/√2 (1 - x ²) = √2 (1 - x ²), and hence an area of (√2 (1 - x ²))² = 2 (1 - x ²)².
The total volume of the solid is then given by the integral,
[tex]\displaystyle\int_{-1}^1 2(1-x^2)^2\,\mathrm dx = \int_{-1}^1 (2-4x^2+4x^4)\,\mathrm dx = \boxed{\frac{32}{15}}[/tex]
Several factors influence the size of the F-ratio. For each of the following, indicate whether it would influence the numerator or the denominator of the F-ratio, and indicate whether the size of the F-ratio would increase or decrease. a. Increase the differences between the sample means. b. Increase the sample variances.
Answer:
(a) Increase the differences between the sample means this will increase the Numerator.
(b) Increase the sample variances will increase the denominator.
Step-by-step explanation:
F Ratio = Variance between treatments/ Variance within treatments.
Here,
(a) Increase the differences between the sample means:
- Will increase the Numerator and
- Size of the F-ratio would increase
(b) Increase the sample variances:
- Will increase the denominator and
- Size of the F Ratio would decrease.
There are 3 boxes on stage that appear identical, but one is Lucky. The boxes are full of tickets; some are labeled "win" and the others are labeled "lose." In the Lucky box, ninety percent of the tickets are winners. In each of the other two boxes, only twelve percent of the tickets are winners.
1. You will pick a box at random and draw one ticket from it at random.2. What is the probability you will draw a winning ticket? 3. If you do draw a winning ticket, what is the chance it came from the Lucky box?
Answer:
2.-P = 0.38
3.-P [ Lb | Wt ] = 0.788
Step-by-step explanation:
1.-Probability of choosing any box is, 1/3. So the probability of choosing the lucky box is 1/3
Let´s say the lucky box is the number 2 box ( that consideration does not in any way change the problem generality)
Then we have
p₁ probability of choosing box 1 is 1/3 p₁´ Probability of win ticket is 0.12
p₂ probability of choosing box 2 is 1/3 p₂´Probability of win ticket is 0.90
p₃ probability of choosing box 3 is 1/3 p₃´ Probability of win ticket is 0.12
Then
P (of choosing a winning ticket is) = p₁*p₁´ + p₂*p₂´ + p₃*p₃´
P = 1/3*0.12 + 1/3*0.9 + 1/3*0.12
P = 0.04 + 0.3 + 0.04
P = 0.38
3.- if I draw a winning ticket what is the probability it came from Lucky box
According to Bayes theorem
P [ Lb | Wt ] = P(Lb) * P[ Wt|Lb]/ P(Wt)
P(Lb) = 1/3 = 0.33333
P[Wt|Lb] = 0.9
P(Wt) = 0.38
Then By substitution
P [ Lb | Wt ] = 0.333 * 0.9 / 0.38
P [ Lb | Wt ] = 0.788
Tell whether the following two triangles can be proven congruent through SAS.
A.Yes, the two triangles are congruent because they’re both right triangles.
B.Yes, the two triangles are congruent because two sides and their included angle are congruent in both triangles.
C.No, the two triangles can only be proven congruent through SSS.
D.No, the two triangles can only be proven congruent through AAA.
Answer:
C.No, the two triangles can only be proven congruent through SSS.
Which number produce a rational number when multiples by 1/5
Answer:
-2/3
Step-by-step explanation:
A rational number is a number that can be expressed by a fraction so when y add to fractions it’s a rational number.
The coordinator of the vertices of the triangle are (-8,8),(-8,-4), and
Answer with Step-by-step explanation:
Complete question:
The coordinates of the vertices of the triangle are (-8,8),(-8,-4), and. Consider QR the base of the triangle. The measure of the base is b = 18 units, and the measure of the height is h = units. The area of triangle PQR is square units.
Let
P=(-8,8)
Q=(-8,-4)
QR=b=18 units
Height of triangle, h=Length of PQ
Distance formula
[tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Using the formula
Height of triangle, h=[tex]\sqrt{(-8+8)^2+(-4-8)^2}=12units[/tex]
Area of triangle PQR=[tex]\frac{1}{2}\times base\times height[/tex]
Area of triangle PQR=[tex]\frac{1}{2}\times 18\times 12[/tex]
Area of triangle PQR=108 square units
Length of QR=18units
Let the coordinates of R(x,y)
[tex]\sqrt{(x+8)^2+(y+4)^2}=18[/tex]
[tex](x+8)^2+(y+4)^2=324[/tex]
[tex]x^2+64+16x+y^2+8y+16=324[/tex]
[tex]x^2+y^2+16x+8y=324-64-16[/tex]
[tex]x^2+y^2+16x+8y=244[/tex] ......(1)
Using Pythagoras theorem
[tex]H=\sqrt{P^2+B^2}[/tex]
[tex]H=\sqrt{(18)^2+(12)^2}[/tex]
[tex]H=6\sqrt{13}[/tex]units
[tex](6\sqrt{13})^2=(x+8)^2+(y-8)^2[/tex]
[tex]x^2+64+16x+y^2+64-16y=468[/tex]
[tex]x^2+y^2+16x-16y=468-64-64=340[/tex]
[tex]x^2+y^2+16x-16y=340[/tex] .....(2)
Subtract equation (2) from (1) we get
[tex]24y=-96[/tex]
[tex]y=-96/24=-4[/tex]
Using the value of y in equation (1)
[tex]x^2+16x+16-32=244[/tex]
[tex]x^2+16x=244-16+32[/tex]
[tex]x^2+16x=260[/tex]
[tex]x^2+16x-260=0[/tex]
[tex]x^2+26x-10x-260=0[/tex]
[tex]x(x+26)-10(x+26)=0[/tex]
[tex](x+26)(x-10)=0[/tex]
[tex]x=-26, x=10[/tex]
Hence, the coordinate of R (10,-4) or (-26,-4).
the slope of line is
Answer:
there is no file attached
Step-by-step explanation:
The perimeter of a square and rectangle is the same. The width of the rectangle is 6cm and it's area is 16cmsquare less than the area of the square. Find the area of the square
Answer:
Area of square = 100 square cm
Step-by-step explanation:
Let the sides of a square be = a
Perimeter of a square = 4a
Let area of square = [tex]a^2[/tex]
Let the Length of rectangle be = [tex]l[/tex]
Given: width of the rectangle = 6 cm
Area of rectangle = length x breadth
Perimeter of rectangle and square is equal.
That is,
[tex]2(length + width) = 4a\\\\2(l + 6) = 4a\\\\l + 6 = 2a\\\\l = 2a - 6[/tex]
Therefore ,
Area of rectangle
[tex]= Length \times width \\\\= (2a - 6) \times 6\\\\=6(2a - 6)[/tex]
Given area of rectangle is 16 less than area of square.
That is ,
[tex]( 6(2a- 6) ) = a^2 - 16\\\\12a - 36 = a^2 - 16\\\\a^2 - 12a +20= 0\\\\a^2 - 2a -10a + 20 = 0\\\\a(a - 2) - 10(a - 2) = 0\\\\(a -10) ( a-2) = 0\\\\a = 10 , \ a = 2[/tex]
Check which value of 'a ' satisfies the equation:
[tex]\underline {when \ a = 2 }\\\\Length\ of \ rectangle \ l = 2a - 6 = 2 ( 2 ) - 6 = 4 - 6 = - 2. \\\\Length \ cannot \ be \ negative \ number. \\\\ \underline{ when \ a = 10 }\\\\Length \ of \ rectangle \ , l = 2a - 6 = 2 (10) - 6 = 20 - 6 = 14\\\\satisfies \ the \ conditions. \\\\Therefore , a = 10[/tex]
That is , side of the sqaure = 10
Therefore , area of the square = 10 x 10 = 100 square cm.
How many boxes could you stack safely on a pallet if the pallet is 5 feet deep, five feet across, every box is 1 x 1 and the maximum safe stacking height is 5 boxes? *
Answer:
125 boxes
Step-by-step explanation:
5*5*5
24
4
3+
2+
2
1
-3
-
-1
1
1
2
3
4
-1+
-2 +
-3+
4
What is the slope of the line?
Answer:
1.5/2
Step-by-step explanation:
slope formula = y2-y1/ x2 - x1
point one (2,0)
point 2 (0, 1.5)
you dont really need to subtract anything because the intercepts, so the slope is 1.5/2
(slope or m = 1.5 - 0 / 2 - 0 )
x intercept = value of x when y is 0
y intercept = value of y when x is 0
The value of y varies with x and z, and y=8, when x=4 and z=10. What is the value of y when x=5 and z=11
Ryan spent 1/3 of his monthly salary for rent and 1/7 of his monthly salary for his utility bill. If $759 was left, what was his monthly salary?
Step-by-step explanation:
Given Information :Ryan spent 1/3 of his monthly salary for rent and 1/7 of his monthly salary for his utility bill. Remaining money = $759To calculate :His monthly salary.Calculation :Let us assume his monthly salary as x. According to the question,
➝ Money spent on rent + Money spent for utility bill + Remaining money = His salary
[tex]\longrightarrow\sf {\dfrac{1}{3}x + \dfrac{1}{7}x + 759 = x} \\ [/tex]
[tex]\longrightarrow\sf {\dfrac{7x + 3x + 15939}{21}= x} \\ [/tex]
[tex]\longrightarrow\sf {\dfrac{10x+ 15939}{21}= x} \\ [/tex]
[tex]\longrightarrow\sf {10x+ 15939= 21x} \\ [/tex]
[tex]\longrightarrow\sf {15939= 21x - 10x} \\ [/tex]
[tex]\longrightarrow\sf {15939= 11x} \\ [/tex]
[tex]\longrightarrow\sf {\cancel{\dfrac{15939}{11}}= x} \\ [/tex]
[tex]\longrightarrow\underline{\boxed{\bf {1449= x}}} \\ [/tex]
Therefore, his monthly income is $1449.
-09
2 1 point
The amount of a radioactive substance y that remains after t years is given by the equation y = a (e)^kt, where a is the initial
amount present and k is the decay constant for the radioactive substance. If a = 100, y = 50, and k = -0.035, find t.
Answer:
19.80
Step-by-step explanation:
Given the equation :
y = a (e)^kt
If a = 100, y = 50, and k = -0.035, find t.
50 = 100(e)^(-0.035t)
50/100 = e^(-0.035t)
0.5 = e^-0.035t
Take the In
In(0.5) = - 0.035t
-0.693147 = - 0.035t
-0.693147 / - 0.035 = t
19.8042 = t
Hence, t = 19.80
The sum of -4 and the difference of 3 and 1
What is the HCF of 1280 and 630
Given:
The two numbers are 1280 and 630.
To find:
The HCF of the given numbers.
Solution:
First write the given numbers in prime factorization form.
[tex]1280=2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 5[/tex]
[tex]630=2\cdot 3\cdot 3\cdot 5\cdot 7[/tex]
Now the product of all the common prime factors is known as the HCF of 1280 and 630.
[tex]HCF=2\cdot 5[/tex]
[tex]HCF=10[/tex]
Therefore, the HCF of 1280 and 630 is 10.
if the smaller side of a rectangle was increased by 7 cm, it would be exactly 55% of the 110 cm longer side. Find the area of the rectangle
Answer:
5886 cm
Step-by-step explanation:
start by finding 55% of 110 which is 60.5. then subtract by 7 and then you get 53.5
then multiply 53.5 by 110 = 5885 cm
The mathematical expressions of the thermal conditions at the boundaries are called the _____ conditions.
Answer:
Heat flux boundary condition.
Step-by-step explanation:
Heat flux is boundary condition in positive x-direction. The specified temperature is constant and steady heat conduction. Temperature of exposed surface can be measured directly with the thermal condition expression.
At a coffee shop, the first 100 customers'
orders were as follows.
Medium Large
Small
Hot
5
48
22
Cold
8
12
5
What is the probability that a customer ordered
a small given that he or she ordered a hot
drink?
Rounded to the nearest percent, [? ]%
Well formatted distribution table is attached below :
Answer:
7%
Step-by-step explanation:
The probability that a customer ordered a small Given that he or she ordered a hot drink ;
This is a conditional probability and will be represented as :
Let :
P(small drink) = P(S)
P(hot drink) = P(H)
Hence, the conditional probability is written as :
P(S|H) = P(SnH) / P(H) = 5 / (5+48+22) = 5/75 = 0.0666 = 0.0666 * 100% = 6.67%
Sorry to ask so many questions but I need help in MATH
PLZZZ HELPPP
Answer:
24 26 27 94 is the answer 45
Answer:
the correct answer is 45
Select the correct answer. Simplify. (3x^2y^3/z^3)^3 A. B. C. D.
Answer:
options aren't given but the correct answer will be [tex]\frac{27x^6y^9}{z^9}[/tex]
Step-by-step explanation:
The simplified form of (3x²y³/z³)³ is 27x⁶y⁹/z⁹.
To simplify the expression (3x²y³/z³)³, we apply the rules of exponents. When we raise a power to another power, we multiply the exponents.
First, let's apply the exponent of 3 to each term inside the parentheses:
(3x²y³/z³)³ = 3³ × (x²)³ × (y³)³ / (z³)³
Simplifying further:
= 27 × x⁶ × y⁹ / z⁹
Therefore, the simplified form of (3x²y³/z³)³ is 27x⁶y⁹/z⁹.
This means that each term inside the parentheses is raised to the power of 3, resulting in the expression 27x⁶y⁹/z⁹.
The final expression represents the cube of the original expression, where each term is cubed individually. The exponents are multiplied by 3 to reflect this operation.
In summary, the simplified form is 27x⁶y⁹/z⁹.
To learn more about the exponents;
brainly.com/question/30066987
#SPJ6
What is the probability that in a sample of 400 registered voters to at least 290 voted in their most recent local
Answer:
The probability that in a sample of 400 registered voters at least 290 voted in their most recent local elections is:
= 72.5%
Step-by-step explanation:
Sample of registered voters = 400
Sample of voters that actually voted = 290
Probability = 290/400 * 100
= 72.5%
b) This result above gives the statistic that for every 100 registered voters, 72.5 voters voted. Probability measures the chance of an event occurring given other events. Therefore, one can conclude that the voting was at least 72.5%. Inversely, 27.5% of the registered voters did not participate or cast their ballots in the local elections.
How long will it take her to travel 72 miles? use the unit ratio to solve the following problem.
Answer:
It will take Noshwa 3 hours and 36 minutes to travel 72 miles.
Step-by-step explanation:
Since Noshwa is completing the bike portion of a triathlon, assuming that she travels 40 miles in 2.5 hours, to determine how long will it take her to travel 72 miles, the following calculation must be performed:
40 = 2.5
72 = X
72 x 2.5 / 50 = X
180/50 = X
3.6 = X
1 = 60
0.6 = X
0.6 x 60 = X
36 = X
Therefore, it will take Noshwa 3 hours and 36 minutes to travel 72 miles.
if 5 breads for $100 and they want 2000 breads how much will it cost
Answer:
$40,000
Step-by-step explanation:
If 5 breads cost $100, then 1 bread will cost 100/5=20.
So if 1 bread cost $20, then 2000 breads will cost 2000*20=$40,000.
Answer:
$40000
Step-by-step explanation:
5 breads=$100
1 bread=$100/5=$20
2000 breads= $20 x 2000 = $40000
Will give brainliest answer
Answer:
A
Step-by-step explanation:
the proof of the answer is shown above
What is the distance between the points (2, 1) and (14, 6) on a coordinate
plane?
Answer:
it's 13 if you use the distance formula