Mr johnson sells erasers for $3 each. He sold 96 erasers last week and he sold 204 erasers this week.
A. $300 B $600 C $100 D $900
I believe your answer is D.) $900
204 + 96 = 300
300 x 3 = 900
I hope this is correct and helps!
When P(x) is divided by (x - 1) and (x + 3), the remainders are 4 and 104 respectively. When P(x) is divided by x² - x + 1 the quotient is x² + x + 3 and the remainder is of the form ax + b. Find the remainder.
Answer:
The remainder is 3x - 4
Step-by-step explanation:
[Remember] [tex]\frac{Dividend}{Divisor} = Quotient + \frac{Remainder}{Divisor}[/tex]
So, [tex]Dividend = (Quotient)(Divisor) + Remainder[/tex]
In this case our dividend is always P(x).
Part 1
When the divisor is [tex](x - 1)[/tex], the remainder is [tex]4[/tex], so we can say [tex]P(x) = (Quotient)(x - 1) + 4[/tex]
In order to get rid of "Quotient" from our equation, we must multiply it by 0, so [tex](x - 1) = 0[/tex]
When solving for [tex]x[/tex], we get
[tex]x - 1 = 0\\x - 1 + 1 = 0 + 1\\x = 1[/tex]
When [tex]x = 1[/tex],
[tex]P(x) = (Quotient)(x - 1) + 4\\P(1) = (Quotient)(1 - 1) + 4\\P(1) = (Quotient)(0) + 4\\P(1) = 0 + 4\\P(1) = 4[/tex]
--------------------------------------------------------------------------------------------------------------
Part 2
When the divisor is [tex](x + 3)[/tex], the remainder is [tex]104[/tex], so we can say [tex]P(x) = (Quotient)(x + 3) + 104[/tex]
In order to get rid of "Quotient" from our equation, we must multiply it by 0, so [tex](x + 3) = 0[/tex]
When solving for [tex]x[/tex], we get
[tex]x + 3 = 0\\x + 3 - 3 = 0 - 3\\x = -3[/tex]
When [tex]x = -3[/tex],
[tex]P(x) = (Quotient)(x + 3) + 104\\P(-3) = (Quotient)(-3 + 3) + 104\\P(-3) = (Quotient)(0) + 104\\P(-3) = 0 + 104\\P(-3) = 104[/tex]
--------------------------------------------------------------------------------------------------------------
Part 3
When the divisor is [tex](x^2 - x + 1)[/tex], the quotient is [tex](x^2 + x + 3)[/tex], and the remainder is [tex](ax + b)[/tex], so we can say [tex]P(x) = (x^2 + x + 3)(x^2 - x + 1) + (ax + b)[/tex]
From Part 1, we know that [tex]P(1) = 4[/tex] , so we can substitute [tex]x = 1[/tex] and [tex]P(x) = 4[/tex] into [tex]P(x) = (x^2 + x + 3)(x^2 - x + 1) + (ax + b)[/tex]
When we do, we get:
[tex]4 = (1^2 + 1 + 3)(1^2 - 1 + 1) + a(1) + b\\4 = (1 + 1 + 3)(1 - 1 + 1) + a + b\\4 = (5)(1) + a + b\\4 = 5 + a + b\\4 - 5 = 5 - 5 + a + b\\-1 = a + b\\a + b = -1[/tex]
We will call [tex]a + b = -1[/tex] equation 1
From Part 2, we know that [tex]P(-3) = 104[/tex], so we can substitute [tex]x = -3[/tex] and [tex]P(x) = 104[/tex] into [tex]P(x) = (x^2 + x + 3)(x^2 - x + 1) + (ax + b)[/tex]
When we do, we get:
[tex]104 = ((-3)^2 + (-3) + 3)((-3)^2 - (-3) + 1) + a(-3) + b\\104 = (9 - 3 + 3)(9 + 3 + 1) - 3a + b\\104 = (9)(13) - 3a + b\\104 = 117 - 3a + b\\104 - 117 = 117 - 117 - 3a + b\\-13 = -3a + b\\(-13)(-1) = (-3a + b)(-1)\\13 = 3a - b\\3a - b = 13[/tex]
We will call [tex]3a - b = 13[/tex] equation 2
Now we can create a system of equations using equation 1 and equation 2
[tex]\left \{ {{a + b = -1} \atop {3a - b = 13}} \right.[/tex]
By adding both equations' right-hand sides together and both equations' left-hand sides together, we can eliminate [tex]b[/tex] and solve for [tex]a[/tex]
So equation 1 + equation 2:
[tex](a + b) + (3a - b) = -1 + 13\\a + b + 3a - b = -1 + 13\\a + 3a + b - b = -1 + 13\\4a = 12\\a = 3[/tex]
Now we can substitute [tex]a = 3[/tex] into either one of the equations, however, since equation 1 has less operations to deal with, we will use equation 1.
So substituting [tex]a = 3[/tex] into equation 1:
[tex]3 + b = -1\\3 - 3 + b = -1 - 3\\b = -4[/tex]
Now that we have both of the values for [tex]a[/tex] and [tex]b[/tex], we can substitute them into the expression for the remainder.
So substituting [tex]a = 3[/tex] and [tex]b = -4[/tex] into [tex]ax + b[/tex]:
[tex]ax + b\\= (3)x + (-4)\\= 3x - 4[/tex]
Therefore, the remainder is [tex]3x - 4[/tex].
Which of the following consists of discrete data?
A. Number of suitcases on a plane.
B. Amount of rainfall.
C. Hair color.
D. Tree height.
Answer:
A
Step-by-step explanation:
Number of suitcases on a plane is discrete because you can only have an integer amount. You can't have a fraction of a suitcase on a plane.
Assume that the breaking system of a train consists of two components connected in series with both of them following Weibull distributions. For the first component the shape parameter is 2.1 and the characteristic life is 100,000 breaking events. For the second component the shape parameter is 1.8 and characteristic life of 80,000. Find the reliability of the system after 2,000 breaking events:
Answer:
0.9984
Step-by-step explanation:
we have shape parameter for the first component as 2.1
characteristics life = 100000
for this component
we have
exp(-2000/100000)².¹
= e^-0.0002705
= 0.9997
for the second component
shape parameter = 1.8
characteristic life = 80000
= exp(-2000/80000)¹.⁸
= e^-0.001307
= 0.9987
the reliability oif the system after 2000 events
= 0.9987 * 0.9997
= 0.9984
Which expression is equivalent to…
Answer:
D
Step-by-step explanation:
is y=3x^2-x-1 a function
Answer: Yes it is a function.
This is because any x input leads to exactly one y output.
The graph passes the vertical line test. It is impossible to draw a single vertical line through more than one point on the parabolic curve.
The original price of a set lunch was 30 dollars. It is now sold at a 20%
discount. There is an extra discount of 10% for students. How much
should a student pay to order a set lunch?
Which ordered pair is a solution of the equation?
y=-2x+5y=−2x+5y, equals, minus, 2, x, plus, 5
Choose 1 answer:
Choose 1 answer:
(Choice A)
A
Only (2,-9)(2,−9)left parenthesis, 2, comma, minus, 9, right parenthesis
(Choice B)
B
Only (-2,9)(−2,9)left parenthesis, minus, 2, comma, 9, right parenthesis
(Choice C)
C
Both (2,-9)(2,−9)left parenthesis, 2, comma, minus, 9, right parenthesis and (-2,9)(−2,9)left parenthesis, minus, 2, comma, 9, right parenthesis
(Choice D)
D
Neither
9514 1404 393
Answer:
B. only (-2, 9)
Step-by-step explanation:
A graph of the equation makes it easy to see that (-2, 9) is a solution and (2, -9) is not.
You can try these values of x in the equation to see what the corresponding y-values are.
y = -2{-2, 2} +5 = {4, -4} +5 = {9, 1}
Points on the line are (-2, 9) and (2, 1).
(2, -9) is not a solution.
Answer:
B
Step-by-step explanation:
I know it is B. I know it because I put b in and I got it right on khan academy
Suppose that you are interested in determining the average height of a person in a large city. You begin by collecting the heights of a random sample of 196 people from the city. The average height of your sample is 68 inches, while the standard deviation of the heights in your sample is 7 inches. The standard error of your estimate of the average height in the city is
Answer:
The standard error of your estimate of the average height in the city is 0.5 inches.
Step-by-step explanation:
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
You begin by collecting the heights of a random sample of 196 people from the city.
This means that [tex]n = 196[/tex]
The standard deviation of the heights in your sample is 7 inches.
This means that [tex]\sigma = 7[/tex]
The standard error of your estimate of the average height in the city is
[tex]s = \frac{\sigma}{\sqrt{n}} = \frac{7}{\sqrt{196}} = 0.5[/tex]
The standard error of your estimate of the average height in the city is 0.5 inches.
Help asap! Lia can rent a van for either $90 per day with unlimited mileage or $50 per day with 250 free miles and an extra 25¢ for each mile over 250. For what number of miles traveled in one day would the unlimited mileage plan save Lia money? (Show work)
Answer:
The unlimited mileage plan would save money for Lia from 410 miles onwards.
Step-by-step explanation:
Since Lia can rent a van for either $ 90 per day with unlimited mileage or $ 50 per day with 250 free miles and an extra 25 ¢ for each mile over 250, to determine for what number of miles traveled in one day would the unlimited mileage plan save Lia money, the following calculation must be performed:
90.25 - 50 = 40.25
40.25 / 0.25 = 161
161 + 250 = 411
Therefore, the unlimited mileage plan would save money for Lia from 410 miles onwards.
Which of the following statements are true?
Answer:
D
Step-by-step explanation:
i think it's correct if not I'm sorry
A Line passes through the .4 -6 and has a slope of -3 and four which is the equation of the line
Answer:
(in the image)
Step-by-step explanation:
I'm not sure I understood your question completely but I hope this helps.
Find the volume (in cubic feet) of a cylindrical column with a diameter of 6 feet and a height of 28 feet. (Round your answer to one decimal place.)
Answer:
[tex]791.7\:\mathrm{ft^3}[/tex]
Step-by-step explanation:
The volume of a cylinder with radius [tex]r[/tex] and height [tex]h[/tex] is given by [tex]A_{cyl}=r^2h\pi[/tex].
By definition, all radii of a circle are exactly half of all diameters of the circle. Therefore, if the diameter of the circular base of the cylinder is 6 feet, the radius of it must be [tex]6\div 2=3\text{ feet}[/tex].
Now we can substitute [tex]r=3[/tex] and [tex]h=28[/tex] into our formula [tex]A_{cyl}=r^2h\pi[/tex]:
[tex]A=3^2\cdot 28\cdot \pi,\\A=9\cdot28\cdot \pi,\\A=791.681348705\approx \boxed{791.7\:\mathrm{ft^3}}[/tex]
In how many ways could nine people be divided into two groups of two people and one group of five people?
Nine people could be divided into two groups of two people and one group of five people ways.
(Type a whole number.)
Answer:
your can only divide then up in that specific sequence one time
Find the domain.
p(x) = x^2+ 2
Answer:
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Interval Notation:
( − ∞ , ∞ )
Set-Builder Notation:
{ x | x ∈ R }
Step-by-step explanation:
hope that helps bigger terms
4 pts
>
Question 2
The total number of students enrolled in MATH 123 this semester is 5,780.
If it increases by 0.28% for the next semester, what will be the enrollment
next semester? Round to a whole person.
4 pts
Question 3
Answer:
17
Step-by-step explanation:
So, this is a percentage problem.
Start off by finding how many students 0.28% is:
If 100% = 5780
0.01% = 0.578
Now:
0.01% = 0.578
0.28% = 16.184
The exercise tells you to round for a whole person, so 16.184 turns 17
And that's the answer!
Whoever helps me with this question I will give them brainliest
Hi there I hope you are having a great day :) I am pretty sure that you do 280 degrees around angle so i would say you would add 63 + 73 + 83 = 219 then you would take away it 280 - 219 = 61 so y must equal to 61 this is because we can see a z shape and a z shape adds up to 280.
Hopefully that helps you.
Ghgshsvssbdbdbbdbxbxbxbdbdbdbdbdndndjd
So a Quadratic function,A quadratic function is one of the form f(x) = ax2 + bx + c, where a, b, and c are numbers with a not equal to zero
Solve the system of equations using the elimination method 5x+10y = 3
10x + 20y = 8
Answer:
No solution
Step-by-step explanation:
5x+10y=3 equation 1
10x+20y=8 equation 2
-2(5x+10y)=-2(3) multiply equation 1 by -2 to eliminate x
-10x-20y=-6 equation 1 multiplied by -2
10x+20y=8 equation 2
0 + 0 =2. Add above equations
0 =2
no solution
15/4 : 5/12 =
tolong dijawab ya :)
Answer:
3/1 : 1/3
Step-by-step explanation:
Just simplify it.
A manufacturer is interested in the output voltage of a power supply used in a PC. Output voltage is assumed to be normally distributed, with standard deviation 0.25 volt, and the manufacturer wishes to test volts against volts, using units. In your intermediate calculations, use z-scores rounded to two decimal places (e.g. 98.76).
(a) The acceptance region is_____. Find the value of a.
(b) Find the power of the test for detecting a true mean output voltage of 5.1 volts.
Answer: hello your question was poorly written but i was able to the get missing parts online which enabled me resolve your question
answer:
a) a = 0.1096
b) 1.89 watts
Step-by-step explanation:
Std of output voltage = 0.25 volt
H0 : μ = 5 volts
Ha : μ ≠ 5 volts
n = 16
a) Acceptance region = 4.9 ≤ X ≤ 5.1
Determine the value of a
value of a = 0.0548 + 0.0548
= 0.1096
attached below is the reaming solution
note : a is a type 1 error
b) power of test
True mean output voltage = 5.1 volts
P = - 1.89 watts
power cant be negative hence the power of the test = 1.89 watts
is there a formula for this?
help asap!!
Answer:
yes
Step-by-step explanation:
the answer is c well thats what my teacher said
Answer:
B
Step-by-step explanation:
using sine rule
[tex] \frac{y}{sin \: 45} = \frac{5}{sin \: 45} \\ y = 5[/tex]
using sin rule
[tex] \frac{x}{sin \: 90} = \frac{5}{sin \: 45} \\ \\ 5sin90 = xsin45 \\ \\ x = \frac{5 \: sin \: 90}{sin \: 45} \\ x = \frac{5}{0.7071} \\ x = 7.071[/tex]
x=5√2
i need helpp pleaseee
14 Calculate the mode from the following data: 7,8, 6, 5, 10, 11, 4, 5,2 b. 5: а. 3.' 4 6 с. d: 6
MODE IS THE NUMBER THAT IS REPEATED THE HIGHEST TIME..
HERE, IN YOUR QUESTION 5CAME 2 TIMES i.e. it is repeated highest time .so mode=5....
In a family of 3 children, what is the probability that there will be exactly 2 boys assuming that the sexes are equally likely to occur in each birth
Answer:
There is a 60.00 percent probability of a particular outcome and 40.00 percent probability of another outcome.
Create a circle such that its center is point A and B is a point on the circle.
Answer:
The center of a circle is the point in the circle which is equidistant to all the edges of thr circle. The point a is the center, while point b is an arbitrary point in the circle. Find attachment for the diagram.
Please answer & number. Thank you! <33
Answer:
2)=2
4)=3
5)=5
8)=-1
Step-by-step explanation:
just divide the number by the number with variable
Graph g(x)=-8|x |+1.
Answer:
[tex] g(x)=-8|x |+1. = 9552815 \geqslant 6[/tex]
William invested $12,000 in a bank account that pays 9 percent simple interest. His friend invested the same amount at another bank that pays 8 percent interest compounded quarterly. These two functions, where t is time in years, represent the value of the investments: f(t) = 12(1.02)4t g(t) = 12(1.09)t The functions are graphed, and the point of intersection lies between 0.5 and 1.2. Based on the table, approximately how long will it be until both investments have the same value? Value of t f(t) = 12(1.02)4t g(t) = 12(1.09)t 0.5 12.48 6.54 0.6 12.58 7.84 0.7 12.68 9.16 0.8 12.79 10.46 0.9 12.89 11.87 1.0 12.99 13.08 1.1 13.09 14.39 1.2 13.20 15.70 A. 0.9 year B. 1.0 year C. 1.1 years D. 1.2 years
===========================================================
Explanation:
We have these two functions
f(t) = 12(1.02)^(4t)g(t) = 12(1.09)twhich represent the amounts for his friend and William in that order. Strangely your teacher mentions William first, but then swaps the order when listing the exponential function as the first. This might be slightly confusing.
The table of values is shown below. We have t represent the number of years and t starts at 0.5. It increments by 0.1
The f(t) and g(t) columns represent the outputs for those mentioned values of t. For example, if t = 0.5 years (aka 6 months) then f(t) = 12.48 and that indicates his friend has 12,480 dollars in the account.
I've added a fourth column labeled |f - g| which represents the absolute value of the difference of the f and g columns. If f = g, then f-g = 0. The goal is to see if we get 0 in this column or try to get as close as possible. This occurs when we get 0.09 when t = 1.0
So we don't exactly get f(t) and g(t) perfectly equal, but they get very close when t = 1.0
It turns out that the more accurate solution is roughly t = 0.9925 which is close enough. I used a graphing calculator to find this approximate solution.
It takes about a year for the two accounts to have the same approximate amount of money.
Answer:
B
Step-by-step explanation:
Follow the process of completing the square
to solve 2x2 + 8x - 12 = 0.
After adding B2 to both sides of the equation in step 4, what is the constant on the right side of the equation?
2x^2 + 8x - 12 = 0..divide by 2
x^2 + 4x - 6 = 0
x^2 + 4x = 6...add 4 to both sides of the equation
x^2 + 4x + 4 = 6 + 4
(x + 2)^2 = 10....<== ur constant is 10
x + 2 = (+-)sqrt 10
x = -2 (+ - ) sqrt 10
x = -2 + sqrt 10
x = -2 - sqrt 10