2. As NH4OH is added to an HCl solution, the pH of the solution
A) increases as the OH- concentration decreases
B ) increases as the OH- concentration increases
C ) decreases as the OH- concentration decreases
D ) decreases as the OH- ion concentration increases
Answer:
c
Explanation:
Nh4OH + HCL ---> NH4Cl + H3O
so ph decreases as H3O increases
and OH also decreases
When NH4OH is added to a solution with HCI, the pH of the solution B ) increases as the OH- concentration increases.
Why would the solution increase?NH₄OH is a strong base as a result of the presence of the OH compound which is a base as well. Bases have high pH and acids have low pH.
This means that as the OH- concentration increases, the solution is being made to be more basic which would lead to the pH rising.
In conclusion, option B is correct.
Find out more on Bases at https://brainly.com/question/15565260.
Where would (aq) (s) go in Cr(NO3)3+K3PO4
Answer:
Cr(NO3)3 (aq) +K3PO4 (s)
Explanation:
Can someone do a True or false for these
Answer:
all i can accurately say is that 2 and 4 are both true
Help me guys ☹️please
Answer:
Coriolis Effect
Explanation:
The Coriolis Effect is caused by Earths rotation. We can not only see this affecting how winds move, but also where storms form and the movement of oceans currents.
Suggest two reasons why carbon dioxide emissions from electricity production decreased from 2012 to 2015
Answer:
global warming
Explanation:
Applying smart electric grid technologies can potentially reduce CO2 emissions.
If hydrofluoric acid is a stronger acid than acetic acid, which statement is most likely true?
The conjugate acid of hydrofluoric acid is weaker than that of acetic acid.
The conjugate acid of hydrofluoric acid is stronger than that of acetic acid.
The conjugate base of hydrofluoric acid is weaker than that of acetic acid.
The conjugate base of hydrofluoric acid is stronger than that of acetic acid.
Answer: The statement conjugate base of hydrofluoric acid is weaker than that of acetic acid is most likely true.
Explanation:
A strong acid upon dissociation gives a weak conjugate base. This can also be said as stronger is the acid, weaker will be its conjugate base or vice-versa.
Hydrofluoric acid is a strong base as it dissociates completely when dissolved in water.
For example, [tex]HF \rightleftharpoons H^{+} + F^{-}[/tex]
The conjugate base is [tex]F^{-}[/tex] which is a weak base.
Acetic acid is a weak acid as it dissociates partially when dissolved in water. So, the conjugate base of acetic acid is a strong base.
[tex]CH_{3}COOH \rightarrow CH_{3}COO^{-} + H^{+}[/tex]
Thus, we can conclude that the statement conjugate base of hydrofluoric acid is weaker than that of acetic acid is most likely true.
hat is the molarity of a solution prepared by dissolving 12.0 g of ethylene glycol, C2H6O4, in water to make 250.0 mL of solution
Answer:
0.512 M
Explanation:
We'll begin by calculating the number of mole in 12 g of C₂H₆O₄. This can be obtained as shown below:
Mass of C₂H₆O₄ = 12 g
Molar mass of C₂H₆O₄ = (2×12) + (6×1) + (4×16)
= 24 + 6 + 64
= 94 g/mol
Mole of C₂H₆O₄ =?
Mole = mass /molar mass
Mole of C₂H₆O₄ = 12 / 94
Mole of C₂H₆O₄ = 0.128 mole
Next, we shall convert 250 mL to L. This can be obtained as follow:
1000 mL = 1 L
Therefore,
250 mL = 250 mL × 1 L / 1000 mL
250 mL = 0.25 L
Thus, 250 mL is equivalent to 0.25 L.
Finally, we shall determine the molarity of the solution. This can be obtained as follow:
Mole of C₂H₆O₄ = 0.128 mole
Volume = 0.25 L
Molarity =?
Molarity = mole /Volume
Molarity = 0.128 / 0.25
Molarity = 0.512 M
Thus, the molarity of the solution is 0.512 M
Why does every chemical reaction require a certain amount of activation energy?
Explanation:
Activation energy is the minimum amount of energy required for a chemical reaction to take place.
When a chemical reaction occurs then bonds between the reactants break and bonds between the products are formed. This leads to the formation of an activated complex which is also known as transition state.
So, in order to form the activated complex a minimum amount of energy is necessary and this energy is known as activation energy.
Calculate the average atomic mass for element X
Answer:
39.02
Explanation:
From the question given above, the following data were obtained:
Isotope A:
Mass of A = 38
Abundance of A (A%) = 9.67%
Isotope B:
Mass of B = 39
Abundance of B (B%) = 78.68%
Isotope C:
Mass of C = 40
Abundance of C (C%) = 11.34%
Isotope D:
Mass of D = 41
Abundance of D (D%) = 0.31%
Average atomic mass of X =?
The average atomic mass of X can be obtained as follow:
Average = [(Mass of A × A%)/100] + [(Mass of B × B%)/100] + [(Mass of C × C%)/100] + [(Mass of D × D%)/100]
= [(38 × 9.67)/100] + [(39 × 78.68)/100] + [(40 × 11.34)/100] + [(41 × 0.31)/100]
= 3.6746 + 30.6852 + 4.536 + 0.1271
= 30.02
Thus, the average atomic mass of X is 39.02
Heat is most closely related to which kind of energy?
O nuclear
electrical
thermal
chemical
Answer:
C thermal
Explanation:
cuantas moléculas de oxigeno se producen por la descomposición de 28.5 g de H2O2 (masa molecular = 34.0g/mol) de acuerdo a la ecuación
2H2O2(l) → 2H2O(l)+O2(g)
The question is as follows: How many oxygen molecules are produced by the decomposition of 28.5 g of H2O2 (molecular mass = 34.0g / mol) according to the equation
2H2O2 (l) → 2H2O (l) + O2 (g)
Answer: There are [tex]2.52 \times 10^{23}[/tex] molecules are produced by the decomposition of 28.5 g of [tex]H_{2}O_{2}[/tex] according to the equation [tex]2H_{2}O(l) \rightarrow 2H_{2}O(l) + O_{2}(g)[/tex].
Explanation:
Given: Mass of [tex]H_{2}O_{2}[/tex] = 28.5 g
As moles is the mass of a substance divided by its molar mass. Hence, moles of [tex]H_{2}O_{2}[/tex] is calculated as follow.
[tex]Moles = \frac{mass}{molarmass}\\= \frac{28.5 g}{34.0 g/mol}\\= 0.838 mol[/tex]
According to the given equation, 2 moles of [tex]H_{2}O_{2}[/tex] gives 1 mole of [tex]O_{2}[/tex]. So, moles of [tex]O_{2}[/tex] produced by 0.838 moles of [tex]H_{2}O_{2}[/tex] will be calculated as follows.
[tex]Moles of O_{2} = \frac{0.838 mol}{2}\\= 0.419 mol[/tex]
This means that moles of [tex]O_{2}[/tex] produced is 0.419 mol.
As per the mole concept, 1 mole of every substance has [tex]6.022 \times 10^{23}[/tex] molecules.
So, molecules of [tex]O_{2}[/tex] present in 0.419 mole are as follows.
[tex]0.419 \times 6.022 \times 10^{23}\\= 2.52 \times 10^{23}[/tex]
Thus, we can conclude that there are [tex]2.52 \times 10^{23}[/tex] molecules are produced by the decomposition of 28.5 g of [tex]H_{2}O_{2}[/tex] according to the equation [tex]2H_{2}O(l) \rightarrow 2H_{2}O(l) + O_{2}(g)[/tex].
Which experiment led to the idea that atoms contain a nucleus?
Answer:
Rutherford's gold foil experiment showed that the atom is mostly empty space with a tiny, dense, positively-charged nucleus. Based on these results, Rutherford proposed the nuclear model of the atom.
Explanation:
7. Explain the difference between an ionic compound and a molecule, on an atomic
level (that is, describe what is happening with the atoms that makes these compounds
different)
Answer:
bakit Kay's lahat Ng module mahirap
How many oxygen (O) atoms would a carbon (C) atom need to bond with to form a stable compound?
A.3
B.4
C.1
D.2
If 1000. mL of water freezes, which of the following is a reasonable approximation for the volume of the resulting ice?
Group of answer choices
1000. mL
961 mL
1040 mL
No answer text provided.
Previous Next
Answer:
If 1000. mL of water freezes, which of the following is a reasonable approximation for the volume of the resulting ice?
Group of answer choices
1000. mL
961 mL
1040 mL
Explanation:
Ice is fewer denser than water.
The reason is the volume occupied by the same mass of ice with water is more than the volume occupied by water. Ice has more empty space within it.
Due to this reason, ice floats on water.
When 1000ml of water freezes to ice then its volume is greater than water.
Among the given options the correct answer is 1040 mL .
Anthracite coal d) is the most abundant grade of coal e) is very soft and burns at high temperatures a) causes the most air pollution c) is very hard and burns cleanly b) has the highest sulfur content
Answer: The correct option is C ( is very hard and burns cleanly).
Explanation:
COAL is a form of rock that is made up of mostly carbon amongst other elements which includes sulphur, nitrogen, hydrogen and oxygen. There are different types of coal which include:
--> anthracite ( 90% carbon)
--> bituminous coal ( 70-90% carbon)
--> lignite ( 60- 70% carbon) and
--> peat (60 % carbon).
Anthracite is the type of coal that contains the highest carbon content ( 90% carbon). This makes it very hard and is often a times referred to as HARD COAL. Anthracite is a higher quality coal for domestic and open fire heating. This is because it contains less impurities than other type of coal and thereby making it to BURN CLEANLY avoiding atmospheric pollution.
During an experiment, solid iodine was placed in a sealed container. The container was gradually heated and purple-colored vapors of iodine formed were observed. Describe this system when it reaches phase equilibrium.
Answer:
See explanation
Explanation:
A system is said to have attained dynamic equilibrium when the rate of forward reaction and the rate of reverse reaction are equal.
Considering the system under consideration;
I2(s)⇄I2(g)
Heating the container converts solid iodine to purple coloured iodine vapour.
At equilibrium, there will be no net change in the amount of solid iodine and iodine vapour present in the system because the two processes (forward and reverse reactions) occur at the same rate at equilibrium.
A UV wave has a smaller___
than visible light.
Answer:
wavelength
Explanation:
AYUDA DOY CORONA
Numero masico del oro
Answer:
huh what?
Explanation:
Is 196,96657 u
I hope I've helped :)
The combustion of gasoline produces carbon dioxide and water. Assume gasoline to be pure octane (C8H18) and calculate the mass (in kg) of carbon dioxide that is added to the atmosphere per 1.0 kg of octane burned
Answer:
3.1 kg
Explanation:
Step 1: Write the balanced combustion equation
C₈H₁₈ + 12.5 O₂ ⇒ 8 CO₂ + 9 H₂O
Step 2: Calculate the moles corresponding to 1.0 kg of C₈H₁₈.
The molar mass of C₈H₁₈ is 114.23 g/mol.
1.0 × 10³ g × 1 mol/114.23 g = 8.8 mol
Step 3: Calculate the moles of CO₂ produced from 8.8 moles of C₈H₁₈
The molar ratio of C₈H₁₈ to CO₂ is 1:8. The moles of CO₂ produced are 8/1 × 8.8 mol = 70 mol.
Step 4: Calculate the mass corresponding to 70 moles of CO₂
The molar mass of CO₂ is 44.01 g/mol.
70 mol × 44.01 g/mol = 3.1 × 10³ g = 3.1 kg
Help ASAP only right answers only no spam don’t answer if you don’t know
Answer:
theory
Explanation:
if you assume something that you didn't see occuring it is called a theory
A 150 j of energy is added to a system that does 50 j of work is done. By how much wiull the internal energy of the system be raised?
Answer:
thnx for the points too muchee
Explanation:
Answer:
3 internal energyExplanation:
[tex]{hope it helps}}[/tex]
i need to know the answer ASAP PLEASE
Answer:
E....H+
Explanation:
coz when hydrogen ions are formed they automatically join to form hydrogen
Consider the balanced reaction below:
2HBr + Ba(OH)2 → BaBr2 + 2H2O
How many moles of barium
hydroxide, Ba(OH)2, would be
required to react with 117 g hydrogen bromide, HBr?
Answer:
0.723 moles (5 s.f.)
Explanation:
Whenever there is a chemical equation, ensure that it is balanced. This is because a balanced chemical equation tells us the mole ratio (not the ratio of their masses), which means the relationship of the number of moles of reactants or products with one another.
The chemical equation given has already been balanced. Looking at the coefficients of HBr and Ba(OH)₂, the mole ratio of HBr to Ba(OH)₂ is 2: 1.
• 1 mole of Ba(OH)₂ is needed to react with 2 mole of HBr
Find the number of moles of HBr present:
Number of moles= mass ÷mr
Amount of HBr
= 117 ÷(1 +79.9)
= 1.4462 moles (5 s.f.)
Since the amount of Ba(OH)₂ required is half the amount of HBr present,
amount of Ba(OH)₂ required
= 1.4462 ÷2
= 0.723 moles (3 s.f.)
Notes:
• mr
= relative molecular mass
= sum of relative atomic masses (which can be found in the periodic table) in a molecule
A mixture of gases contains 0.320 mol CH4, 0.240 mol C2H6, and 0.300 mol C3H8. The total pressure is 1.45 atm. Calculate the partial pressures of the gases.
Answer:
pCH₄ = 0.540 atm
pC₂H₆ = 0.405 atm
pC₃H₈ = 0.505 atm
Explanation:
Step 1: Calculate the total number of gaseous moles
n = n(CH₄) + n(C₂H₆) + n(C₃H₈)
n = 0.320 mol + 0.240 mol + 0.300 mol = 0.860 mol
Step 2: Calculate the partial pressure of each gas
We will use the following expression.
pi = P × Χi
where,
pi: partial pressure of the gas "i"P: total pressureΧi: mole fraction of the gas "i"pCH₄ = 1.45 atm × 0.320 mol/0.860 mol = 0.540 atm
pC₂H₆ = 1.45 atm × 0.240 mol/0.860 mol = 0.405 atm
pC₃H₈ = 1.45 atm × 0.300 mol/0.860 mol = 0.505 atm
A gas has density 2.41 g/liter at 25°C and 770 mm Hg. Calculate it's molecular mass (R = 0.0821 L atm.mol-1K-1.
ASAP!!!!!!!!!
Answer:
Molecular mass, M = 58.20 g/mol.
Explanation:
Given the following data;
Density = 2.41 g/literTemperature = 25°CPressure = 770 mmHgGas constant, R = 0.0821 L atm.mol-1K-1Conversion:
760 mmHg = 1 atm
770 mmHg = 770/760 = 1.0131 atm
Temperature = 25°C = 273 + 25 = 298 K
To find the molecular mass, we would use the ideal gas law equation (density version);
PM = dRT
Where;
P is the pressure.M is the molecular mass.d is the density of a substance.R is the ideal gas constant.T is the temperature.Making M the subject of formula, we have;
[tex] M = \frac {dRT}{P} [/tex]
Substituting into the formula, we have;
[tex] M = \frac {2.41 * 0.0821 * 298}{1.0131} [/tex]
[tex] M = \frac {58.9626}{1.0131} [/tex]
Molecular mass, M = 58.20 g/mol.
What is the difference between an orbit in the Bohr model of the hydrogen atom and an orbital in the quantum mechanical model
Answer:
See explanation
Explanation:
In Bohr's theory, electrons are found in specific regions in space called orbits. These orbits are also called energy levels. An electron may move from one energy level to another by absorbing or emitting energy.
In the wave mechanical model, electrons are not found in a particular region in space according to Heisenberg's uncertainty principle.
We rather define a certain region in space where there is a high probability of locating the electron. This region in space where there is a high probability of locating the electron is called an orbital.
Hence, in the Bohr's model of the atom,electrons can surely be found in orbits while in the wave mechanical model, the orbital is a probability function that describes a region in space where an electron may be found.
The mass of a neutron is
Kelvin And Mimi studied the fruits. Kelvin concluded that there are more ovules in a mango flower than a papaya flower while Mimi
argued that there are more ovules in a papaya flower than a mango flower.
(a) who is correct?
(b)Explain your answer in (a).
Answer:
kevin is right according to what i see
Help me and I'll make u Brainliest eat and follow u
19. place moth balls in the closet and observe after several days.
20. whenever wax or a candle burns it turns from solid to liquid but again at room temperature it turns to solid
21. evaporation, condensation, precipitation
22. it produces new substances
23. vinegar Bubbles when baking soda is added
24. steam