Answer:
e. HCOOH and NaCHOO
Explanation:
For a buffer solution, both an acid and its conjugate base are required.
With the information above in mind, we can discard options a) and c), as those combinations are not of an acid and its conjugate base.
Now it is a matter of comparing the pKa (found in literature tables) of the acids of the remaining three acids:
H₃PO₄ pKa = 2.12CH₃COOH pKa = 2.8HCOOH pKa = 3.74The acid with the pKa closest to the desired pH is HCOOH, so the correct answer is e. HCOOH and NaCHOO
Many home barbeques are fueled with propane gas (C3H8)(C3H8). Part A What mass of carbon dioxide is produced upon the complete combustion of 27.9 LL of propane (the approximate contents of one 5-gallon tank)
Answer:
41264 g of CO₂
Explanation:
Combustion reaction is:
C₃H₈ + 5O₂ → 3CO₂ + 4H₂O
1 mol of propane react to 5 moles of oxygen in order to proudce 3 moles of carbon dioxide and 4 moles of water.
In a combustion reaction, our reactant reacts to oxygen and the products are always CO₂ and water.
We have the volume of propane but we need moles of it, so we need to apply density.
Density = mass / volume so mass = density . volume.
Density of propane is: 493 g/L
Mass of propane is 493 g/L . 27.9L = 13754.7 g
We convert mass to moles: 13754.7 g . 1 mol/ 44g = 312.6 moles
According to reaction, 1 mol of propane can produce 3 moles of CO₂
Our 312.6 moles will produce 312.6 . 3 = 937.8 moles
We convert moles to mass: 937.8 mol . 44 g/mol = 41264 g
14 protons,14 electrons and 14 neutrons
the answer is silicon!!
what is the mass of insoluble calcium phosphate produced from .555 grams of calcium chloride
Answer:
0.518 g
Explanation:
Step 1: Write the balanced equation
3 CaCl₂ + 2 H₃PO₄ ⇒ Ca₃(PO₄)₂ + 6 HCl
Step 2: Calculate the moles corresponding to 0.555 g of CaCl₂
The molar mass of CaCl₂ is 110.98 g/mol.
0.555 g × 1 mol/110.98 g = 5.00 × 10⁻³ mol
Step 3: Calculate the moles of Ca₃(PO₄)₂ produced
5.00 × 10⁻³ mol CaCl₂ × 1 mol Ca₃(PO₄)₂/3 mol CaCl₂ = 1.67 × 10⁻³ mol Ca₃(PO₄)₂
Step 4: Calculate the mass corresponding to 1.67 × 10⁻³ moles of Ca₃(PO₄)₂
The molar mass of Ca₃(PO₄)₂ is 310.18 g/mol.
1.67 × 10⁻³ mol × 310.18 g/mol = 0.518 g
Identify the intermolecular attractions for dimethyl ether and for ethyl alcohol. Which molecule is expected to be more soluble in water? Explain.
Answer:
See explanation
Explanation:
All molecules possess the London dispersion forces. However London dispersion forces is the only kind of intermolecular interaction that exists in nonpolar substances.
So, the only kind of intermolecular interaction that exists in dimethyl ether is London dispersion forces.
As for ethyl alcohol, the molecule is polar due to the presence of polar O-H bond. In addition to London dispersion forces, dipole-dipole interactions and specifically hydrogen bonding also occurs between the molecules.
Because ethyl alcohol is polar, it is more soluble in water than dimethyl ether.
8.7 Two products are formed in the following reaction in a 50:50 mixture. Would the resulting solution be optically active
Answer:
Yes. The solution would be optically active.
Explanation:
Diastereomer are defined as the image that is non mirror and non -identical. It is made up of two stereoisomers. They are formed when the two stereoisomers or more than two stereoisomers of the compound have the same configuration at the equivalent stereocenters.
In the given context, as the product given is a diastereomeric mixture, the product would have an optical activity in total.
So the answer is Yes.
an emerald can be described as...
Answer:
green gemstone
Explanation:
hope this helps someone
I need help solving this!
For the reaction C + 2H2 → CH4, how many moles of hydrogen are needed to make 146.6 grams of methane, CH4 ?
Round your answer to the nearest tenth. If you answer is a whole number like 4, report the answer as 4.0
Use the following molar masses. If you do not use these masses, the computer will mark your answer incorrect.:
Element
Molar Mass
Hydrogen
1
Carbon
12
Answer: Moles of hydrogen required are 4.57 moles to make 146.6 grams of methane, [tex]CH_{4}[/tex].
Explanation:
Given: Mass of methane = 146.6 g
As moles is the mass of a substance divided by its molar mass. So, moles of methane (molar mass = 16.04 g/mol) are calculated as follows.
[tex]Moles = \frac{mass}{molar mass}\\= \frac{146.6 g}{16.04 g/mol}\\= 9.14 mol[/tex]
The given reaction equation is as follows.
[tex]C + 2H_{2} \rightarrow CH_{4}[/tex]
This shows that 2 moles of hydrogen gives 1 mole of methane. Hence, moles of hydrogen required to form 9.14 moles of methane is as follows.
[tex]Moles of H_{2} = \frac{9.14}{2}\\= 4.57 mol[/tex]
Thus, we can conclude that moles of hydrogen required are 4.57 moles to make 146.6 grams of methane, [tex]CH_{4}[/tex].
Question 1 Points 3 23 and Louis immerses his left hand in a beaker containing cold water and immerses his right hand in a beaker containing warm water. Then, he immerses both his hands on a beaker containing water at room temperature. Which of the following statements are true? 1. The hand that was in hot water would feel cold. 2. The hand that was in cold water would feel hot. 3. His two hands will feel the same hotness. Que O2 and 3 0 1 and 2 o 1 and 3 1.2, and 3
Answer:look down below
Explanation:
The statements that are true about hands that are immersed in the water are:
1. The hand that was in hot water would feel cold.
2. The hand that was in cold water would feel hot.
The correct option is B 1. and 2.
What is temperature?
Temperature is the measurement of the hotness or coldness of any object. It is measured in Celsius or kelvin. Our body has nerves that feel the different temperatures of any object. The high temperature is called hot and the low temperature is called cold.
When Louis put his hand in the warm water and one hand in the cold water. He feels the temperature of both glasses of water. Then he put both hands in the normal water.
So the hand that is warm would feel the water as cold and the hand with cold water would feel the water as hot.
Thus, the correct option is B. 1. and 2.
Learn more about temperature, here:
https://brainly.com/question/15267055
#SPJ5
define saturated and unsaturated fats
Answer:
unsaturated fats, which are liquid at room temperature,are different from saturated fat because they contain one or more double bonds and fewer hydrogen atoms on their carbon chain.
Calculate the average atomic mass for X
Answer:
39.0229 amu
Explanation:
Hello there!
In this case, according to given information, the idea here is to multiply the percent abundance by the mass number of each isotope and then add them all together as shown below:
[tex]=0.0967*38+0.7868*39+0.1134*40+0.0031*41\\\\=3.6746+30.6852+4.536+0.1271\\\\=39.0229amu[/tex]
Regards!
Calculate the volume in liters of a 1.60 mol/L sodium nitrate solution that contains of sodium nitrate . Round your answer to significant digits.
Answer:
1.5L of NaNO3 must be present
Explanation:
That contains 200g of sodium nitrate. Round to 2 significant digits
To solve this question we need to convert the mass of NaNO3 to moles using its molar mass (85g/mol). With the moles and the molar concentration we can find the volume in liters of the solution:
Moles NaNO3:
200g * (1mol / 85g) = 2.353 moles NaNO3
Volume:
2.353 moles NaNO3 * (1L / 1.60moles) =
1.5L of NaNO3 must be presentWhich is the primary type of radiation from the sun that is absorbed by the ozone layer?
A. infrared radiatin
B. UV-B
C. X-rays
D. UV-C
E. UV-A
the answer to the question is B.UV-B
1. Calculate the number of moles of aluminum, sulfur, and oxygen atoms in 8.00 moles of aluminum sulfate, Al2(SO4)3. 2. Calculate the number of moles of magnesium, chlorine, and oxygen atoms in 6.10 moles of magnesium perchlorate, (Mg(CIO4)2.3. A sample of propane, C3H8, contains 13.8 moles of carbon atoms. How many total moles of atoms does the sample contain?4. A rare gold coin (24 karat, or 100% gold) has a mass of 25.54 g. How many atoms of gold are present in this coin?
Answer:
1) 16.0 moles Al
24.0 moles S
96.0 moles O
2)In 6.10 moles magnesium perchlorate, (Mg(CIO4)2 we have:
6.10 moles Mg
12.2 moles Cl
48.8 moles O
3)4.6 moles of propane (total) contains 13.8 moles of carbon and 36.8 moles of hydrogen atoms
4)The gold coin contains 7.8 *10^22 atoms
Explanation:
Step 1: Data given
Number of moles of aluminum sulfate, Al2(SO4)3 = 8.00 moles
Step 2: Calculate the number of moles
In 1 mol of aluminum sulfate, Al2(SO4)3 we have:
2 moles of Al
3 moles of S
12 moles of O
This means that in 8.00 moles of aluminum sulfate, Al2(SO4)3 we have:
2*8.00 = 16.0 moles Al
3*8.00 = 24.0 moles S
12*8 = 96.0 moles O
2. Calculate the number of moles of magnesium, chlorine, and oxygen atoms in 6.10 moles of magnesium perchlorate, (Mg(CIO4)2
1 mol of magnesium perchlorate, (Mg(CIO4)2 has:
1 Mol of Mg
2 moles of Cl
8 moles of O
In 6.10 moles magnesium perchlorate, (Mg(CIO4)2 we have:
1 * 6.10 moles = 6.10 moles Mg
2*6.10 = 12.2 moles Cl
8*6.10 = 48.8 moles O
3. A sample of propane, C3H8, contains 13.8 moles of carbon atoms. How many total moles of atoms does the sample contain?
In 1 mol of propane, C3H8 we have:
3 moles of C and 8 moles of H
This means if we have 13.8 moles of carbon, we have 13.8/3 = 4.6 moles of propane, C3H8 and 4.6 *8 = 36.8 moles of H
So 4.6 moles of propane contains 13.8 moles of carbon and 36.8 moles of hydrogen atoms
4. A rare gold coin (24 karat, or 100% gold) has a mass of 25.54 g. How many atoms of gold are present in this coin?
Calculate moles of gold:
Moles = mass of gold / molar mass gold
Moles = 25.54 grams / 196.97 g/mol
Moles = 0.1297 moles
Calculate atoms:
Number of atoms = moles * number of Avogadro
0.1297 * 6.022 *10^23 = 7.8 *10^22 atoms
The gold coin contains 7.8 *10^22 atoms
Please help me ASAP I’ll mark Brainly
Answer:
cell
chloroplast and cell wall
nucleus
life processes
cell membrane
shape and size
vacuole
Hope it helps
Sugar is added to water and initially completely dissolves, but eventually solid sugar collects on the bottom of the container. Sugar and water are ________partially miscible . This produces a dynamic equilibrium. Ethanol (a liquid) is added to water and only a single layer is observed no matter how much ethanol is added. Ethanol and water are__________
Answer: Sugar is added to water and initially completely dissolves, but eventually solid sugar collects on the bottom of the container. Sugar and water are both partially miscible. This produces a dynamic equilibrium. Ethanol (a liquid) is added to water and only a single layer is observed no matter how much ethanol is added. Ethanol and water are miscible.
Explanation:
When a substance (solute) dissolves partially in a solvent then it is known as partially miscible in the solvent. In such cases, a small amount of solute remains at the bottom of solution.
If a solute dissolves completely in solvent like water such that only one layer is seen in the solution then it means that the solute is miscible in solvent.
Thus, we can conclude that sugar is added to water and initially completely dissolves, but eventually solid sugar collects on the bottom of the container. Sugar and water are both partially miscible. This produces a dynamic equilibrium. Ethanol (a liquid) is added to water and only a single layer is observed no matter how much ethanol is added. Ethanol and water are miscible.
Methyl orange can change color by transitioning from one chromophore to another. When added to a clear solution and the solution turns red, it is determined to be a(n) __________ in its __________ stable form.
Answer:
acidic titration in its stable form
Explanation:
Methyl orange can change its color in titration solution. The yellow color is towards alkaline solution and red color is towards acidic solution. The Ph value of solution will change during this chemical process.
Calculate the moment of inertia of a CH³⁵CL₃ molecule around a rotational axis that contains the C-H bond. The C-Cl bond length is 177pm and the HCCl angle is 107⁰f
Answer:
The correct answer is "[tex]4.991\times 10^{-45} \ kg.m^2[/tex]".
Explanation:
According to the question,
[tex]R_{C-Cl} = 177 \ pm[/tex]
or,
[tex]=1.77\times 10^{-10} \ m[/tex]
[tex]\alpha = 107^{\circ}[/tex]
[tex]m_{Cl}=34.97 \ m.u[/tex]
or,
[tex]=34.97\times 1.66\times 10^{-27}[/tex]
[tex]=5.807\times 10^{-26} \ kg[/tex]
The moment of inertia around the rotational axis will be:
⇒ [tex]I=3\times m_{Cl}\times (R_{C-Cl})^2 \ Sin^2 \alpha[/tex]
By putting the values, we get
[tex]=3\times 5.807\times 10^{-26}\times (1.77\times 10^{-10})^2 \ Sin^2 (107)[/tex]
[tex]=3\times 5.807\times 10^{-26}\times (1.77\times 10^{-10})^2\times 0.91452[/tex]
[tex]=4.991\times 10^{-45} \ kg.m^2[/tex]
Perform the following operation and express the answer in scientific notation.
7.296×10² ÷ 9.6×10^-9
Answer:
7.6×10¹⁰
Explanation:
7.296×10²÷9.6×10⁻⁹
To solve such problem,
We group the whole number ans solved seperately and also group the indices and solve the seperately
Step1 : 7.296/9.6 = 0.76
Step 2: applying the law of indices,
10²÷10⁻⁹ = 10⁽²⁺⁹⁾ = 10¹¹
Therefore,
7.296×10²÷9.6×10⁻⁹ = 0.76×10¹¹ = 7.6×10¹⁰
The chemical formula is different from the empirical formula in
Answer:be careful and relax
Explanation:
Answer:
Hahaha be careful and relax
g A sample of chlorine gas starting at 681 mm Hg is placed under a pressure of 991 mm Hg and reduced to a volume of 513.7 mL. What was the initial volume, in mL, of the chlorine gas container if the process was performed at constant temperature?
Answer:
747.5 mL
Explanation:
Assuming ideal behaviour, we can solve this problem by using Boyle's law, which states that at constant temperature:
P₁V₁ = P₂V₂Where in this case:
P₁ = 681 mm HgV₁ = ?P₂ = 991 mm HgV₂ = 513.7 mLWe input the data given by the problem:
681 mm Hg * V₁ = 991 mm Hg * 513.7 mLAnd solve for V₁:
V₁ = 747.5 mLOne main difference between the heating of gases on the one hand and solids or liquids on the other is that ___________________. One main difference between the heating of gases on the one hand and solids or liquids on the other is that ___________________. heating of gases depends not only on the temperature difference, but also on the process as well as the amount of gas present. heating of gases depends on temperature difference as well as the amount of gas present. specific heat is not defined for gases. heat cannot be exchanged with gases.
Answer:
heating of gases depends not only on the temperature difference, but also on the process as well as the amount of gas present.
Explanation:
The work done when a gas is heated does not only depends on the initial and final states of the gas but also on the process used to achieve the change of state of the gas.
Several processes can be applied in changing the state of a gas such as; adiabatic process, isobaric process, isochoric process and isothermal process.
Hence, the heating of a gas, depends not only on the temperature difference, as well as the amount of gas present according to the ideal gas laws but also on the process used to achieve the change of state.
Based on the equations below, which metal is the least active? Pb(NO3)2(aq) + Ni (s) --> Ni(NO3)2 (aq)+ Pb(s) Pb(NO3)2(aq) + Ag(s) --> No reaction Cu(
Answer:
Ni
Explanation:
An active metal is a highly reactive metal. Active metals are found high up in the activity series.
Active metals react with other metals that are lower than them in the activity thereby displacing the lower metals from a solution of their salts. This is what may have happened in the other two reactions.
Ni is the most active metal listed in the question since it can react a compounds with Pb(NO3)2(aq) to liberate Pb metal.
What mass of steam initially at 120oC is needed to warm 200g of water in a glass container from 20.0 oC to 50.0 oC
Complete question:
What mass of steam initially at 120 ⁰C is needed to warm 200g of water in a 100 g glass container from 20.0 oC to 50.0 ⁰C
Answer:
the initial mass of the steam is 10.82 g
Explanation:
Given;
mass of water, m₁ = 200 g
mass of the glass, m₂ = 100 g
temperature of the steam = 120 ⁰C
initial temperature of the water, 20⁰ C
final temperature of the water, = 50⁰ C
let the mass of the steam = m
specific heat capacity of water c = 1 cal/g ⁰ C
specific heat capacity of glass c₂ = 0.2 cal/g ⁰ C
laten heat of vaporization of steam L = 540 cal/g
Apply principle of conservation energy;
Heat given off by the steam = Heat absorbed by water + heat absorbed by glass
[tex]mc\Delta T_1 + mL + mc\Delta T_2 = m_1c\Delta T_3 + m_2c_2\Delta T_3\\\\mc\Delta T_1 + mL + mc\Delta T_2 = [m_1c + m_2c_2]\Delta T_3[/tex]
m(1) (120 - 100) + m(540) + m(1) (100 - 50) = [200(1) + 100(0.2)] (50 - 20)
20m + 540m + 50m = 6600
610 m = 6600
m = 6600 / 610
m = 10.82 g
Therefore, the initial mass of the steam is 10.82 g
Question 16(Multiple Choice Worth 5 points)
(04.01 LC) Which statement is true about the total mass of the reactants during a chemical change?
O It is destroyed during chemical reaction.
O It is less than the total mass of the products. O It is equal to the total mass of the products.
O It is greater than the total mass of the products.
Answer:
It is equal to the total mass of the products.
Explanation:
Hope this helps :)
The position of the equilibrium for a system where K = 6.4 × 10 9 can be described as being favoring ________________
Answer:
to the right (products side)
Explanation:
The equilibrium constant K describes the ratio between the concentration of products and reactants at equilibrium. For a general reaction:
a A + b B → c C + d D
The equilibrium constant expression is:
[tex]K = \frac{[C]^{c} [D]^{d} }{[A]^{a} [B]^{b} }[/tex]
A low value of K indicates that the concentration of products (C and D) is low in relation with the concentration of reactants (A and B).
Conversely, a high value of K indicated that the concentration of products is high compared with the concentration of reactants.
Since K = 6.4 × 10⁹ is a high value, the concentration of products is higher than the concentration of reactants at equilibrium. Thus, the position of the equilibrium is favored to the right.
The first law of thermodynamics defines chemical energy. defines entropy. is a statement of conservation of energy. provides a criterion for the spontaneity of a reaction.
Answer: The first law of thermodynamics is a statement of conservation of energy.
Explanation:
According to the first law of thermodynamics, heat provided to a system is actually the sum of internal energy and work done by the system or on the system.
Mathematically, [tex]\Delta Q = \Delta U + \Delta W[/tex]
The first law of thermodynamics also means that energy can neither be created nor it can be destroyed. Hence, energy is conserved.
Thus, we can conclude that the first law of thermodynamics is a statement of conservation of energy.
In a closed system, If a gas is transported to a container with double the volume of the previous container, the gas was held in, what is the gases' new volume?
The volume of the gas is fixed and will not change.
The volume of the gas will be half the original volume.
The volume of the gas will be the original volume squared.
The volume of the gas will be double the original volume.
Answer:
The volume of the gas is fixed and will not change.
Explanation:
The volume of the gas will not change because there is no change in temperature. Temperature increases the volume of gases enclosed in a container.
A
(c) 2 C(s) + MnO2(s)
Mn(s) + 2 CO(g)
O combination reaction
O decomposition reaction
O combustion reaction
O single-displacement reaction
Answer: The reaction, [tex]2C(s) + MnO_{2}(s) \rightarrow Mn(s) + 2CO(g)[/tex] is a single-displacement reaction.
Explanation:
A chemical reaction in which one element of a compound is replaced by another element participating in the reaction.
For example, [tex]2C(s) + MnO_{2}(s) \rightarrow Mn(s) + 2CO(g)[/tex]
Here, the element manganese is replaced by carbon atom. As only one element gets replaced so, it is a single-displacement reaction.
Thus, we can conclude that [tex]2C(s) + MnO_{2}(s) \rightarrow Mn(s) + 2CO(g)[/tex] is a single-displacement reaction.
Match the description with the type of precipitation being described.
1. Its formation requires very strong updrafts
2. Its formation requires falling through a layer of above freezing air
3. Precipitation from cumuliform clouds is typically of this nature
4. Precipitation from stratus clouds is typically of this nature
Options:
a. Hail
b. Drizzle
c. Shower
d. Freezing Rain
Answer:
1. Its formation requires very strong updrafts = a. Hail
2. Its formation requires falling through a layer of above-freezing air = d. Freezing Rain
3. Precipitation from cumuliform clouds is typically of this nature = c. Shower
4. Precipitation from stratus clouds is typically of this nature = Drizzle
Explanation:
Hail formation requires very strong updrafts, these updrafts are the upward moving air created in a thunderstorm. This period of noticeable thunderstorms creates hails.
Freezing rain requires the presence of warm air, it requires falling through a layer of above-freezing air to the colder air below to produce an ice coating on anything it drops on.
Showers are produced by cumuliform clouds which look like cotton balls. Since cumuliform clouds precipitate too, these clouds can have fluctuating rain in a day in the form of showers.
Drizzle which raises low visibility is considered a type of liquid precipitation since it also falls from a cloud. Drizzle which is obviously smaller in diameter when compared to that of raindrops, however, is common with stratus clouds.
The data shows the number of years that 30 employees worked for an insurance company before retirement. is the population mean for the number of years worked, and % of the employees worked for the company for at least 10 years. (Round off your answers to the nearest integer.)
Answer:
14
73%
Explanation:
The mean Number of years worked :
. (sum of service years) / employees in the
(8+13+15+3+13+28+4+12+4+26+29+3+10+3+17+13+15+15+23+13+12+1+14+14+17+16+7+27+18+24) /
(417 / 30)
= 13.9 years
= 14 years
The percentage of employees who have worked for atleast 10 years :
Number of employees with service years ≥ 10 years = 22 employees
Total number of employees
Percentage (%) = (22 / 30= * 100% = 0.7333 * 100% = 73.33% = 73%