(1) Which appliance is designed to transfer electrical energy to kinetic energy?
D)
A food mbuer
BB kettle
Clamp
D radio
Answer:
bb kettle
Explanation:
it transfres electricsl to kinetic
1 point
3. A 75 N box requires 250 J of work to move to a shelf. How high is the
shelf?
O 3.3 m
3.25m
0 3.9m
O 3.6m
A ball on a string in uniform circular motion has a velocity of 8 meters per second, a mass of 2 kilograms, and the radius of the circle is 0.5 meters. What is the centripetal force keeping the ball in the circle?
Answer:
256 N
Explanation:
formula of centripetal force = mv²/r
m= 2kg
v= 8m/s
r= 0.5m
mv²/r = 2×8²/0.5 = 256N
A psychologist is interested in exploring the effect tutorial support on students academic performance and assign students in to two groups.students in group one get the tutorial support and those in group two do not.In this example what is dependent variable,independent variable,control groupand experimental group
The dependent variable is academic performance while the independent variable is presence/absence of tutorial support.
The correct results are:
The dependent variable is academic performanceThe independent variable is the presence/absence of tutorial supportThe control group are students who did not get the tutorial support.The experimental group were students that got the tutorial supportIn every experiment, there is a dependent and independent variable as well as an experimental and a control group.
The experimental group receive the treatment while the control group do not receive the treatment. The independent variable is manipulated and its impact on the dependent variable is evaluated.
The control group are students who did not receive the tutorial support while the experimental group are students that received the tutorial support.
The dependent variable in this case is academic performance. Its outcome depends on the presence or absence of tutorial support (independent variable).
Learn more: https://brainly.com/question/967776
An astronaut has a mass of 75 kg and is floating in space 500 m from his 125,000 kg spacecraft. What will be the force of gravitational attraction between the two? Since there is no force opposing him, he will accelerate toward the ship. Find his acceleration.
Answer:
1. 2.5×10¯⁹ N
2. 3.33×10¯¹¹ m/s²
Explanation:
1. Determination of the force of attraction.
Mass of astronaut (M₁) = 75 Kg
Mass of spacecraft (M₂) = 125000 Kg
Distance apart (r) = 500 m
Gravitational constant (G) = 6.67×10¯¹¹ Nm²/Kg²
Force of attraction (F) =?
The force of attraction between the astronaut and his spacecraft can be obtained as follow:
F = GM₁M₂ /r²
F = 6.67×10¯¹¹ × 75 × 125000 / 500²
F = 2.5×10¯⁹ N
Thus, the force of attraction between the astronaut and his spacecraft is 2.5×10¯⁹ N
2. Determination of the acceleration of the astronaut.
Mass of astronaut (m) = 75 Kg
Force (F) = 2.5×10¯⁹ N
Acceleration (a) of astronaut =?
The acceleration of the astronaut can be obtained as follow:
F = ma
2.5×10¯⁹ N = 75 × a
Divide both side by 75
a = 2.5×10¯⁹ / 75
a = 3.33×10¯¹¹ m/s²
Thus, the acceleration the astronaut is 3.33×10¯¹¹ m/s²
1
Select the correct answer.
Which type of energy is thermal energy a form of?
A
chemical energy
B.
kinetic energy
C. magnetic energy
D. potential energy
Reset
Next
Answer:
B. kinetic energy
Explanation:
Thermal energy (It’s a low form of energy ) is a form of kinetic energy as it is produced as a result of motion of particles either if they vibrate at their position or they move along longer paths.
1. Alexandra and Rachel are on a train that sounds a whistle at a constant frequency as
it leaves the train station. Compared to the sound emitted by the whistle, the sound that
the passengers standing on the platform hear has a frequency that is
a. lower, because the sound-wave fronts reach the platform at a frequency
lower than the frequency at which they are produced
b. lower, because the sound waves travel more slowly in the still air above the
platform than in the rushing air near the train
c. higher, because the sound-wave fronts reach the platform at a frequency
higher than the frequency at which they are produced
d. higher, because the sound waves travel faster in the still air above the
platform than in the rushing air near the train
Answer: the answer would be C trust me i took the test if its not that its b
hope that helps
Explanation: i took the test
answer:
a) lower because the sound-wave fronts reach the platform at a frequency lower than the frequency at which they are produced
explanation :3
If the train is leaving the train station, then the people who are standing on the platform would hear a sound with a lower frequency since the train is moving further away. ^^
A fisherman notices that his boat is moving up and down periodically without any horizontal motion, owing to waves on the surface of the water. It takes a time of 2.60 s for the boat to travel from its highest point to its lowest, a total distance of 0.700 m . The fisherman sees that the wave crests are spaced a horizontal distance of 6.00 m apart.
Required:
a. How fast are the waves traveling?
b. What is the amplitude of each wave?
c. If the total vertical distance traveled by the boat were 0.500 , but the other data remained the same, how fast are the waves traveling?
d. If the total vertical distance traveled by the boat were 0.500 , but the other data remained the same, what is the amplitude of each wave?
Answer:
a) 1.2 m/s
b) 0.350 m
c) 1.2 m/s
d) 0.250 m
Explanation:
a)
At any traveling wave, there exists a fixed relationship between the frequency, the speed and the wavelength, as follows:[tex]v = \lambda * f (1)[/tex]
We know that the frequency is equal to the number of cycles that the wave does in a second, so it's the inverse of the time needed to complete one cycle, that we call the period.In our case, since the wave completes one half cycle (from the highest point to the lowest one) in 2.60 s, this means that the time needed to complete a cycle, is just the double of it, i.e., 5.20 s .The frequency of the wave is just the inverse of this value:⇒ f = 1/T = 1/5.20 s = 0.2 1/s = 0.2 Hz (2)If the wave crests are spaced a horizontal distance of 6.0 m apart, this means that the wavelength λ is just 6.0 m.Replacing in (1) by (2) and the given λ, we can find the speed v, as follows:[tex]v = \lambda * f = 6.0 m * 0.2 1/s = 1.2 m/s (3)[/tex]
b)
By definition, the amplitude of the wave, is the absolute value of its highest value over its the zero reference level (in this case the surface of the water), so it is the half of the total vertical distance traveled by the boat:⇒ A = Δd/2 = 0.700m/2 = 0.350 m (4)
c)
Since the amplitude of the wave is independent of the frequency and the wavelength (that define the speed of the wave) the wave speed remains the same, i.e., 1.2 m/s.d)
If the total distance traveled by the boat were 0.500 m , the amplitude would be just half this value, as follows:⇒ A = Δd/2 = 0.500m/2 = 0.250 m (5)What do you think will happen to the Lunar phases if the moon was hit by an asteroid?
A girl weighing 45kg is standing on the floor, exerting a downward force of 200N on the floor. The force exerted on her by the floor is ..............
Select one:
a.
No force exerted
b.
Less than 2000N
c.
Equal to 200 N
d.
Greater than 200 N
Answer:
c.
Equal to 200 N..........
A 41.0-kg crate, starting from rest, is pulled across level floor with a constant horizontal force of 135 N. For the first 15.0 m the floor is essentially frictionless, whereas for the next 12.0 m the coefficient of kinetic friction is 0.320. (a) Calculate the work done by all the forces acting on the crate, during the entire 27.0 m path. (b) Calculate the total work done by all the forces. (c) Calculate the final speed of the crate after being pulled these 27.0 m.
Answer:
Explanation:
From the information given;
mass of the crate m = 41 kg
constant horizontal force = 135 N
where;
[tex]s_1 = 15.0 \ m \\ \\ s_2 = 12.0 \ m[/tex]
coefficient of kinetic friction [tex]u_k[/tex] = 0.28
a)
To start with the work done by the applied force [tex](W_f)[/tex]
[tex]W_F = F\times (s_1 +s_2) \times cos(0) \ J[/tex]
[tex]W_F = 135 \times (12 +15) \times cos(0) \ J \\ \\ W_F = (135 \times 37 )J \\ \\ W_F =4995 \ J[/tex]
Work done by friction:
[tex]W_{ff} = -\mu\_k\times m \times g \times s_2 \\ \\ W_{ff} = -0.320 \times 41 \times 9.81 \times 12 \ J \\ \\ W_{ff} = -1544.49 \ J[/tex]
Work done by gravity:
[tex]W_g = mg \times (s_1+s_2) \times cos (90)} \ J \\ \\ W_g = 0 \ j[/tex]
Work done by normal force;
[tex]W_n = N \times (s_1 + s_2) \times cos (90) \ J[/tex]
[tex]W_n = 0 \ J[/tex]
b)
total work by all forces:
[tex]W = F \times (s_1 + s_2) + \mu_k \times m \times g \times s_2 \times 180 \\ \\ W = 135 \times (15+12) \ J - 0.320 \times 41 \times 9.81 \times 12[/tex]
W = 2100.5 J
c) By applying the work-energy theorem;
total work done = ΔK.E
[tex]W = \dfrac{1}{2}\times m \times (v^2 - u^2)[/tex]
[tex]2100.5 = 0.5 \times 41 \times v^2[/tex]
[tex]v^2 = \dfrac{2100.5}{ 0.5 \times 41 }[/tex]
[tex]v^2 = 102.46 \\ \\ v = \sqrt{102.46} \\ \\ \mathbf{v = 10.1 \ m/s}[/tex]
Discuss how the pressure cooker is designed to achieve temperatures above 100°C.
With rising heat, the steam pressure inside the pot builds up beyond atmospheric pressure, allowing the temperatures to rise well above boiling point. This design enables to save time, energy, and resources. The temperature inside a pressure cooker can well go beyond 110° C, which reduces the time needed to cook food.
NEED HELP ASAP, ILL GIVE YOU BRAINLIEST IF CORRECT (30POINTS)
Drag each label to the correct location on the image. Each label can be used more than once.
Identify the parts of the barred spiral galaxy.
SPIRAL ARM, NUCLEUS, BAR
NOTE I JUST FILLED IN THE SPOTS FOR YOU TO SEE, THEY ARE NOT CORRECT
Answer:
the bar is the top and bottem. the nucleas in the middle and the Spiral arm is the last space
Explanation:
Answer:
look pkch
Explanation:
a pendulum clock having Copper keeps time at 20 degree Celsius it gains 15 second per day if cooled to 0°C celsius calculate the coefficient of linear expansion of copper.
?.............................
Lil' Ricky is trying on his Halloween costume in front of a flat (plane) mirror. Lil Ricky stands 1.5 m from the mirror.
Which statement correctly describes the image formed in the mirror?
A)
It is upright and 1.5 m behind the mirror.
B)
It is upright and 1.0 m behind the mirror.
C)
It is inverted and 1.5 m behind the mirror.
D)
It is inverted and 1.5 m in front of the mirror.
Answer:
The correct answer is A) It is upright and 1.5m behind the mirror
Explanation:
Your reflection must be upright, meaning vertical/erect, and the distance will be the exact same. Also, the reflected ray appears as if it had traveled from an object located behind the mirror.
DUE TODAY BEST ANSWER GET BRAINLIE
Which statements explain the relationship between mass, velocity and kinetic energy? * Select the TWO (2) that apply.*
Consider the equation to calculate kinetic energy: KE = ½mv2
Kinetic energy increases if either the mass or the velocity of the object increases or if both increase.
Kinetic energy decreases if either the mass or the velocity of the object increases or if both increase.
Kinetic energy decreases if either the mass or the velocity of the object decreases or if both decrease.
Kinetic energy increases if either the mass or the velocity of the object decreases or if both decrease.
Kinetic energy decreases if either the mass or the velocity of the object decreases or if both decrease. and Kinetic energy increases if either the mass or the velocity of the object increases or if both increase.
Explanation:
These statements explain the relationship between mass, velocity, and kinetic energy .i.e KE = ½mv², (3) Kinetic energy decreases if either the mass or the velocity of the object decreases or if b decrease. (4)Kinetic energy increases if either the mass or the velocity of the object decreases or if both decrease.
What is kinetic energy?When a body has a mass of m kg and travels a velocity of v m/s then the kinetic energy is given by,
KE=1/2mv²
In the above relation, it is clearly shown that,
Kinetic energy is directly proportional to the mass of the body,
i.e
KE∝m
and also Kinetic energy directly varies with the square of the velocity of the body.
I.e
KE∝v²
Therefore, From the given expression we can conclude that when mass and velocity increased either one of them or both, the kinetic energy also gets increased.
And when mass and velocity decreased either one of them or both, the kinetic energy also gets decreased. Hence options (3) and (4) are correct.
To learn more about kinetic energy click:
brainly.com/question/26472013
#SPJ3
A 416 kg merry-go-round in the shape of a horizontal disk with a radius of 1.7 m is set in motion by wrapping a rope about the rim of the disk and pulling on the rope. How large a torque would have to be exerted to bring the merry-go-round from rest to an angular speed of 3.7 rad/s in 2.9 s
Answer:
The torque exerted on the merry-go-round is 766.95 Nm
Explanation:
Given;
mass of the merry-go-round, m = 416 kg
radius of the disk, r = 1.7 m
angular speed of the merry-go-round, ω = 3.7 rad/s
time of motion, t = 2.9 s
The torque exerted on the merry-go-round is calculated as;
[tex]\tau = Fr= I\alpha\\\\\tau = (\frac{1}{2} m r^2)(\frac{\omega }{t} )\\\\\tau = (\frac{1}{2} \times 416 \times 1.7^2)( \frac{3.7}{2.9} )\\\\\tau = 766.95 \ Nm[/tex]
Therefore, the torque exerted on the merry-go-round is 766.95 Nm
a place where two bones come together is known as an
Answer:
a place where two bones come together is known as a join
Answer:
Hey mate.....
Explanation:
This is ur answer....
JointsJoints – A place in the body where bones come together. Non-Moveable Joints (sometimes called fixed or fibrous) – A place in the body where two or more bones come together but do not move.
Hope it helps!
mark me brainliest plz....
Follow me! :)
Which of the following is true for the entropy of the universe?
A It is always decreasing.
B It is always increasing.
C It is always negative.
D It is always a constant.
Answer:
B It is always increasing.
Explanation:
In Physics, entropy can be defined as the tendency or ability of a substance to reach maximum disorder i.e to be randomly distributed.
This ultimately implies that, entropy is a thermodynamic quantity that measures the degree of maximum disorder or randomness of a system.
The S.I unit used for the measurement of the degree of maximum order or randomness of a system is Joules per Kelvin (JK¯¹). An example of entropy is the mixing of ideal gases.
Generally, the entropy in an irreversible process always increases and as such the change in entropy has a positive value.
Hence, the entropy of the universe is always increasing because its energy flow is considered to be in a downward direction rather than upward i.e from a hot region to a cold region; making the energy to be evenly distributed.
A planet of mass M has a moon of mass m in a circular orbit of radius R. An object is placed between the planet and the moon on the line joining the center of the planet to the center of the moon so that the net gravitational force on the object is zero. How far is the object placed from the center of the planet
Answer:
r =[tex]\frac{ 1 \pm \sqrt{ \frac{m}{M} } }{1 - \frac{m}{M} }[/tex]
Explanation:
Let's apply the universal gravitation law to the body (c), we use the indications 1 for the planet and 2 for the moon
∑ F = 0
-F_{1c} + F_{2c} = 0
F_{1c} = F_{2c}
let's write the force equations
[tex]G \frac{m_c M}{r^2} = G \frac{m_c m}{(d-r)^2}[/tex]
where d is the distance between the planet and the moon.
[tex]\frac{M}{r^2} = \frac{m}{(d-r)^2}[/tex]
(d-r)² = [tex]\frac{m}{M} \ \ r^2[/tex]
d² - 2rd + r² = \frac{m}{M} \ \ r^2
d² - 2rd + r² (1 - [tex]\frac{m}{M}[/tex]) = 0
(1 - [tex]\frac{m}{M}[/tex]) r² - 2d r + d² = 0
we solve the second degree equation
r = [2d ± [tex]\sqrt{ 4d^2 - 4 ( 1 - \frac{m}{M} ) }[/tex] ] / 2 (1- [tex]\frac{m}{M}[/tex])
r = [2d ± 2d [tex]\sqrt{ \frac{m}{M} }[/tex]] / 2d (1- [tex]\frac{m}{M}[/tex])
r =[tex]\frac{ 1 \pm \sqrt{ \frac{m}{M} } }{1 - \frac{m}{M} }[/tex]
there are two points for which the gravitational force is zero
The distance between object from planet will be "[tex]\frac{R}{[1+\sqrt{\frac{m}{M} } ]}[/tex]".
According to the question,
Let,
Object is "x" m from planet center = R - xGravitational force = 0Mass of object = m₁As we know,
→ [tex]Prerequisites-Gravitational \ force = \frac{GMm}{r^2}[/tex]
Now,
→ [tex]\frac{GMm_1}{x^2} = \frac{Gmm_1}{(R-x)^2}[/tex]
→ [tex]\frac{(R-x)^2}{x^2} = \frac{m}{M}[/tex]
→ [tex]\frac{R-x}{x} =\sqrt{\frac{m}{M} }[/tex]
→ [tex]x = \frac{R}{[1+ \sqrt{\frac{m}{M} } ]}[/tex]
Thus the answer above is appropriate.
Learn more:
https://brainly.com/question/11968775
prove that d1=R(d1-d2) in relative density
During a neighborhood baseball game in a vacant lot, a particularly wild hit sends a 0.145 kg baseball crashing through the pane of a second-floor window in a nearby building. The ball strikes the glass at 14.5 m/s , shatters the glass as it passes through, and leaves the window at 10.9 m/s with no change of direction. What is the direction of the impulse that the glass imparts to the baseball
Answer:
J = -0.522 m/s
Explanation:
Given that,
The mass of the baseball, m = 0.145 kg
Initial velocity, u = 14.5 m/s
Final velocity, v = 10.9 m/s
aWe need to find the direction of the impulse that the glass imparts to the baseball. Impulse is equal to the change in momentum such that,
[tex]J=m(v-u)[/tex]
Substitute all the values,
[tex]J=0.145\times (10.9-14.5)\\\\=-0.522\ kg-m/s[/tex]
The direction of impulse is opposite to the direction of velocity.
it takes 560s for a runner to complete one circular lap, moving at a speed of 6.00 m/s. what is the radius of a track?
Answer:
534.8 meters
Explanation:
Use T=(2*pi*r)/v
560=(2*pi*r)/6
3360=2*pi*r
1680=pi*r
534.8 meters=radius
It takes 560s for a runner to complete one circular lap, moving at a speed of 6.00 m/s. The radius of a track is 534.7 m.
What is Distance?The distance covered by a body is equal to the sum of total path covered. It is equal to the total path traveled by an object during its entire journey.This quantity is always positive. It can't be 0 or a negative number.It is defined as a scalar quantity.
Mathematically, it can be calculated as follows :
distance = speed × time
The formula relating distance (d), speed (s), and time (t) is
d = st
First, Calculating the distance,
d = 560 s × 6 m·s⁻¹
= 3360 m
When, Calculating the track radius,
The distance travelled is the circumference of a circle,
C = 2пr
r = 3360/2п
= 534.7 m
The radius of the track is 534.7 m.
Learn more about Distance,
https://brainly.com/question/18416154
#SPJ2
A cylindrical body has 6 m height and its radius is 2 metre calculate its volume. Ans :75.428m3
Answer:
75.4
Explanation:
r= 2
h= 6
v= 22/7 *r*r*h
v= 75.42
The tendency for an object to remain at rest in continue in motion is called:
Inertia
Motion
Gravity
Force
Answer:
A Inertia
Explanation:
Fig 1 shows a pendulum of length L = 1.0 m. Its ball has speed of vo=2.0
m/s when the cord makes an angle of 30 degrees with the vertical. What
is the speed (V) of the ball when it passes the lowest position?
Answer:
v = 2.57 m / s
Explanation:
For this exercise let's use conservation of energy
starting point. When it is at an angle of 30º
Em₀ = K + U = ½ m v₁² + m g y₁
final point. Lowest position
Em_f = K = ½ m v²
as there is no friction, the energy is conserved
Em₀ = Em_f
½ m v₁² + m g y₁ = ½ m v²
Let's find the height(y₁), which is the length of the thread minus the projection (L ') of the 30º angle
cos 30 = L ’/ L
L ’= L cos 30
y₁ = L -L '
y₁ = L- L cos 30
we substitute
½ m v₁² + m g L (1- cos 30) = ½ m v²
v = [tex]\sqrt{ v_1^2 +2gL(1-cos30 )}[/tex]
let's calculate
v = [tex]\sqrt{ 2^2 + 2 \ 9.8 \ 1.0 (1- cos 30)}[/tex]
v = 2.57 m / s
Sound travels at a speed of 330 meters/second. If Denise hears a police siren 150 meters away, approximately how long did it take for the siren sound to
travel from the police vehicle to her?
Answer:
It went about 2 meters away
Explanation:
A car with a mass of 1200 kg has a momentum of 15, 350 kg * m/s. What is its velocity?
Answer:
v = 12.79 m/s
Explanation:
Given that,
The mass of a car, m = 1200 kg
Momentum of the car, p = 15 350 kg-m/s
We need to find the velocity of the car. We know that, the formula for the momentum of an object is given by :
p = mv
Where
v is the velocity of the bject
So,
[tex]v=\dfrac{p}{m}\\\\v=\dfrac{15350}{1200}\\\\v=12.79\ m/s[/tex]
So, the velocity of the car is 12.79 m/s.
Interactive Solution 8.29 offers a model for this problem. The drive propeller of a ship starts from rest and accelerates at 2.38 x 10-3 rad/s2 for 2.04 x 103 s. For the next 1.48 x 103 s the propeller rotates at a constant angular speed. Then it decelerates at 2.63 x 10-3 rad/s2 until it slows (without reversing direction) to an angular speed of 2.42 rad/s. Find the total angular displacement of the propeller.
Answer:
Δθ = 15747.37 rad.
Explanation:
The total angular displacement is the sum of three partial displacements: one while accelerating from rest to a certain angular speed, a second one rotating at this same angular speed, and a third one while decelerating to a final angular speed.Applying the definition of angular acceleration, we can find the final angular speed for this first part as follows:[tex]\omega_{f1} = \alpha * \Delta t = 2.38*e-3rad/s2*2.04e3s = 4.9 rad/sec (1)[/tex]
Since the angular acceleration is constant, and the propeller starts from rest, we can use the following kinematic equation in order to find the first angular displacement θ₁:[tex]\omega_{f1}^{2} = 2* \alpha *\Delta\theta (2)[/tex]
Solving for Δθ in (2):[tex]\theta_{1} = \frac{\omega_{f1}^{2}}{2*\alpha } = \frac{(4.9rad/sec)^{2}}{2*2.38*e-3rad/sec2} = 5044.12 rad (3)[/tex]
The second displacement θ₂, (since along it the propeller rotates at a constant angular speed equal to (1), can be found just applying the definition of average angular velocity, as follows:[tex]\theta_{2} =\omega_{f1} * \Delta_{t2} = 4.9 rad/s * 1.48*e3 s = 7252 rad (4)[/tex]
Finally we can find the third displacement θ₃, applying the same kinematic equation as in (2), taking into account that the angular initial speed is not zero anymore:[tex]\omega_{f2}^{2} - \omega_{o2}^{2} = 2* \alpha *\Delta\theta (5)[/tex]
Replacing by the givens (α, ωf₂) and ω₀₂ from (1) we can solve for Δθ as follows:[tex]\theta_{3} = \frac{(\omega_{f2})^{2}- (\omega_{f1}) ^{2} }{2*\alpha } = \frac{(2.42rad/s^{2}) -(4.9rad/sec)^{2}}{2*(-2.63*e-3rad/sec2)} = 3451.25 rad (6)[/tex]
The total angular displacement is just the sum of (3), (4) and (6):Δθ = θ₁ + θ₂ + θ₃ = 5044.12 rad + 7252 rad + 3451.25 rad ⇒ Δθ = 15747.37 rad.__________ and __________ both heavily relied on dream analysis in their treatment of patients. A. Alfred Adler . . . Albert Ellis B. Alfred Adler . . . Carl Jung C. Sigmund Freud . . . Carl Jung D. Sigmund Freud . . . Alfred Adler
Answer:
C. Sigmund Freud . . . Carl Jung
Explanation:
edge 2021
C.Sigmund Freud and Carl Jung both heavily relied on dream analysis in their treatment of patients.
What is Freud most famous for?Freud is well-known for inventing and developing the approach of psychoanalysis; for articulating the psychoanalytic idea of motivation, intellectual infection, and the structure of the unconscious; and for influencing medical and popular conceptions of human nature by using positing both everyday and strange thought.
Sigmund Freud was an Austrian neurologist who's perhaps maximum known as the founding father of psychoanalysis. Freud advanced a fixed of therapeutic strategies centered on communication therapy that worried the use of techniques that include transference, loose affiliation, and dream interpretation.
Learn more about Sigmund Freud here: https://brainly.com/question/2706543
#SPJ2