Answer:
997.5 is the answer to your question..
Use distributive property to remove parantheses
9(2/3-3x)
Farah is x years old. Ibtisam is 3 years younger than Farah. Muna is twice as old as Ibtisam. Write and expression in terms of x, for
(a) Ibtisam's age,
(b) The sum of their three ages, giving your answer in its simplest form.
Answer:
Farah: x
Ibtisam: x-3
Muna: 2(x-3) or 2x-6
Sum of all their ages: 4x-6
Step-by-step explanation:
Farah is x, so we don't need an expression for that.
Ibtisam is 3 years younger than Farah, which means that we need to subtract 3 from Farah, and that would be Ibtisam's age. x-3.
Muna is 2 TIMES Ibtisam's age, so we need to multiply whatever expression taht was used for Ibtisam by 2. Put brackets around the equation with 2 outside: 2(x-3). Solve and you get 4x-6
Now, you have all their ages in expression form, now you need to simplify by adding:
x+x+2x-6
We cannot simplify -6, so we put that aside. Add all the x's and you get 4x, insert the minus 6 at the end:
4x-6
Hope this helps!
--Applepi101
Answer:
a) X -3
b) 4x - 9
Step-by-step explanation:
a) Farah's age is X so Ibtisam will be X - 3 old since he is 3years younger than Farah
b) Farah is X years old
Ibtisam is X - 3 years old
Muna is 2(X -3) since she is 2 times older than Ibtisam.
the sum of Thier ages will be
X + X -3 + 2(x-3)
= 2x - 3 + 2x - 6
= 4x - 9
PLEASE I HAVE AN HOUR Why might you use the distributive property to simplify 3(30-2)
(a+b)2= c+d
answer
answer
Answer:
a+b=c+d/2
i cant understand what answer you want
What information is NOT necessary to find the area of a circle?
a.
pi
c.
diameter
b.
radius
d.
height
Answer:
D. Height
General Formulas and Concepts:
Geometry
Area of a Circle: A = πr²
r is radiusStep-by-step explanation:
In order to find the area of a circle, we must follow the formula. Out of all the options given, height is not incorporated into the formula.
It wouldn't make sense to use height anyways since it would be 3-dimenional and we're talking 2-dimensional.
∴ our answer is D.
Please show your steps
Answer:
M of aftershock = 4.90
Step-by-step explanation:
5.6 = log(x/1)
[tex]10^{5.6} = 398107.1 \\[/tex]
1/5 * 398,107.1 = 79,621.4
[tex]10^{m} =[/tex] 79,621.4
m = log (79,621.4) = 4.90
PLEASE HELP VENN DIAGRAM!
Look at attached for the diagram!!!
In his diagram BH represents the students that have brown hair and W represents the students that are wearing a watch.
Is having brown hair independent of wearing a watch?
Please show some work if possible
Answer:
Yes.
Step-by-step explanation:
Since there is an overlap, that does mean some people with brown hair do wear watches, but not all of them do. Hence it's independent.
verify sin2θ/1+cos2θ =tanθ
Answer:
LHS.= Sin 2x /( 1 + cos2x )
We have , sin 2x = 2 sinx•cosx
And. cos2x = 2cos^2 x - 1
i.e . 1+ cosx 2x = 2cos^2x
Putting the above results in the LHSwe get,
Sin2x/ ( 1+ cos2x ) =2 sinx•cosx/2cos^2x
=sinx / cosx
= Tanx
.•. sin2x/(1 + cos2x)= tanx
Step-by-step explanation:
The triangle below is equilateral. Find the length of side
x in simplest radical form with a rational denominator.
===========================================================
Explanation:
Any equilateral triangle has all three angles of 60 degrees each. Splitting the triangle in half like this produces two identical copies of 30-60-90 triangles.
Any 30-60-90 triangle will have its hypotenuse twice as long compared to the short leg. The short leg here is 5 (it's opposite the smallest angle), so that doubles to 2*5 = 10 which is the value of x.
Note: the other side of this right triangle is 5*sqrt(3).
Answer:
x=10
Step-by-step explanation:
∵ Δ IS Equilateral.
∴ sides are equal.
perpendicular from vertex bisects it.
x=2×5=10
There are five cities in a network. The cost of building a road directly between i and j is the entry ai,j in the matrix below. An infinite entry indicates that there is a mountain in the way and the road cannot be built. Determine the least cost of making all the cities reachable from each other.
0 3 5 11 9
3 0 3 9 8
5 3 0 [infinity] 10
11 9 [infinity] 0 7
9 9 10 7 0
Solution :
Given :
There are five cities in a network and the cost of [tex]\text{building}[/tex] a road directly between [tex]i[/tex] and [tex]j[/tex] is the entry [tex]a_{i,j}[/tex]
[tex]a_{i,j}[/tex] refers to the matrix.
Road cannot be built because there is a mountain.
The given matrix :
[tex]\begin{bmatrix}0 & 3 & 5 & 11 & 9\\ 3 & 0 & 3 & 9 & 8\\ 5 & 3 & 0 & \infty & 10\\ 11 & 9 & \infty & 0 & 7\\ 9 & 8 & 10 & 7 & 0\end{bmatrix}[/tex]
The matrix on the left above corresponds to the weighted graph on the right.
Using the [tex]\text{Kruskal's algorithm}[/tex] we can select the cheapest edge that is not creating a cycle.
Starting with 2 edges of weight 3 and the edge of weight 5 is forbidden but the edge is 7 is available.
The edge of the weight 8 completes a minimum spanning tree and total weight 21.
If the edge of weight 8 had weight 10 then either of the edges of weight 9 could be chosen the complete the tree and in this case there could be 2 spanning trees with minimum value.
What is tan 30°?
60
2
1
90°
30"
V3
O A.
B. 1
O c. 2
O D. 7/ 룸
O E
1 / 3
Eg
O E
Answer:
Hello,
What is tan 30°?
[tex]tan(30^o)=\dfrac {\sqrt{3} }{3}[/tex]
Step-by-step explanation:
[tex]sin(30^o)=\dfrac{1}{2} \\\\cos(30^o)=\dfrac{\sqrt{3} }{2} \\\\\\tan(30^o)=\dfrac{sin(30^o)}{cos(30^o)} \\tan(30^o)=\dfrac{\dfrac{1}{2} } { \dfrac{\sqrt{3} }{2} }\\\\ =\dfrac {1*2}{2*\sqrt{3} }\\\\ =\dfrac {\sqrt{3} }{3}[/tex]
The value of tan 30° is 1/√3
What is tangent of an angle?The tangent of an angle is the ratio of the length of the opposite side to the length of the adjacent side.
In other words, it is the ratio of sine and cosine function of an acute angle such that the value of cosine function should not equal to zero.
Tan 30° = sin 30° / cos 30°
We know that, sin 30° = 1/2
cos 30° = √3/2
Therefore,
Tan 30° = 1/2 ÷ √3/2
Tan 30° = 1/2 x 2/√3
Tan 30° = 1/√3
Hence, the value of tan 30° is 1/√3
Learn more about tangent of an angle, click;
https://brainly.com/question/10053881
#SPJ7
The blueprints of a house have a scale factor of 30. If one side of the house measures 4 inches on the blueprint, how long is the actual side length (in feet)?
A. 7.5 feet
B.10 feet
C. 90 feet
D. 120 feet
If the scale factor is 30, then all you have to do is multiply each measurement by the scale factor. In this case, 4 · 30 = 120.
Rearrange to make P the subject, :)..
Answer: [tex]P = \frac{25}{E^2}-Q\\\\[/tex]
Work Shown:
[tex]E = 5\left(\sqrt{\frac{1}{P+Q}}\right)\\\\5\left(\sqrt{\frac{1}{P+Q}}\right) = E\\\\\sqrt{\frac{1}{P+Q}} = \frac{E}{5}\\\\\frac{1}{P+Q} = \left(\frac{E}{5}\right)^2\\\\\frac{1}{P+Q} = \frac{E^2}{25}\\\\P+Q = \frac{25}{E^2}\\\\P = \frac{25}{E^2}-Q\\\\[/tex]
Regression and Correlation are two of the most often used and abused tools in research.
a. True
b. False
Answer:
it is true
Step-by-step explanation:
Large soda bottles are on sale three for six dollars. Sasha has eighteen dollars to spend on soda. How
many large bottles of soda can she buy?
Answer:
Sasha can buy 6 bottles of soda.
Step-by-step explanation:
6x2=18
3x2=6
Trucks in a delivery fleet travel a mean of 120 miles per day with a standard deviation of 23 miles per day. The mileage per day is distributed normally. Find the probability that a truck drives less than 159 miles in a day. Round your answer to four decimal places.
Answer:
the probability that a truck drives less than 159 miles in a day = 0.9374
Step-by-step explanation:
Given;
mean of the truck's speed, (m) = 120 miles per day
standard deviation, d = 23 miles per day
If the mileage per day is normally distributed, we use the following conceptual method to determine the probability of less than 159 miles per day;
1 standard deviation above the mean = m + d, = 120 + 23 = 143
2 standard deviation above the mean = m + 2d, = 120 + 46 = 166
159 is below 2 standard deviation above the mean but greater than 1 standard deviation above the mean.
For normal districution, 1 standard deviation above the mean = 84 percentile
Also, 2 standard deviation above the mean = 98 percentile
143 --------> 84%
159 ---------> x
166 --------- 98%
[tex]\frac{159-143}{166-143} = \frac{x-84}{98-84} \\\\\frac{16}{23} = \frac{x-84}{14} \\\\23(x-84) = 224\\\\x-84 = 9.7391\\\\x = 93.7391\ \%[/tex]
Therefore, the probability that a truck drives less than 159 miles in a day = 0.9374
For this problem, carry at least four digits after the decimal in your calculations. Answers may vary slightly due to rounding. A random sample of 5240 permanent dwellings on an entire reservation showed that 1613 were traditional hogans.
(a) Let p be the proportion of all permanent dwellings on the entire reservation that are traditional hogans. Find a point estimate for p. (Round your answer to four decimal places.)
(b) Find a 99% confidence interval for p. (Round your answer to three decimal places.) What is the lower limit? What is the upper limit?
Answer:
Step-by-step explanation:
point est. 0.307824427
99% 2.58
Confidence Interval - "P" values
(0.2914 , 0.3243 )
the diameter of a circle is 8 cm what is its area?
A = πr^2 and d = 2r.
So r = 8/2 = 4 cm.
Now use the first formula
A = π(4 cm)^2 = 50.265 cm^2
The curve y=2x^3+ax^2+bx-30 has a stationary point when x=3. The curve passes through the point (4,2).
(A) Find the value of a and the value of b.
#secondderivative #stationarypoints
A stationary point at x = 3 means the derivative dy/dx = 0 at that point. Differentiating, we have
dy/dx = 6x ² + 2ax + b
and so when x = 3,
0 = 54 + 6a + b
or
6a + b = -54 … … … [eq1]
The curve passes through the point (4, 2), which is to say y = 2 when x = 4. So we also have
2 = 128 + 16a + 4b - 30
or
16a + 4b = -96
4a + b = -24 … … … [eq2]
Eliminate b by subtracting [eq2] from [eq1] and solve for a, then for b :
(6a + b) - (4a + b) = -54 - (-24)
2a = -30
a = -15 ===> b = 96
Find the axis of symmetry of the graph of
y = x2 + 2x + 2
A- x= 1
B- y=1
C- x= -1
D- y=-1
Answer:
x = -1
Step-by-step explanation:
The graph's turning point is at ( -1 , 1 ), therefore the line of symmetry is at x = -1.
Answer: x = -1
Step-by-step explanation:
The formula to find the axis of symmetry in a function y = ax² + bx + c is:
[tex]x=\frac{-b}{2a}[/tex]
For y = x² + 2x + 2, where:
a = 1b = 2c = 2The axis of symmetry would be:
[tex]x=\frac{-b}{2a} =\frac{-2}{2(1)} =\frac{-2}{2} =-1[/tex]
WILL MARK BRAINLIEST PLEASE SHOW WORK!
Step-by-step explanation:
4. the area of semi circle R =
3²/5² × 75π = 9/25 × 75π = 27π cm²
5. the ratio of their areas = 1²:7² = 1:49
If 25 burgers feed 15 kids how many burgers would feed 55 kids
Answer:
1375
Step-by-step explanation:
help me out, so I can confirm my answers...:)
Answer:
Step-by-step explanation:
i) 18 - 2b = 5a
18 - 2b - 5a = 0
-2b -5a = -18
2b + 5a = 18
5a + 2b = 18
ii) 3a = 5b + 17
3a - 5b = 17
At this time x = 3, y = -5, c= 17
ax + by = c is equivelant to 3a -5b = 17
So another equation is:
3a - 5b = 17
Answer from Gauthmath
Step-by-step explanation:
18-2b=5a
we want to make 5a the subject so first we 5a to the left so our new equation is 5a+18-2b=0
then we move the 2b infront of the +18 so then our new equation is 5a+2b+18=0 then. we move the +18 to the other side to give 5a+2b=18
Mary takes out a loan for $6,000 at a simple interest rate of 12% to be paid back in 36 monthly instalments. What is the amount of her monthly payments?
Answer:
$199.29
Step-by-step explanation:
Total payments = $7,174.24
Total interest = $1,174.24
Geometry something about chords but I don’t understand this whatsoever
Answer:
x = 5
Step-by-step explanation:
A radius is the distance from the center of a circle to the circumference (out edge) of a circle. Within the same circle, all radii are congruent. As per the given image, the radius of the circle is (5). As per its definition, the chord (a line in a circle that spans from one end of the circle to the other) with a measure of (x) is also another radius. Since all radii in a circle are congruent, (x) must also equal (5).
Simplify: y^-3
a) 3/y
b) - 1/y^3
c) -3y
d) 1/y^3
Answer:
1/y^3
Step-by-step explanation:
We know that a^-b = 1/a^b
y ^-3 = 1/y^3
drag the tiles to the correct boxes to comlete the pairs.
not all tiles will be used.
match each quadratic equation with its solution set.
Answer:
first tile: X²-55=9
second tile:2x²-32=0
third tile:4x²-100=0
fourth tile:x²-140=-19
Step-by-step explanation:
apply difference of two squares to all i.e (a+b)(a-b)=(a²-b²)=0
x²-55-9=0
x²-64=0
x-8,x+8=0
x=8,x=-8
2x²-32=0
divide through by two
x²-16=0
x=4,x=-4
4x²-100=0
divide through by 4
x²-25=0
x=5 or -5
x²-140=-19
x²-140+19=0
x²-121=0
x=11 or -11
Can someone help me with this?
9514 1404 393
Answer:
CNBD -- using the given statement regarding perpendicularityΔLAW ≅ ΔWKL by ASA -- using the markings on the figureStep-by-step explanation:
The given information tells us there is one congruent side in the two right triangles. That is not sufficient to claim congruence of the triangles.
CNBD
__
The figure shows one congruent angle in addition to one congruent side, so the figures can be shown to be congruent using the ASA theorem.
ΔLAW ≅ ΔWKL
_____
Additional comment
We don't know which answer is expected. You should discuss this question with your teacher, since it appears to be missing the statement that
∠ALW ≅ ∠KWL
The point A(−8,−4) is reflected over the origin and its image is point B. What are the coordinates of point b?
9514 1404 393
Answer:
B(8, 4)
Step-by-step explanation:
Reflection across the origin negates both coordinate values.
(x, y) ⇒ (-x, -y) . . . . . reflection across the origin
A(-8, -4) ⇒ B(8, 4)
equation of a line with slope -1 and y intercept 0,-2
Answer:
y = - x - 2
Step-by-step explanation:
y=mx+b
m refers to slope
b refers to y intercept
y = (-1)x + (-2)
y = - x - 2
Answer:
y=-1x-2
Step-by-step explanation:
plug in the slop and y intercept to the equation y=mx+b