Answer:
B. Is its acceleration constant
Explanation:
Uniform circular motion can be described as the motion of an object in a circle at a constant speed. As an object moves in a circle, it is constantly changing its direction. ... An object undergoing uniform circular motion is moving with a constant speed. Nonetheless, it is accelerating due to its change in direction.
A 70.0-kg person throws a 0.0430-kg snowball forward with a ground speed of 32.0 m/s. A second person, with a mass of 58.5 kg, catches the snowball. Both people are on skates. The first person is initially moving forward with a speed of 3.30 m/s, and the second person is initially at rest. What are the velocities of the two people after the snowball is exchanged
Answer:
The velocities of the skaters are [tex]v_{1} = 3.280\,\frac{m}{s}[/tex] and [tex]v_{2} = 0.024\,\frac{m}{s}[/tex], respectively.
Explanation:
Each skater is not under the influence of external forces during process, so that Principle of Momentum Conservation can be used on each skater:
First skater
[tex]m_{1} \cdot v_{1, o} = m_{1} \cdot v_{1} + m_{b}\cdot v_{b}[/tex] (1)
Second skater
[tex]m_{b}\cdot v_{b} = (m_{2}+m_{b})\cdot v_{2}[/tex] (2)
Where:
[tex]m_{1}[/tex] - Mass of the first skater, in kilograms.
[tex]m_{2}[/tex] - Mass of the second skater, in kilograms.
[tex]v_{1,o}[/tex] - Initial velocity of the first skater, in meters per second.
[tex]v_{1}[/tex] - Final velocity of the first skater, in meters per second.
[tex]v_{b}[/tex] - Launch velocity of the meter, in meters per second.
[tex]v_{2}[/tex] - Final velocity of the second skater, in meters per second.
If we know that [tex]m_{1} = 70\,kg[/tex], [tex]m_{b} = 0.043\,kg[/tex], [tex]v_{b} = 32\,\frac{m}{s}[/tex], [tex]m_{2} = 58.5\,kg[/tex] and [tex]v_{1,o} = 3.30\,\frac{m}{s}[/tex], then the velocities of the two people after the snowball is exchanged is:
By (1):
[tex]m_{1} \cdot v_{1, o} = m_{1} \cdot v_{1} + m_{b}\cdot v_{b}[/tex]
[tex]m_{1}\cdot v_{1,o} - m_{b}\cdot v_{b} = m_{1}\cdot v_{1}[/tex]
[tex]v_{1} = v_{1,o} - \left(\frac{m_{b}}{m_{1}} \right)\cdot v_{b}[/tex]
[tex]v_{1} = 3.30\,\frac{m}{s} - \left(\frac{0.043\,kg}{70\,kg}\right)\cdot \left(32\,\frac{m}{s} \right)[/tex]
[tex]v_{1} = 3.280\,\frac{m}{s}[/tex]
By (2):
[tex]m_{b}\cdot v_{b} = (m_{2}+m_{b})\cdot v_{2}[/tex]
[tex]v_{2} = \frac{m_{b}\cdot v_{b}}{m_{2}+m_{b}}[/tex]
[tex]v_{2} = \frac{(0.043\,kg)\cdot \left(32\,\frac{m}{s} \right)}{58.5\,kg + 0.043\,kg}[/tex]
[tex]v_{2} = 0.024\,\frac{m}{s}[/tex]
Two cars are moving. The first car has twice the mass of the second car but only half as much kinetic energy. When both cars increase their speed by 2.76 m/s, they then have the same kinetic energy. Calculate the original speeds of the two cars.
Let m be the mass of the second car, so the first car's mass is 2m.
Let K be the kinetic energy of the second car, so the first car's kinetic energy would be K/2.
Let u and v be the speeds of the first car and the second car, respectively. At the start,
• the first car has kinetic energy
K/2 = 1/2 (2m) u ² = mu ² ==> K = 2mu ²
• the second car starts with kinetic energy
K = 1/2 mv ²
It follows that
2mu ² = 1/2 mv ²
==> 4u ² = v ²
When their speeds are both increased by 2.76 m/s,
• the first car now has kinetic energy
1/2 (2m) (u + 2.76 m/s)² = m (u + 2.76 m/s)²
• the second car now has kinetic energy
1/2 m (v + 2.76 m/s)²
These two kinetic energies are equal, so
m (u + 2.76 m/s)² = 1/2 m (v + 2.76 m/s)²
==> 2 (u + 2.76 m/s)² = (v + 2.76 m/s)²
Solving the equations in bold gives u ≈ 1.95 m/s and v ≈ 3.90 m/s.
a certain projetor uses a concave mirror for projecting an object's image on a screen .it produces on image that is 4 times bigger than the object and the screen is 5 m away from the mirror as shown in fig 5.2, calculate the focal length of the mirror.
Answer:
f = 1 m
Explanation:
The magnification of the lens is given by the formula:
[tex]M = \frac{q}{p}[/tex]
where,
M = Magnification = 4
q = image distance = 5 m
p = object distance = ?
Therefore,
[tex]4 = \frac{5\ m}{p}\\\\p = \frac{5\ m}{4}\\\\p = 1.25\ m[/tex]
Now using thin lens formula:
[tex]\frac{1}{f}=\frac{1}{p}+\frac{1}{q}\\\\\frac{1}{f} = \frac{1}{1.25\ m}+\frac{1}{5\ m}\\\\\frac{1}{f} = 1\ m^{-1}\\\\[/tex]
f = 1 m
suppose you have a block resting on a horizontal smooth surface. th block with a mass m is attached to a horizontal spring which is fixed at one end. the spring can be compressed and stretched. the mass is pulled to one side then released what is the formula required
The time period of the spring is 2[tex]\pi[/tex][√(m/k)].
What is meant by spring constant ?The spring constant of a spring is defined as the measurement of ratio of the force that is exerted on the spring to the displacement caused by it.
Here,
The mass of the block = m
Let F be the applied force on the spring and k be the spring constant.
When the mass attached to the spring is pulled to one side then released, it executes SHM.
Therefore we can write that, the applied force,
F = kx
Restoring force = -kx
According to Newton's law, we know that,
F = ma
So,
ma = -kx
Therefore, the acceleration,
a = (-k/m) x
For an SHM, the acceleration is given as,
a = -ω²x
Therefore, we can write that,
-ω²x = (-k/m) x
ω² = k/m
So, the time period of the spring,
T = 2[tex]\pi[/tex]/ω
T = 2[tex]\pi[/tex][√(m/k)]
Hence,
The time period of the spring is 2[tex]\pi[/tex][√(m/k)].
To learn more about spring constant, click:
https://brainly.com/question/20785296
#SPJ2
Two forces act on the screw eye. If F = 600 N, determine the magnitude of the resultant force and the angle θ if the resultant force is directed vertically upward.
Answer:
how to solve this problem ???????
The magnitude of the resultant force is 919.6 N and the value of angle θ is 36.87⁰.
Resultant of the two forces
The resultant of the two forces is determined by resolving the force into x and y component as shown below;
[tex]F_1_x + F_2x_x = F_R_x \ --- (1) \\\\F_1_y + F_2_y = F_R_y\ ---(2)[/tex]
where;
F1 = 500 NF2 = 600 NValue of Angle θThe value of Angle θ is determined from equation (1)
-500sinθ + 600sin(30) = 0
500sinθ = 600sin(30)
500sinθ = 300
sinθ = 3/5
θ = 36.87⁰
Resultant of the two forcesThe resultant of the forces is determined using the second equation;
500cosθ + 600cos(30) = R
500 x cos(36.87) + 600 x cos(30) = R
919.6 N = R
Learn more about resultant forces here: https://brainly.com/question/25239010
10 A turning pork creates sound cares
with
Frequency of 170Hz: To the
speed of sound in is in 340mls
calculate the wave
wave length
of
in air is
the sound wales.
Answer:
2m
Explanation:
wavelength=speed/frequency
=340/170
=2m
How are Newton’s 1 and 2 law related?
Which image illustrates reflection?
A
B
с
D
Answer: I beleive A
Explanation:
Answer:
A
Explanation:
We can see the light being reflected off the mirror.
A resident of a lunar colony needs to have her blood pressure checked in one of her legs. Assume that we express the systemic blood pressure as we do on earth and that the density of blood does not change. Suppose also that normal blood pressure on the moon is still 120/80 (which may not actually be true).
Required:
If a lunar colonizer has her blood pressure taken at a point on her ankle that is 1.5 m below her heart, what will be her systemic blood-pressure reading, expressed in the standard way, if she has normal blood pressure? The acceleration due to gravity on the moon is 1.67 m/s^2
Answer:
The pressure is 2505 Pa.
Explanation:
Height, h = 1.5 m
density of blood, d = 1000 kg/cubic meter
Gravity, g = 1.67 m/s^2
let the pressure is P.
The pressure due to the fluid is given by
P = h d g
P = 1.5 x 1000 x 1.67
P = 2505 Pa
i.Name two commonly used thermometric liquids.
ii.State two advantages each of the thermometric liquids mentioned above
Answer:
mercury and alcohol
ii) used to test temperatures
i) It is a good conductor of heat and therefore the whole liquid reaches the temperature of the surroundings quickly.
ii) It does not wet (cling to the sides of) the tube.
Alcohol:
i) Alcohol has greater value of temperature coefficient of expansion than mercury.
ii) it's freezing point is below –100°C.
true or false A permanent magnet and a coil of wire carrying a current both produce magnetic fields
Answer:
True. A permanent magnet like the earth produces its own B field due to movement of the iron core. The earths magnetic field is the reason why we have an atmosphere and it also is the only defense against solar flares. A coil of wire or solenoid that has current have so much moving charge that the motion of the electrical charge can create a significant G b-field
A 300 kg block of dimensions 1.5 m × 1.0 m × 0.5 m lays on the table with its largest face.
Calculate:
Area of the largest face
Answer:
1.5
x 1.0
1.50
x 0.5
075.00
answer: 75.00m
Explanation:
I hope this help
A 100-m long transmission cable is suspended between two towers. If the mass density is 18.2 g/cm and the tension in the cable is 6543 N, what is the speed (m/s2) of transverse waves on the cable
What would the separation between two identical objects, one carrying 4 C of positive charge and the other 4 C of negative charge, have to be if the electrical force on each was precisely 8 N
Answer:
7.46×10⁻⁶ m
Explanation:
Applying,
F = kqq'/r²............ Equation 1
make r the subject of the equation
r = √(F/kqq').......... Equation 2
From the question,
Given: F = 8 N, q' = q= 4 C
Constant: k = 8.98×10⁹ Nm²/C²
Substitute these values into equation 2
r = √[8/(4×4×8.98×10⁹)]
r = √(55.7×10⁻¹²)
r = 7.46×10⁻⁶ m
A wheel accelerates so that it's angular speed increases uniformly from 150 rads/s to 580 rads/s in 16 revolutions.Cakcjlate its angular acceleration.
Answer:
A = 26.875 rad/s²
Explanation:
Given the following data;
Initial angular speed, Uw = 150 rads/s.
Final angular speed, Vw = 580 rads/s.
Time = 16 seconds.
To calculate the angular acceleration;
From kinematics equation;
At = Vw - Uw
Where;
A is the angular acceleration.t is the timeVw is the final angular speed.Uw is the initial angular speed.Substituting into the formula, we have;
A*16 = 580 - 150
16A = 430
A = 430/16
A = 26.875 rad/s²
A small ball of uniform density equal to 1/2 the density of water is dropped into a pool from a height of 5m above the surface. Calculate the maximum depth the ball reaches before it is returned due to its bouyancy. (Omit the air and water drag forces).
Answer:
1.67 m
Explanation:
The potential energy change of the small ball ΔU equals the work done by the buoyant force, W
ΔU = -W
Now ΔU = mgΔh where m = mass of small ball = ρV where ρ = density of small ball and V = volume of small ball. Δh = h - h' where h = final depth of small ball and h' = initial height of small ball = 5 m. Δh = h - 5
ΔU = mgΔh
ΔU = ρVgΔh
Now, W = ρ'VgΔh' where ρ = density of water and V = volume of water displaced = volume of small ball. Δh' = h - h' where h = final depth of small ball and h' = initial depth of small ball at water surface = 0 m. Δh' = h - h' = h - 0 = h
So, ΔU = -W
ρVgΔh = -ρ'VgΔh'
ρVg(h - 5) = -ρ'Vgh
ρ(h - 5) = -ρ'h
Since the density of the small ball equals 1/2 the density of water,
ρ = ρ'/2
ρ(h - 5) = -ρ'h
(ρ'/2)(h - 5) = -ρ'h
ρ'(h - 5)/2 = -ρ'h
(h - 5)/2 = -h
h - 5 = -2h
h + 2h = 5
3h = 5
h = 5/3
h = 1.67 m
So, the maximum depth the ball reaches is 1.67 m.
Two metal spheres are made of the same material and have the same diameter, but one is solid and the other is hollow. If their temperature is increased by the same amount:_______.
A) the solid sphere becomes heavier and the hollow one lighter.
B) the solid sphere becomes bigger than the hollow one.
C) the hollow sphere becomes bigger than the solid one.
D) the two spheres remain of equal size.
E) the solid sphere becomes lighter and the hollow one heavier.
Answer:
D) the two spheres remain of equal size.
Explanation:
Since the body of the sphere is made up of both the same material. Thus the orientation will not affect the expansion. That is solid upon solid and hollow upon the hollow sphere. Hence it can be said that both the sphere expands and is due to the material used for making both of them is the same.What is the effect on range and maximum height of a projectile as the launch height, launch speed, and launch angle are increased?
Answer:
The highest point in the trajectory occurs at the midpoint of the path. This highest point increases as the angle increases. At a 75° launch angle, the maximum height is approximately 76 meters. However, a further increase in launch angle beyond this 75° angle will increase the peak height even more.
If the sum of the external forces on an object is zero, then the sum of the external torques on it
must also be zero.
A) True
B) False
Answer:
True.
Explanation:
If the sum of the external forces on an object is zero, then the sum of the external torques on it must also be zero.
The net external force and the net external torque acting on the object have to be zero for an object to be in mechanical equilibrium.
Hence, the given statement is true.
1
An astronaut weighs 202 lb. What is his weight in newtons?
Answer:
978.6084 Newton
Explanation:
Given the following data;
Weight = 220 lbTo find the weight in Newtown;
Conversion:
1 lb = 4.448220 N
220 lb = 220 * 4.448220 = 978.6084 Newton
220 lb = 978.6084 Newton
Therefore, the weight of the astronaut in Newton is 978.6084.
Weight can be defined as the force acting on a body or an object as a result of gravity.
Mathematically, the weight of an object is given by the formula;
Weight = mg
Where;
m is the mass of the object.g is the acceleration due to gravity.Note:
lb is the symbol for pounds.N is the symbol for Newton.the Period T of oscillation of a Single Pendulum depends on the length l, and acceleration g. Determine the exact form of the dependence.
Answer:
[tex]{ \tt{check \: in \: the \: pic}}[/tex]
find the weight of a body of mass 200kg on the earth at a latitude 30°.(R=6400 km ,g=9.8m/s²,ω=7.27×10⁻⁵ rad/sec)
Answer:
................ftf6x
At what rate must a cylindrical spaceship rotate if occupants are to experience simulated gravity of 0.58 g
Answer:
w = 1,066 rad / s
Explanation:
For this exercise we use Newton's second law
F = m a
the centripetal acceleration is
a = w² r
indicate that the force is the mass of the body times the acceleration
F = m 0.58g = m 0.58 9.8
F = 5.684 m
we substitute
5.684 m = m w² r
w = [tex]\sqrt{5.684/r}[/tex]
To finish the calculation we must suppose a cylinder radius, suppose it has r = 5 m
w = [tex]\sqrt{ 5.684/5}[/tex]
w = 1,066 rad / s
The diagram here shows an image being formed by a convex lens. Compared to the object at right, the image at left is-
larger and upright.
smaller and upright.
smaller and upside down.
larger and upside down.
Answer:
Smaller and upside down
Explanation:
To answer the question, we must recognise that the characteristics of the image formed by a convex lens depends on the position of the object from the lens.
From the diagram given in the question above, the following data were obtained:
1. The image is smaller than the object.
2. The image is inverted i.e upside down.
3. The image is closer to the lens
4. The image between 2f and f
Now, considering the options given in question above, the correct answer to the question is:
The image is smaller and upside down.
If I could lift up to ten tons and I threw a ball the size of an orange but weighed a ton, to the ground, how big of an impact would it make? And could you also show me the equation to solve similar problems myself. Thank you.
Answer:
The impact force is 98000 N.
Explanation:
mass = 10 tons
The impact force is the weight of the object.
Weight =mass x gravity
W = 10 x 1000 x 9.8
W = 98000 N
The impact force is 98000 N.
Characteristics or properties of matter or energy that can be measured
Answer:
Physical properties are properties that can be measured or observed without changing the chemical nature of the substance. Some examples of physical properties are:
color (intensive)
density (intensive)
volume (extensive)
mass (extensive)
boiling point (intensive): the temperature at which a substance boils
melting point (intensive): the temperature at which a substance melts
Explanation:
A ball is launched from the ground with a horizontal speed of 30 m/s and a vertical speed of 30 m/s. How long will it take to get to the top of its trajectory? A. 3 seconds B. 4 seconds C. 2 seconds D. 6 seconds
Answer:
A (3 seconds)
Explanation:
Well here we have a type of motion called projectile motion and it is pretty similar to an upside down parabola. The top of the trajectory is the vertex of the parabola and is also when v=0.
Lets identify our givens.
Givens:
Horizontal speed= 30m/s
Vertical Speed= 30 m/s
Since the ball is in freefall after being launched ay=-g(take up to be positive) and ax=0
The ball is launched from the ground so y0=0
Final vertical velocity= 0
This problem is now relatively easy because we only need to find the vertical distance so we can ignore horizontal speed and use
vy=vy0+ayt
Plug in our givens
0=30-10t
solve for t
t=3 seconds
Una pelota se lanza verticalmente hacia arriba desde la azotea de un edificio con una velocidad inicial de 35 m/s. Si se detiene en el aire a 200 m del suelo, ¿Cuál es la altura del edificio?
a. 138,8 m
b. 51.2 m
c. 71,2 m
d. 45,0 m
A caris initially at rest starts moving with a constant acceleration of 0.5 m/s2 and travels a distance of 5 m. Find
(i) Final velocity
(ii)The time taken
Answer:
(I)
[tex] { \bf{ {v}^{2} = {u}^{2} - 2as }} \\ {v}^{2} = {0}^{2} - (2 \times 0.5 \times 5) \\ {v}^{2} = 5 \\ { \tt{final \: velocity = 2.24 \: {ms}^{ - 1} }}[/tex]
(ii)
[tex]{ \bf{v = u + at}} \\ 2.24 = 0 + (0.5t) \\ { \tt{time = 4.48 \: seconds}}[/tex]
If there are no other changes, explain what effect reducing the mass of the car will have on its acceleration when starting to move.
Answer:
when the mass of an object is decreased, the acceleration will increase
when mass is increased, acceleration decreases