Answer:
Option (c)
Explanation:
1.The transformer core is assembled from steel sheets to:
(a) Reduced power loss due to eddy current
(b) Reduced power loss due to hysteresis
(c) Reduced power loss due to current flowing through the winding
(d) Reduce all types of power loss.
A transformer is a device which converts the low voltage into high and vice versa.
There are two types of a transformer.
Step up: It is used to convert low voltage into high.
Step down It is used to convert high voltage into high.
It depends on the number of turns in primary and the secondary coil.
The core of the transformer is laminated and it is in the form of sheets.
By using such type of core, the power loss due to the windings is reduced.
option (c) .
A car is moving at a speed of 60 mi/hr (88 ft/sec) on a straight road when the driver steps on the brake pedal and begins decelerating at a constant rate of 10ft/s2 for 3 seconds. How far did the car go during this 3 second interval?
Answer:
219 ft
Explanation:
Here we can define the value t = 0s as the moment when the car starts decelerating.
At this point, the acceleration of the car is given by the equation:
A(t) = -10 ft/s^2
Where the negative sign is because the car is decelerating.
To get the velocity equation of the car, we integrate over time, to get:
V(t) = (-10 ft/s^2)*t + V0
Where V0 is the initial velocity of the car, we know that this is 88 ft/s
Then the velocity equation is:
V(t) = (-10 ft/s^2)*t + 88ft/s
To get the position equation we need to integrate again, this time we get:
P(t) = (1/2)*(-10 ft/s^2)*t^2 + (88ft/s)*t + P0
Where P0 is the initial position of the car, we do not know this, but it does not matter for now.
We want to find the total distance that the car traveled in a 3 seconds interval.
This will be equal to the difference in the position at t = 3s and the position at t = 0s
distance = P(3s) - P(0s)
= ( (1/2)*(-10 ft/s^2)*(3s)^2+ (88ft/s)*3s + P0) - ( (1/2)*(-10 ft/s^2)*(0s)^2 + (88ft/s)*0s + P0)
= ( (1/2)*(-10 ft/s^2)*9s^2+ (88ft/s)*3s + P0) - ( P0)
= (1/2)*(-10 ft/s^2)*9s^2+ (88ft/s)*3s = 219ft
The car advanced a distance of 219 ft in the 3 seconds interval.
PLEASE HELP ME WITH THIS ONE QUESTION
What is the rest energy of a proton? (c = 2.9979 x 10^9 m/s, mp = 1.6726 x 10^-27)
[tex]E_0=1.5033×10^{-10}\:\text{J}[/tex]
Explanation:
The rest energy [tex]E_0[/tex] of a proton of mass [tex]m_p[/tex] is given by
[tex]E_0 = m_pc^2[/tex]
[tex]\:\:\:\:\:\:\:=(1.6726×10^{-27}\:\text{kg})(2.9979×10^8\:\text{m/s})^2[/tex]
[tex]\:\:\:\:\:\:\:=1.5033×10^{-10}\:\text{J}[/tex]
Oxygen is obtained through various methods. Which of the following methods involves a chemical
change?
1. Electrolysis of water
2. Distillation of liquid air
3. Heating of KCIO,
02
1 and 2
1 and 3
Answer:
1
Explanation:
Electrolysis is the passing of an current through a conducting solution, when the occurs, a chemical reaction takes place.
Heating a chemical will always cause a chemical reaction, which is why 3 is also correct
Some information as to why 2 is NOT correct.
2 is NOT a chemical reaction, but rather a process of physical separation. It uses selective boiling and condensation, but is not considered a chemical reaction.
as with 3, heating is not considered a chemical reaction, but rather a physical temperature change. This is always what it is considered to be (e.g boiling water is a physical temperature change, not a chemical reaction)
Hope this helps.
Hope this helps.
Question: A NEO distance from the Sun is 1.17 AU. What is the speed of the NEO (round your answer to 2 decimal places)
Answer:
v = 2.75 10⁴ m / s
Explanation:
For this exercise we must use Kepler's third law which is an application of Newton's second law to the solar system
F = ma
where force is the force of gravity
F = [tex]G \frac{m M}{r^2}[/tex]
acceleration is centripetal
a = [tex]\frac{v^2}{r}[/tex]
we substitute
G m M / r² = m v² / r
[tex]\frac{GM}{r}[/tex] = v²
v = [tex]\sqrt{GM/r}[/tex]
indicate that the radius of the orbit is r = 1.17 AU, let's reduce to the SI system
r = 1.17 AU (1.496 10¹¹ m / 1 AI) = 1.76 10¹¹ m
let's calculate
v = [tex]\sqrt{\frac{6.67 \ 10^{-11} 1.991 \ 10^{30} }{ 1.76 \ 10^{11}} }[/tex]Ra (6.67 10-11 1.991 10 30 / 1.76 10 11
v = [tex]\sqrt{7.5454 \ 10^8 }[/tex]ra 7.5454 10 8
v = 2.75 10⁴ m / s
A mass attached to the end of a spring is oscillating with a period of 2.25 s on a horizontal frictionless surface. The mass was released from rest at
t = 0
from the position
x = 0.0480 m.
Determine the location of the mass at
t = 5.85 s?
Answer:
[tex]X=0.0389m[/tex]
Explanation:
From the question we are told that:
Period of spring [tex]T_s=2.25s[/tex]
Initial Position of Mass [tex]x=0.0480m[/tex]
Final Mass period [tex]T_f=5.85s[/tex]
Generally the equation for the Mass location is mathematically given by
[tex]X=xcos*\frac{2\pi T_s}{T_f}[/tex]
[tex]X=0.048*cos*\frac{2\pi 5.85}{2.25}[/tex]
[tex]X=0.0389m[/tex]
A 1200 kg car traveling east at 4.5 m/s crashes into the side of a 2100 kg truck that is not moving. During the collision, the vehicles get stuck together. What is their velocity after the collision? A. 2.9 m/s east B. 1.6 m/s east m C. 2.6 m/s east D. 1.8 m/s east
Answer:
Explanation:
This is a simple Law of Momentum Conservation problem of the inelastic type. The equation for this is
[tex][m_1v_1+m_2v_2]_b=[(m_1+m_2)v]_a[/tex] Filling in:
[tex][1200(4.5)+2100(0)]=[(1200+2100)v][/tex] which simplifies to
5400 + 0 = 3300v
so v = 1.6 m/s to the east, choice B
In the following calculations, be sure to express the answer in standard scientific notation with the appropriate number of
significant figures.
3.88 x 1079 - 4.701 x 1059
x 10
g
Answer:
-45,597.07
Explanation:
if not in scientific calculator and yung answer nung sa scientific sa comment na lang dinadownload ko ka eh
A person with a near point of 85 cm, but excellent distant vision, normally wears corrective glasses. But he loses them while traveling. Fortunately, he has his old pair as a spare.
(a) If the lenses of the old pair have a power of +2.25 diopters, what is his near point (measured from his eye) when he is wearing the old glasses if they rest 2.0 cm in front of his eye?
(b) What would his near point be if his old glasses were contact lenses instead?
Answer:
a) p = 95.66 cm, b) p = 93.13 cm
Explanation:
For this problem we use the constructor equation
[tex]\frac{1}{f} = \frac{1}{p} + \frac{1}{q}[/tex]
where f is the focal length, p and q are the distances to the object and the image, respectively
the power of the lens is
P = 1 / f
f = 1 / P
f = 1 / 2.25
f = 0.4444 m
the distance to the object is
[tex]\frac{1}{p} = \frac{1}{f} -\frac{1}{q}[/tex]
the distance to the image is
q = 85 -2
q = 83 cm
we must have all the magnitudes in the same units
f = 0.4444 m = 44.44 cm
we calculate
[tex]\frac{1}{p} = \frac{1}{44.44} - \frac{1}{83}[/tex]
1 / p = 0.010454
p = 95.66 cm
b) if they were contact lenses
q = 85 cm
[tex]\frac{1}{p} = \frac{1}{44.44} - \frac{1}{85}[/tex]
1 / p = 0.107375
p = 93.13 cm
Hi can someon help me how to answer this?
Btw I'm from Philippines
Answer:
Test 1
1.True
2.True
3.True
4.False
5.True
6.True
7.False
8.True
9.True
10.True
yung iba nasa pic
When a golfer tees off, the head of her golf club which has a mass of 158 g is traveling 48.2 m/s just before it strikes a 46.0 g golf ball at rest on a tee. Immediately after the collision, the club head continues to travel in the same direction but at a reduced speed of 32.7 m/s. Neglect the mass of the club handle and determine the speed of the golf ball just after impact.
Answer:
v₂ = 53.23 m/s
Explanation:
Given that,
The mass of a golf club, m₁ = 158 g = 0.158 kg
The initial speed of a golf club, u₁ = 48.2 m/s
The mass of a golf ball, m₂ = 46 g = 0.046 kg
It was at rest, u₂ = 0
Immediately after the collision, the club head continues to travel in the same direction but at a reduced speed of 32.7 m/s, v₁ = 32.7 m/s
We use the conservation of energy to find the speed of the golf ball just after impact as follows :
[tex]m_1u_1+m_2u_2=m_1v_1+m_2v_2\\\\v_2=\dfrac{m_1u_1-m_1v_1}{m_2}\\\\v_2=\dfrac{0.158(48.2)-0.158(32.7)}{0.046}\\\\=53.23\ m/s[/tex]
So, the speed of the golf ball just after the impact is equal to 53.23 m/s.
Diffuse reflection occurs when parallel light waves strike which surface? a mirror a rippling fountain a polished silver plate a still pond
Answer: a rippling fountain
Explanation: diffuse reflection happens on rough surfaces, so using the process of elimination, that leaves us with b, a rippling fountain (I also just took this test I'm pretty sure I'm right)
Can you think of reasons why the charge on each ball decreases over time and where the charges might go
Answer:
By the principle of corona discharge.
Explanation:
The charge on each ball will decreases over time due to the electrical discharge in air.
According to the principle of corona discharge, when the curvature is small, the discharge of the charge takes placed form the pointed ends.
A wheel has a diameter of 10m and weight 360N what minimum horizontal force is necessary to pull the wheel over a brick 0.1m when a force is applied at the wheel
Two plastic bowling balls, 1 and 2, are rubbed with cloth until they each carry a uniformly distributed charge of magnitude 0.50 nC . Ball 1 is negatively charged, and ball 2 is positively charged. The balls are held apart by a 900-mm stick stuck through the holes so that it runs from the center of one ball to the center of the other.
Required:
What is the magnitude of the dipole moment of the arrangement?
Answer:
The right solution is "[tex]4.5\times 10^{-10} \ Cm[/tex]".
Explanation:
Given that,
q = 0.50 nC
d = 900 mm
As we know,
⇒ [tex]P=qd[/tex]
By putting the values, we get
⇒ [tex]=0.50\times 900[/tex]
⇒ [tex]=(0.50\times 10^{-9})\times 0.9[/tex]
⇒ [tex]=4.5\times 10^{-10} \ Cm[/tex]
Answer:
The dipole moment is 4.5 x 10^-10 Cm.
Explanation:
Charge on each ball, q = 0.5 nC
Length, L = 900 mm = 0.9 m
The dipole moment is defined as the product of either charge and the distance between them.
It is a vector quantity and the direction is from negative charge to the positive charge.
The dipole moment is
[tex]p = q L\\\\p = 0.5 \times 10^{-9}\times 0.9\\\\p = 4.5\times 10^{-10} Cm[/tex]
Cold air rises because it is denser than water, is this true?
Answer:
true
Explanation:
im not sure please dont attack me
A 0.20 mass on a horizontal spring is pulled back a certain distance and released. The maximum speed of the mass is measured to be 0.20 . If, instead, a 0.40 mass were used in this same experiment, choose the correct value for the maximum speed.
a. 0.40 m/s.
b. 0.20 m/s.
c. 0.28 m/s.
d. 0.14 m/s.
e. 0.10 m/s.
Answer:
d
Explanation:
Ya gon find the Kenitic Energy first
K=½mv²===> K=½×0.2×(0.2)²===> 0.1(0.04)===> 0.004
and now the replacement:
0.004=½×0.4V²====> v²=0.02===> V=0.14m/s
a vechile having a mass of 500kg is moving with a speed of 10m/s.Sand is dropped into it at the rate of 10kg/min.What force is needed to keep the vechile moving with uniform speed
Answer:
1.67 N
Explanation:
Applying,
F = u(dm/dt)+m(du/dt)................ Equation 1
Where F = force, m = mass of the vehicle, u = speed.
Since u is constant,
Therefore, du/dt = 0
F = u(dm/dt)............... Equation 2
From the question,
Given: u = 10 m/s, dm/dt = 10 kg/min = (10/60) kg/s
Substitute these values into equation 2
F = 10(10/60)
F = 100/60
F = 1.67 N
An object is 2.0 cm from a double convex lens with a focal length of 1.5 cm. Calculate the image distance
Answer:
0.857 cm
Explanation:
We are given that:
The focal length for a convex lens to be (f) = 1.5cm
The object distance (u) = - 2.0 cm
We are to determine the image distance (v) = ??? cm
By applying the lens formula:
[tex]\dfrac{1}{f} = \dfrac{1}{u}+\dfrac{1}{v}[/tex]
By rearrangement and making (v) the subject of the above formula:
[tex]v = \dfrac{uf}{u-f}[/tex]
replacing the given values:
[tex]v = \dfrac{(-2.0)(1.5)}{(-2.0 -1.5)}[/tex]
[tex]v = \dfrac{-3.0}{(-3.5)}[/tex]
v = 0.857 cm
A submarine has a "crush depth" (that is, the depth at which
water pressure will crush the submarine) of 400 m. What is
the approximate pressure (water plus atmospheric) at this
depth? (Recall that the density of seawater is 1025 kg/m3, g=
9.81 m/s2, and 1 kg/(m-s2) = 1 Pa = 9.8692 x 10-6 atm.)
Answer:
P =40.69 atm
Explanation:
We need to find the approximate pressure at a depth of 400 m.
It can be calculated as follows :
P = Patm + ρgh
Put all the values,
[tex]P=1\ atm+1025 \times 9.81\times 400\times 9.8692\times 10^{-6}\ atm/Pa\\\\P=40.69\ atm[/tex]
So, the approximate pressure is equal to 40.69 atm.
George Frederick Charles Searle
Answer:
George Frederick Charles Searle FRS was a British physicist and teacher. He also raced competitively as a cyclist while at the University of Cambridge. WikipediaExplanation:
GIVE BRAINLISTSolids diffuse because the particles cannot move.
A. Can
B. Not enough info
C. Cannot
D. Sometimes will
Solids cannot diffuse.
In a television set the power needed to operate the picture tube comes from the secondary of a transformer. The primary of the transformer is connected to a 120-V receptacle on a wall. The picture tube of the television set uses 76 W, and there is 5.5 mA of current in the secondary coil of the transformer to which the tube is connected. Find the turns ratio Ns/Np of the transformer.
Ns/Np = ______.
Answer:
c) N_s / N_p = 115.15
Explanation:
Let's look for the voltage in the secondary, they do not indicate the power dissipated
P = V_s i
V_s = P / i
V_s = 76 / 5.5 10⁻³
V_s = 13.818 10³ V
the relationship between the primary and secondary of a transformer is
[tex]\frac{V_p}{N_p} = \frac{V_s}{N_s}[/tex]
[tex]\frac{N_s}{N_p} = \frac{V_s}{V_p}[/tex]
Ns / Np = 13,818 10³ /120
N_s / N_p = 115.15
g As they reach higher temperatures, most semiconductors... Selected Answer: have an increased resistance. Answers: have a constant resistance. have an increased resistance. have a decreased resistance.
Answer:
have an increased resistance
A typical incandescent light bulb consumes 75 W of power and has a mass of 20 g. You want to save electrical energy by dropping the bulb from a height great enough so that the kinetic energy of the bulb when it reaches the floor will be the same as the energy it took to keep the bulb on for 2.0 hours. From what height should you drop the bulb, assuming no air resistance and constant g?
Answer:
h = 2755102 m = 2755.102 km
Explanation:
According to the given condition:
Potential Energy = Energy Consumed by Bulb
[tex]mgh = Pt\\\\h = \frac{Pt}{mg}[/tex]
where,
h = height = ?
P = Power of bulb = 75 W
t = time = (2 h)(3600 s/1 h) = 7200 s
m = mass of bulb = 20 g = 0.02 kg
g = acceleration due to gravity = 9.8 m/s²
Therefore,
[tex]h = \frac{(75\ W)(7200\ s)}{(0.02\ kg)(9.8\ m/s^2)}[/tex]
h = 2755102 m = 2755.102 km
Stars have different colors. What causes stars to have colors?
A. location
B. temperature
C. oxygen
D. carbon dioxide
Answer:
temperature
Explanation:
temperature change forms different elements and different element sustain different colour
How do the magnitudes of the currents through the full circuits compare for Parts I-III of this exercise, in which resistors are combined in series, in parallel, and in combination
Answer: hello tables and data related to your question is missing attached below are the missing data
answer:
a) I = I₁ = I₂ = I₃ = 0.484 mA
b) I₁ = 0.016 amps
I₂ = 0.0016 amps
I₃ = 7.27 * 10^-4 amps
c) I₁ = 1.43 * 10^-3 amp
I₂ = 0.65 * 10^-3 amps
Explanation:
A) magnitude of current for Part 1
Resistors are connected in series
Req = r1 + r2 + r3
= 3300 Ω ( value gotten from table 1 ) ,
V = 1.6 V ( value gotten from table )
hence I ( current ) = V / Req = 1.6 / 3300 = 0.484 mA
The magnitude of current is the same in the circuit
Vi = I * Ri
B) magnitude of current for part 2
Resistors are connected in parallel
V = 1.6 volts
Req = [ ( R1 * R2 / R1 + R2 ) * R3 / ( R1 * R2 / R1 + R2 ) + R3 ]
= [ ( 100 * 1000 / 100 + 1000) * 2200 / ( 100 * 1000 / 100 + 1000 ) + 2200]
= 87.30 Ω
For a parallel circuit the current flow through each resistor is different
hence the magnitude of the currents are
I₁ = V / R1 = 1.6 / 100 = 0.016 amps
I₂ = V / R2 = 1.6 / 1000 = 0.0016 amps
I₃ = V / R3 = 1.6 / 2200 = 7.27 * 10^-4 amps
C) magnitude of current for part 3
Resistors are connected in combination
V = 1.6 volts
Req = R1 + ( R2 * R3 / R2 + R3 )
= 766.66 Ω
Total current ( I ) = V / Req = 1.6 / 766.66 = 2.08 * 10^-3 amps
magnitude of currents
I₁ = ( I * R3 ) / ( R2 + R3 ) = 1.43 * 10^-3 amps
I₂ = ( I * R2 ) / ( R2 + R3 ) = 0.65 * 10^-3 amps
Light with a wavelength of 5.0 · 10-7 m strikes a surface that requires 2.0 ev to eject an electron. Calculate the energy, in joules, of one incident photon at this frequency. _____ joules 4.0 x 10 -19 4.0 x 10 -49 9.9 x 10 -32 1.1 x 10 -48
Answer:
pretty sure its 6.2 x 10^-13
Explanation:
I looked it up I'm not a bigbrain but want to help
A body initially at rest travels a distance 100 m in 5 s with a constant acceleration. calculate
(i) Acceleration
(ii) Final velocity at the end of 5 s.
Answer:
(i)8m/s²(ii)40m/s
Explanation:
according to the formula
½at²=s.
then substituting the data
½a•5²=100
a=8m/s²
v=at=8•5=40m/s
Answer:
(I)
[tex]{ \bf{s = ut + \frac{1}{2} a {t}^{2} }} \\ 100 = (0 \times 5) + \frac{1}{2} \times a \times {5}^{2} \\ 200 = 25a \\ { \tt{acceleration = 8 \: m {s}^{ -2} }}[/tex]
(ii)
[tex]{ \bf{v = u + at}} \\ v = 0 + (8 \times 5) \\ { \tt{final \: velocity = 40 \: m {s}^{ - 1} }}[/tex]
Two cylindrical resistors are made from copper. The first one is of length L and of radius r . The 2nd resistor is of length 6L and of radius 2r. The ratio of these two resistances R1/R2 is:
Answer:
[tex]R1/R2=\frac{2}{3}[/tex]
Explanation:
From the question we are told that:
1st's Length [tex]l=L[/tex]
1st's radius [tex]r=r[/tex]
2nd's Length [tex]l=6L[/tex]
2nd's radius [tex]r=2r[/tex]
Generally the equation for Resistance R is mathematically given by
[tex]R=\frac{\rho L}{\pi r^2}[/tex]
Therefore
[tex]R_1=\frac{\rho L}{\pi r^2}[/tex]
And
[tex]R_2=\frac{\rho 6L}{\pi (2r)^2}[/tex]
Therefore
[tex]R1/R2=\frac{\frac{\rho L}{\pi r^2}}{\frac{\rho 6L}{\pi (2r)^2}}[/tex]
[tex]R1/R2=\frac{2}{3}[/tex]
Topic: Chapter 10: Projectory or trajectile?
Projectile range analysis:
A projectile is launched from the ground at 10 m/s, at
an angle of 15° above the horizontal and lands 5.1 m away.
What other angle could the projectile be launched at, with the same velocity,
and land 5.1 m away?
90°
75°
45
50°
30°
Answer:
The other angle is 75⁰
Explanation:
Given;
velocity of the projectile, v = 10 m/s
range of the projectile, R = 5.1 m
angle of projection, 15⁰
The range of a projectile is given as;
[tex]R = \frac{u^2sin(2\theta)}{g}[/tex]
To find another angle of projection to give the same range;
[tex]5.1 = \frac{10^2 sin(2\theta)}{9.81} \\\\100sin(2\theta) = 50\\\\sin(2\theta) = 0.5\\\\2\theta = sin^{-1}(0.5)\\\\2\theta = 30^0\\\\\theta = 15^0\\\\since \ the \ angle \ occurs \ in \ \ the \ first \ quadrant,\ the \ equivalent \ angle \\ is \ calculated \ as;\\\\90- \theta = 15^0\\\\\theta = 90 - 15^0\\\\\theta = 75^0[/tex]
Check:
sin(2θ) = sin(2 x 75) = sin(150) = 0.5
sin(2θ) = sin(2 x 15) = sin(30) = 0.5