The option that shows the missing angles in the triangle is:
Option C: m∠1 < m∠4
How to identify the missing angle?We know that the sum of angles in a triangle is 180 degrees.
Therefore looking at the given triangle, we can say that:
m∠1 + m∠2 + m∠3 = 180°
We also know that the sum of angles on a straight line is 180 degrees and as such we can say that:
m∠3 + m∠4 = 180°
By substitution we can say that:
m∠4 = m∠1 + m∠2
Thus:
m∠1 < m∠4
Read more about Missing Angle at: https://brainly.com/question/28293784
#SPJ1
The missing options are:
m∠1 > m∠4
m∠2 > m∠4
m∠1 < m∠4
m∠3 = m∠4
how to draw the 6th term .
To draw the 6th term, represent it visually within the context of the pattern or sequence from which it is derived.
To draw the 6th term, we need to understand the context or pattern from which the term is derived.
Drawing the term usually involves representing the elements or characteristics of the pattern in a visual form.
Without specific information about the pattern, we can provide a general approach to drawing the 6th term.
Identify the Pattern:
Determine the sequence or pattern from which the 6th term is derived.
It could be a numerical sequence, a geometric pattern, or any other pattern.
For example, if the pattern is a number sequence of multiples of 3, the first few terms would be 3, 6, 9, 12, 15, and so on.
Visualize the Pattern: Based on the identified pattern, visualize how the elements change or progress from term to term.
This could involve drawing a diagram, a graph, or any visual representation that captures the pattern.
Consider using a coordinate grid, a number line, or any other suitable visual aid.
Locate the 6th Term:
Use the information from the pattern and the visualization to determine the specific position or value of the 6th term.
In our example of multiples of 3, the 6th term would be 18.
Draw the 6th Term: Finally, represent the 6th term in your chosen visual form.
This could mean marking the position on a number line, plotting a point on a graph, or incorporating the value into a diagram.
Note that the specific method of drawing the 6th term will depend on the nature of the pattern and the context in which it is given.
Providing more details about the pattern would allow for a more accurate and specific visual representation of the 6th term.
For similar question on sequence.
https://brainly.com/question/28036578
#SPJ8
PLSSS HELP 13 POINTS
The equation of the line perpendicular to y = 2 / 3 x - 4 and passes through (6, -2) is y = - 3 / 2x + 7.
How to represent equation in slope intercept form?The equation of a line can be represented in slope intercept form as follows:
y = mx + b
where
m = slope of the lineb = y-interceptThe slopes of perpendicular lines are negative reciprocals of one another.
Therefore, the slope of the line perpendicular to y = 2 / 3 x - 4 is - 3 / 2.
Hence, let's find the line as its passes through (6, -2).
Therefore,
y = - 3 / 2 x + b
-2 = - 3 / 2(6) + b
-2 = -9 + b
b = -2 + 9
b = 7
Therefore, the equation of the line is y = - 3 / 2x + 7.
learn more on slope intercept form here: https://brainly.com/question/29146348
#SPJ1
Which statement about rectangles is true?
1. Only some rectangles are parallelograms.
2. Parallelograms have exactly 1 pair of parallel sides.
3. So, only some rectangles have exactly 1 pair of parallel sides.
1. All rectangles are parallelograms.
2. Parallelograms have 2 pairs of parallel sides.
3. So, all rectangles have 2 pairs of parallel sides.
1. Only some rectangles are parallelograms.
2. Parallelograms have 2 pairs of parallel sides.
3. So, only some rectangles have 2 pairs of parallel sides.
1. All rectangles are parallelograms.
2. Parallelograms have exactly 1 pair of parallel sides.
3. So, all rectangles have exactly 1 pair of parallel sides.
The correct statement about rectangles is:
1. All rectangles are parallelograms.
2. Parallelograms have exactly 1 pair of parallel sides.
3. So, all rectangles have exactly 1 pair of parallel sides.
A rectangle is a type of parallelogram that has additional properties. By definition, a rectangle is a quadrilateral with four right angles. This means that opposite sides of a rectangle are parallel. Since all four sides of a rectangle are right angles, it follows that a rectangle has exactly 1 pair of parallel sides.
Option 1 states that only some rectangles are parallelograms, which is incorrect. All rectangles are parallelograms because they have opposite sides that are parallel.
Option 2 states that parallelograms have 2 pairs of parallel sides, which is also incorrect. Parallelograms have exactly 2 pairs of parallel sides, not 4. A rectangle is a special type of parallelogram that has additional properties such as all angles being right angles.
Option 3 states that only some rectangles have 2 pairs of parallel sides, which is incorrect. All rectangles have exactly 1 pair of parallel sides, not 2. Having 2 pairs of parallel sides would make a shape a parallelogram, not a rectangle.
Therefore, the correct statement is that all rectangles are parallelograms and have exactly 1 pair of parallel sides. 1,2,3 are correct.
For more suhc questions on rectangles visit:
https://brainly.com/question/25292087
#SPJ8