Answer:
3b^2 + 2b -8
Step-by-step explanation:
* means multiply
^ means exponent
3b * b = 3b^2
3b * 2 = 6b
-4 * b = -4b
-4 * 2 = -8
3b^2 + 6b -4b -8
3b^2 + 2b -8
The asymptote of the function f(x) = 3x + 1 – 2 is . Its y-intercept is
Answer:
-1
Step-by-step explanation:
1-2=-1
y=mx+b
b= y intercept
Answer:
-1
Step-by-step explanation:
find the length of side AB
Answer:
AB = 5.6 cm
Step-by-step explanation:
Reference angle (θ) = 62°
Hypotenuse = 12 cm
Adjacent = AB
Apply the trigonometric ratio formula, CAH, which is:
Cos θ = Adj/Hyp
Plug in the values
Cos 62° = AB/12
12*Cos 62° = AB
5.63365876 = AB
AB = 5.6 cm (1 decimal place)
Complete the information for that object by making estimates using appropriate units of measurement of the dimensions and by getting the actual measurements using an appropriate measuring instrument.
Answer:
hlo how are u?whats ur day is going
SCALCET8 3.9.015. A street light is mounted at the top of a 15-ft-tall pole. A man 6 ft tall walks away from the pole with a speed of 4 ft/s along a straight path. How fast is the tip of his shadow moving when he is 35 ft from the pole
Answer:
[tex]X=6.67ft/s[/tex]
Step-by-step explanation:
From the question we are told that:
Height of pole [tex]H_p=15[/tex]
Height of man [tex]h_m=6ft[/tex]
Speed of Man [tex]\triangle a =4ft/s[/tex]
Distance from pole [tex]d=35ft[/tex]
Let
Distance from pole to man=a
Distance from man to shadow =b
Therefore
[tex]\frac{a+b}{15}=\frac{b}{6}[/tex]
[tex]6a+6b=15y[/tex]
[tex]2a=3b[/tex]
Generally the equation for change in velocity is mathematically given by
[tex]2(\triangle a)=3(\triangle b )[/tex]
[tex]2*4=3(\triangle b)[/tex]
[tex]\triangle a=\frac{8}{3}[/tex]
Since
The speed of the shadow is given as
[tex]X=\triangle b+\triangle a[/tex]
[tex]X=4+8/3[/tex]
[tex]X=6.67ft/s[/tex]
Find the solution of the differential equation that satisfies the given initial condition. (dP)/(dt)
Answer:
[tex]P = (\frac{1}{3}t^\frac{3}{2} + \sqrt 2 - \frac{1}{3})^2[/tex]
Step-by-step explanation:
Given
[tex]\frac{dP}{dt} = \sqrt{Pt[/tex]
[tex]P(1) = 2[/tex]
Required
The solution
We have:
[tex]\frac{dP}{dt} = \sqrt{Pt[/tex]
[tex]\frac{dP}{dt} = (Pt)^\frac{1}{2}[/tex]
Split
[tex]\frac{dP}{dt} = P^\frac{1}{2} * t^\frac{1}{2}[/tex]
Divide both sides by [tex]P^\frac{1}{2}[/tex]
[tex]\frac{dP}{ P^\frac{1}{2}*dt} = t^\frac{1}{2}[/tex]
Multiply both sides by dt
[tex]\frac{dP}{ P^\frac{1}{2}} = t^\frac{1}{2} \cdot dt[/tex]
Integrate
[tex]\int \frac{dP}{ P^\frac{1}{2}} = \int t^\frac{1}{2} \cdot dt[/tex]
Rewrite as:
[tex]\int dP \cdot P^\frac{-1}{2} = \int t^\frac{1}{2} \cdot dt[/tex]
Integrate the left hand side
[tex]\frac{P^{\frac{-1}{2}+1}}{\frac{-1}{2}+1} = \int t^\frac{1}{2} \cdot dt[/tex]
[tex]\frac{P^{\frac{-1}{2}+1}}{\frac{1}{2}} = \int t^\frac{1}{2} \cdot dt[/tex]
[tex]2P^{\frac{1}{2}} = \int t^\frac{1}{2} \cdot dt[/tex]
Integrate the right hand side
[tex]2P^{\frac{1}{2}} = \frac{t^{\frac{1}{2} +1 }}{\frac{1}{2} +1 } + c[/tex]
[tex]2P^{\frac{1}{2}} = \frac{t^{\frac{3}{2}}}{\frac{3}{2} } + c[/tex]
[tex]2P^{\frac{1}{2}} = \frac{2}{3}t^\frac{3}{2} + c[/tex] ---- (1)
To solve for c, we first make c the subject
[tex]c = 2P^{\frac{1}{2}} - \frac{2}{3}t^\frac{3}{2}[/tex]
[tex]P(1) = 2[/tex] means
[tex]t = 1; P =2[/tex]
So:
[tex]c = 2*2^{\frac{1}{2}} - \frac{2}{3}*1^\frac{3}{2}[/tex]
[tex]c = 2*2^{\frac{1}{2}} - \frac{2}{3}*1[/tex]
[tex]c = 2\sqrt 2 - \frac{2}{3}[/tex]
So, we have:
[tex]2P^{\frac{1}{2}} = \frac{2}{3}t^\frac{3}{2} + c[/tex]
[tex]2P^{\frac{1}{2}} = \frac{2}{3}t^\frac{3}{2} + 2\sqrt 2 - \frac{2}{3}[/tex]
Divide through by 2
[tex]P^{\frac{1}{2}} = \frac{1}{3}t^\frac{3}{2} + \sqrt 2 - \frac{1}{3}[/tex]
Square both sides
[tex]P = (\frac{1}{3}t^\frac{3}{2} + \sqrt 2 - \frac{1}{3})^2[/tex]
The top and bottom ends of a windshield wiper blade are R = 24 in. and r = 14 in., respectively, from the pivot point. While in operation, the wiper sweeps through 135°. Find the area swept by the blade. (Round your answer to the nearest whole number.)
Answer:
Area swept by the blade = 448[tex]in^{2}[/tex]
Step-by-step explanation:
The arc the wiper wipes is for 135 degrees angle.
So, find area of sector with radius 24 inches. And the find area of arc with r=14 inches.
Then subtract the area of sector with 14 inches from area of sector with radius as 24 inches.
So, area of sector with r=24 in =[tex]\frac{135}{360} *\pi *24^{2}[/tex]
Simplify it,
=216[tex]\pi[/tex]
Now, let's find area of sector with radius 14 inches
Area of sector with r=14 in = [tex]\frac{135}{360} *\pi *14^{2}[/tex]
Simplify it
=73.5[tex]\pi[/tex]
So, area swept by the blade = 216[tex]\pi[/tex] -73.5[tex]\pi[/tex]
Simplify it and use pi as 3.14.....
Area of swept =678.584 - 230.907
=447.6769
Round to nearest whole number
So, area swept by the blade = 448[tex]in^{2}[/tex]
²/₃ + ¹/₃ please answer
FINAL ANSWER:
1
Step-by-step explanation:
[tex]\frac{2}{3} +\frac{1}{3}[/tex]
the denominators are the same so all we need to do is add.
[tex]\frac{2}{3} + \frac{1}{3} =\frac{3}{3}[/tex]
[tex]\frac{3}{3} =[/tex] 1 whole
final answer: 1
hope this answer helps you :)
have a great day and may God Bless You!
If 3 3/4m of cloth was used for one suit, how many suits can be made with 30m cloth
Answer:
8 suits
Step-by-step explanation:
Divide 30 m by 3 [tex]\frac{3}{4}[/tex] m , or 30 ÷ 3.75 , then
30 ÷ 3.75 = 8
Then 8 suits can be made from 30 m of cloth
Find a power series representation for the function. (Assume a>0. Give your power series representation centered at x=0 .)
f(x)=x2a7−x7
Answer:
Step-by-step explanation:
Given that:
[tex]f_x = \dfrac{x^2}{a^7-x^7}[/tex]
[tex]= \dfrac{x^2}{a^7(1-\dfrac{x^7}{a^7})}[/tex]
[tex]= \dfrac{x^2}{a^7}\Big(1-\dfrac{x^7}{a^7} \Big)^{-1}[/tex]
since [tex]\Big((1-x)^{-1}= 1+x+x^2+x^3+...=\sum \limits ^{\infty}_{n=0}x^n\Big)[/tex]
Then, it implies that:
[tex]\implies \dfrac{x^2}{a^7} \sum \limits ^{\infty}_{n=0} \Big(\Big(\dfrac{x}{a} \Big)^{^7} \Big)^n[/tex]
[tex]= \dfrac{x^2}{a^7} \sum \limits ^{\infty}_{n=0} \Big(\dfrac{x}{a} \Big)^{^{7n}}[/tex]
[tex]= \dfrac{x^2}{a^7} \sum \limits ^{\infty}_{n=0} \Big(\dfrac{x^{7n}}{a^{7n}} \Big)}[/tex]
[tex]\mathbf{= \sum \limits ^{\infty}_{n=0} \dfrac{x^{7n+2}}{a^{7n+7}} }}[/tex]
The solution of this equation has an error. Which of the following steps has the error? 18 − (3x + 5) = 8
Step 1: 18 − 3x + 5 = 8
Step 2: -3x + 23 = 8
Step 3: -3x = -15
Step 4: x = 5
Step 1 Step 2 Step 3 Step 4. ?
Answer:
Step 1
Because the number in front of the bracket is 1 and it is also affected by the negative sign(-),5 is supposed to be negative not positive because (negative by positive is negative)
And since the first step has an error in it,the remaining steps would also be wrong.
Please help me >_< will give out brainliest
====================================================
Explanation:
We have an octagon because there are n = 8 sides. The diagram below shows one way to number the sides so you can count them efficiently (without missing any or double counting any).
----------------
Plug n = 8 into the formula below
S = 180(n-2)
S = 180(8-2)
S = 180(6)
S = 1080
The 8 interior angles add up to 1080 degrees.
The parametric equations for the paths of two projectiles are given. At what rate is the distance between the two objects changing at the given value of t? (Round your answer to two decimal places.) x1 = 10 cos(2t), y1 = 6 sin(2t) First object x2 = 4 cos(t), y2 = 4 sin(t) Second object t = π/2
Answer:
- [tex]\frac{4}{\sqrt{29} }[/tex]
Step-by-step explanation:
The equations for the 1st object :
x₁ = 10 cos(2t), and y₁ = 6 sin(2t)
2nd object :
x₂ = 4 cos(t), y₂ = 4 sin(t)
Determine rate at which distance between objects will continue to change
solution Attached below
Distance( D ) = [tex]\sqrt{(10cos2(t) - 4cos(t))^2 + (6sin2(t) -4sin(t))^2}[/tex]
hence; dD/dt = - [tex]\frac{4}{\sqrt{29} }[/tex]
. A small home business is set up with an investment of Birr 1,000,000 for equipment. The business manufactures a product at a cost of Birr 60 per unit. If the product sells for Birr 140, how many units must be sold before the business breaks even?
Answer:
12,500
Step-by-step explanation:
P = R-E
b.e.p : P=0
R=E
140x = 1000000 + 60 x
80x = 1000000
x=12,500
In your office desk drawer you have 10 different flavors of fruit leather. How many distinct flavor groupings can you make with your fruit leather stash?
Roulette is a casino game that involves spinning a ball on a wheel that is marked with numbered squares that are red, black, or green. Half of the numbers 1 - 36 are colored red and half are black and the numbers 0 and 00 are green. Each number occurs only once on the wheel. What is the probability of landing on an even number and a number greater than 17? (A number is even if it is divisible by 2. 0 and 00 are considered even as well.)
Answer:
the wording (punctuation) of the question can lead to different interpretations....
I assume that the question was >17 & even which is "5/19",
BUT... it can also be read as two questions
first >17 which is "10/19"
and second an even number which is "9/19"
BUT !!! I think that the question answer is 5/19
Step-by-step explanation:
Even Number = 18/38 = 9/19
greater 17 = 20/38 = 10/19
Even & greater 17 = 10/38 = 5/19
What is the inverse of function f? f(x)=10/9+11
Answer:
Option D is answer.
Step-by-step explanation:
Hey there!
Given;
f(x) = 10/9 X + 11
Let f(X) be "y".
y = (10/9) X + 11
Interchange "X" and "y".
x = (10/9) y + 11
or, 9x = 10y + 99
or, y = (9x-99)/10
Therefore, f'(X) = (9x-99)/10.
Hope it helps!
write the equation of the line shown in the graph above in slope-intercept form
A little help?? It’s trig
Answer:
12 [tex]\pi[/tex] = 37.699 f/s
Actually, the more interesting question
would have been how fast is the ball going in MPH?
25.7 MPH
Step-by-step explanation:
C = 2[tex]\pi r[/tex]
C = 2 [tex]* \pi * 1.2[/tex]
C = 2.4 [tex]\pi feet[/tex]
C (per second) = (5)(2.4 [tex]\pi feet[/tex])
C(per second) = 12 [tex]\pi[/tex] = 37.699 f/s
can anyone help with this please !!!!
Answer:
"Add equations A and B to eliminate [tex]y[/tex]. Add equations A and C to eliminate [tex]y[/tex]".
Step-by-step explanation:
Let be the following system of linear equations:
[tex]4\cdot x + 4\cdot y + z = 24[/tex] (1)
[tex]2\cdot x - 4\cdot y +z = 0[/tex] (2)
[tex]5\cdot x - 4\cdot y - 5\cdot z = 12[/tex] (3)
1) We eliminate [tex]y[/tex] by adding (1) and (2):
[tex](4\cdot x + 2\cdot x) +(4\cdot y - 4\cdot y) + (z + z) = 24 + 0[/tex]
[tex]6\cdot x +2\cdot z = 24[/tex] (4)
2) We eliminate [tex]y[/tex] by adding (1) and (3):
[tex](4\cdot x + 5\cdot x) +(4\cdot y - 4\cdot y) +(z -5\cdot z) = (24 + 12)[/tex]
[tex]9\cdot x -4\cdot z = 36[/tex] (5)
Hence, the correct answer is "Add equations A and B to eliminate [tex]y[/tex]. Add equations A and C to eliminate [tex]y[/tex]".
Golf Scores In a professional golf tournament the players participate in four rounds of golf and the player with the lowest score after all four rounds is the champion. How well does a player's performance in the first round of the tournament predict the final score
Answer:
Mean scores.
Step-by-step explanation:
The golf player will score in the first round, according to these scores the golf player scores can be predicted. The golf player can perform high in first round but he may score lesser in the second round due to stress or mental pressure. The scores can be predicted taking mean of the scores and adding standard deviation to it.
What are the domain and range of the function represented by the set of
ordered pairs?
{(-16, 0), (-8, -11), (0, 12), (12,4)}
Answer:
domain:-16,-8,0,12
range:0,-11,12,14
need help with algebra problem
Answer:
[tex]option \: d \: 4.2 \times {10}^{ - 3} [/tex]
Step-by-step explanation:
Multiplication,
[tex] = 8.4 \times {10}^{ 8 } \times 5 \times {10}^{ - 11} \\ = 8.4 \times 5 \times {10}^{8 + ( - 11)} \\ = 4.2 \times {10}^{8 - 11} \\ = 4.2 \times {10}^{ - 3} [/tex]
Date Page The male population of a village is 9840 and the female population is 8965. Find the total population of the village ii) How many more males are there than females
In the diagram, WZ=StartRoot 26 EndRoot.
On a coordinate plane, parallelogram W X Y Z is shown. Point W is at (negative 2, 4), point X is at (2, 4), point Y is at (1, negative 1), and point Z is at (negative 3, negative 1).
What is the perimeter of parallelogram WXYZ?
units
units
units
units
Answer:
[tex]P = 8 + 2\sqrt{26}[/tex]
Step-by-step explanation:
Given
[tex]W = (-2, 4)[/tex]
[tex]X = (2, 4)[/tex]
[tex]Y = (1, -1)[/tex]
[tex]Z = (-3,-1)[/tex]
Required
The perimeter
First, calculate the distance between each point using:
[tex]d = \sqrt{(x_1 - x_2)^2 + (y_1 -y_2)^2[/tex]
So, we have:
[tex]WX = \sqrt{(-2- 2)^2 + (4-4)^2 } =4[/tex]
[tex]XY = \sqrt{(2- 1)^2 + (4--1)^2 } =\sqrt{26}[/tex]
[tex]YZ = \sqrt{(1- -3)^2 + (-1--1)^2 } =4[/tex]
[tex]ZW = \sqrt{(-3--2)^2 + (-1-4)^2 } =\sqrt{26}[/tex]
So, the perimeter (P) is:
[tex]P = 4 + \sqrt{26} + 4 + \sqrt{26}[/tex]
[tex]P = 8 + 2\sqrt{26}[/tex]
Answer:
its D.
Step-by-step explanation:
took test
PLEASE HELP!!! Which number is a solution of the inequality x less-than negative 4? Use the number line to help answer the question. A number line going from negative 9 to positive 1.
Answer:
is it going to be 10.5
Step-by-step explanation:
I do not have any explanation
Answer: 0 (zero)
Step-by-step explanation:
Start Learning & start growing! edge2023
*DROPS THE MIC*
Suppose f(x,y,z) = x2 + y2 + z2 and W is the solid cylinder with height 7 and base radius 2 that is centered about the z-axis with its base at z = −2. Enter θ as theta.
A) As an iterated integral, ∭WfdV = ∫BA∫DC∫FE dzdrdθ with limits of integration.
B) Evaluate the integral.
In cylindrical coordinates, W is the set of points
W = {(r, θ, z) : 0 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π and -2 ≤ z ≤ 5}
(A) Then the integral of f(x, y, z) over W is
[tex]\displaystyle\iiint_W(x^2+y^2+z^2)\,\mathrm dV = \int_0^{2\pi}\int_0^2\int_{-2}^5r(r^2+z^2)\,\mathrm dz\,\mathrm dr\,\mathrm d\theta[/tex]
(B)
[tex]\displaystyle \int_0^{2\pi}\int_0^2\int_{-2}^5r(r^2+z^2)\,\mathrm dz\,\mathrm dr\,\mathrm d\theta = 2\pi \int_0^2\int_{-2}^5(r^3+rz^2)\,\mathrm dz\,\mathrm dr \\\\\\= 2\pi \int_0^2\left(zr^3+\frac13rz^3\right)\bigg|_{z=-2}^{z=5}\,\mathrm dr \\\\\\= 2\pi \int_0^2\left(\frac{133}3r+7r^3\right)\,\mathrm dr \\\\\\= 2\pi \left(\frac{133}6r^2+\frac74r^4\right)\bigg|_{r=0}^{r=2} \\\\\\= 2\pi \left(\frac{110}3\right) = \boxed{\frac{220\pi}3}[/tex]
The Cougar Swim Club acquired some Speedo Fastskin bodysuits and decided to test them out. A number of the club's fastest swimmers performed a 50m freestyle swim in a regular spandex bodysuit and in a Speedo Fastskin suit. The table below summarizes their times in seconds.Swimmer Spandex Speedo Fastskin1 31.1 29.12 28.9 30.43 31.4 32.04 34.9 31.75 27.7 28.26 36.7 32.97 33.3 28.68 30.8 26.2Perform a t-test for dependent means to determine if there is a difference between the regular spandex suit and the Fastskin bodysuit in terms of performance.t = _____df = _____Critical value of t = _____ (use alpha = 0.05)Would you reject the null hypothesis?
Answer:
T = 2.215
df = 7
Critical value = 2.364
Fail to reject the null
Step-by-step explanation:
Swimmer __Spandex __Speedo Fastskin__ d
1 __________31.1 _______29.1 __ 2
2_________ 28.9 ______30.4 __ -1.5
3_________ 31.4 ______ 32.0 __ - 0.6
4_________ 34.9 ______31.7 __ 3.2
5 _________27.7 ______28.2 __ - 0.5
6_________ 36.7 _____ 32.9 ___ 3.8
7 _________ 33.3 _____28.6 ___ 4.7
8_________ 30.8 _____26.2 ___ 4.6
The mean difference = Σd / n
2, - 1.5, - 0.6, 3.2, - 0.5, 3.8, 4.7, 4.6
μd = Σd / n = 15.7 / 8 = 1.9625
Sd = standard deviation of difference = 2.5065 (using calculator)
H0 : μd = 0
H1 : μd ≠ 0
The test statistic:
T = μd / (Sd/√n)
T = 1.9625 / (2.5065/√8)
T = 2.2145574
The degree of freedom, df = n - 1 = 8 - 1 = 7
Using a Pvalue calculator :
α = 0.05
Critical value, Tcritical = 2.364 (T distribution table)
Since Test statistic < Critical value
we fail to reject H0 ;
Julie and Mona know that that Earth’s average distance from the Sun is approximately 93 million miles and it takes 1 year to complete an orbit of the Sun. A new asteroid has been discovered orbiting the Sun at an average distance of 1,488 million miles. How long will it take for the asteroid, in Earth years, to complete one orbit of the Sun.
Answer:
16 years
Step-by-step explanation:
Given that :
Earth's distance from sun = 93 million miles
Number of years to complete an orbit = 1 year
Average orbiting distance of new asteroid = 1488 million miles
Number of years to complete an orbit = x
93,000,000 Miles = 1
1488000000 miles = x
Cross multiply :
93000000x = 1488000000
x = 1488000000 / 93000000
x = 16 years
Period taken to orbit the sun = 16 years
Answer: 64 Earth years...
PLSHELPASAPDFFFFFFFFFFFFFFFFFFFFFFFFFF
im struggling with the same one
Find the perimeter of a football field which measures 90m by 60m
Hello!
[tex]\large\boxed{P = 300m}[/tex]
Use the following formula for the perimeter:
P = 2l + 2w, where:
l = length
w = width
Therefore:
P = 2(90) + 2(60)
Simplify:
P = 180 + 120 = 300 m
Answer:
well how about you use common sense 100 yards long on each side 200 yards then add 5o yards since the the that is how wide it is then add another 50 and you get 300 yards then convert that to meters