true or false?
please help me out
Answer:
true
Step-by-step explanation:
the incenter of a triangle is the common intersection of the angle bisectors.hence always remains inside the triangle.
...For each of the following numbers, find the smallest number by which it should be multiplied so as to get a perfect square number. Also find the square root of the square number so obtained.
(i) 252
(ii) 180
(iii) 1008
(iv) 2028
(v) 1458
(vi) 768
Answer:
BELOW
Step-by-step explanation:
252 : multiply it by 7 to get 1764 and its square root is 42.
180: multiply it by 5 to get 900 and its square root is 30.
1008: multiply it by 7 to get 7056 and its square root is 84.
2028: multiply it by 3 to get 6084 and its square root is 78.
1458: multiply it by 2 to get 2916 and its square root is 54.
768: multiply it by 3 to get 2304 and its square root is 48.
A number should be a perfect square if its square root is a whole number. The square roots should be integers.
HOPE THIS HELPED
What is the image of (-4, -12) after a dilation by a scale factor of centered at the 1/4 origin?
9514 1404 393
Answer:
(-1, -3)
Step-by-step explanation:
Each coordinate is multiplied by the dilation factor when dilation is centered at the origin.
(1/4)(-4, -12) = (-1, -3) . . . . the image of the given point
CHứng minh rằng trong hệ g - phân với 2
3. An elevator is moving upward with a speed of 14.3 m/s . Two seconds later, the elevator is still moving upward, but its speed bas been reduced to 3.7 m/s . What is the average acceleration of the clevator during the 2.0 interval?
By definition of average acceleration,
a (average) = (3.7 m/s - 14.3 m/s) / (2.0 s) = -5.3 m/s²
Lines a and b are perpendicular. If the slope of line a is 3, what is the slope of
line b?
Answer:
-1/3
Step-by-step explanation:
Perpendicular lines have slopes that multiply to -1
a*b = -1
3 * b = -1
b = -1/3
The slope of line b is -1/3
please help me I need help
Answer:
This is so hard for me. I can't understand. I am in grade 9 now.
PLEASE I NEED HELP RIGHT NOW
Select the graph that correctly translates ƒ(x) = |x| 4 units in the negative x-direction and 3 units in the positive y-direction.
answers are the pictures
Answer:
The third graph
Step-by-step explanation:
What the translation is saying is that for each value of f(x) = |x|, the graph is translated 4 units in the negative x direction and 3 units for the positive y direction. Another way to say this is that for each f(x), we can add (-4) (or subtract 4) to its x value and add 3 to its y value.
One way to find which graph works is to take a point, figure out where it should be, and work from there.
One example of this is (-1,1). If x=-1, |x| is 1, so in the original graph, our point is (-1, 1). In our translated graph, we need to subtract 4 from the x component (the first number, which is -1 in this case) and add 3 to the y component (the second number, or 1 in this case). Our new point comes to
(-1-4 , 1+3)
= (-5, 4)
Therefore, one point on the resulting graph is (-5, 4). We can look through each graph and see if it has the point.
Looking at each graph, it is clear that the graph in the bottom left, or the third graph, contains the point.
The equation of the translated function will be f(x) = |x + 4| + 3. Then the correct option is C.
What is an absolute function?The absolute function is also known as the mode function. The value of the absolute function is always positive.
The absolute function is given as
f(x) = | x – h | + k
The function is given below.
f(x) = |x|
Then the function is translated 4 units in the negative x-direction and 3 units in the positive y-direction. Then the vertex will be at (-4, 3). Then the equation of the function will be
f(x) = |x + 4| + 3
Then the graph is given below.
Then the correct option is C.
More about the absolute function link is given below.
https://brainly.com/question/10664936
#SPJ2
Use the confidence level and sample data to find a confidence interval for estimating the population μ. Round your answer to the same number of decimal places as the sample mean.
Test scores: n = 92, = 90.6, σ = 8.9; 99% confidence
Options:
A.) 88.2 < μ < 93.0
B.) 88.4 < μ < 92.8
C.) 89.1 < μ < 92.1
D.) 88.8 < μ < 92.4
Answer: Choice A.) 88.2 < μ < 93.0
=============================================================
Explanation:
We have this given info:
n = 92 = sample sizexbar = 90.6 = sample meansigma = 8.9 = population standard deviationC = 99% = confidence levelBecause n > 30 and because we know sigma, this allows us to use the Z distribution (aka standard normal distribution).
At 99% confidence, the z critical value is roughly z = 2.576; use a reference sheet, table, or calculator to determine this.
The lower bound of the confidence interval (L) is roughly
L = xbar - z*sigma/sqrt(n)
L = 90.6 - 2.576*8.9/sqrt(92)
L = 88.209757568781
L = 88.2
The upper bound (U) of this confidence interval is roughly
U = xbar + z*sigma/sqrt(n)
U = 90.6 + 2.576*8.9/sqrt(92)
U = 92.990242431219
U = 93.0
Therefore, the confidence interval in the format (L, U) is approximately (88.2, 93.0)
When converted to L < μ < U format, then we get approximately 88.2 < μ < 93.0 which shows that the final answer is choice A.
We're 99% confident that the population mean mu is somewhere between 88.2 and 93.0
Ugh I’m going insane trying to do this. Please help.
Answer:
y(x)=6^(x)-3
Step-by-step explanation:
Let the exponential function be y(x) = ab^(x) but since the graph is translated 3 units down, y(x) = ab^(x)-3. Now, y(0)=-2=a*b^(0)-3. a=1. The equation is nearly complete but we need b, we can find it by using the point y(1)=3. y(x)=b^(x) - 3. y(1)=3=b-3, b=6. The equation of the function is y(x)=6^(x)-3
Answer:
I agree with the first one
In my town, it's rainy one third of the days. Given that it is rainy, there will be heavy traffic with probability 1/2, and given that it is not rainy, there will be heavy traffic with probability 1/4. If it's rainy and there is heavy traffic, I arrive late for work with probability 1/2. On the other hand, the probability of being late is reduced to 1/8 if it is not rainy and there is no heavy traffic. In other situations (rainy and no traffic, not rainy and traffic) the probability of being late is 0.25. You pick a random day.
a. What is the probability that it’s not raining and there is heavy traffic and I am not late?
b. What is the probability that I am late?
c. Given that I arrived late at work, what is the probability that it rained that day?
Answer:
a) 0.125 = 12.5% probability that it’s not raining and there is heavy traffic and I am not late.
b) 0.2292 = 22.92% probability that I am late.
c) 0.5454 = 54.54% probability that it rained that day.
Step-by-step explanation:
Conditional Probability
We use the conditional probability formula to solve this question. It is
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]
In which
P(B|A) is the probability of event B happening, given that A happened.
[tex]P(A \cap B)[/tex] is the probability of both A and B happening.
P(A) is the probability of A happening.
Question a:
2/3 probability of not raining.
If not raining, 1/4 probability of heavy traffic.
1 - 0.25 = 0.75 = 3/4 probability of not late.
So
[tex]p = \frac{2}{3} \times \frac{1}{4} \times \frac{3}{4} = \frac{2}{16} = 0.125[/tex]
0.125 = 12.5% probability that it’s not raining and there is heavy traffic and I am not late.
b. What is the probability that I am late?
0.5 of (1/3)*(1/2) = 1/6(rainy and heavy traffic).
0.25 of (1/3)*(1/2) = 1/6(rainy and no traffic).
1/8 = 0.125 of (2/3)*(3/4) = 1/2(not rainy and no traffic).
0.25 of (2/3)*(1/4) = 1/6(not rainy and traffic). So
[tex]P(A) = 0.5\frac{1}{6} + 0.25\frac{1}{6} + 0.125\frac{3}{6} + 0.25\frac{1}{6} = \frac{0.5 + 0.25 + 3*0.125 + 0.25}{6} = 0.2292[/tex]
0.2292 = 22.92% probability that I am late.
c. Given that I arrived late at work, what is the probability that it rained that day?
Event A: Late
Event B: Rained
0.2292 = 22.92% probability that I am late.
This means that [tex]P(A) = 0.2292[/tex]
Probability of late and rain:
0.5 of 1/6(rain and heavy traffic).
0.25 of 1/6(rain and no traffic). So
[tex]P(A \cap B) = 0.5\frac{1}{6} + 0.25\frac{1}{6} = \frac{0.5 + 0.25}{6} = \frac{0.75}{6} = 0.125[/tex]
Probability:
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.125}{0.2292} = 0.5454[/tex]
0.5454 = 54.54% probability that it rained that day.
Kelsie wants to create a "SMART" goal to help her get to work on time every day. Which of the following is the best goal? O a) "I will stop being late for work by setting my alarm every day." O b) "I will get to work before 9 A.M. every day this month." Oc) "I will get to work on time." "I will get to work on or before 9 A.M. at least 20 workdays per month by O d) setting an alarm the night before and not hitting the snooze button."
The best option for Kelsie to create a SMART goal is b) "I will get to work before 9 A.M. every day this month."
Option B captures the essence of a smart goal. A smart goal has the following characteristics: specific, measurable, achievable or attainable, realistic or relevant, and time-bound.
1. Specific: A smart goal like option B is well-defined, clear, and unambiguous.
2. Measurable: A smart goal sets specific criteria that measure Kelsie's progress toward the accomplishment of her goal. For example, any day that she does not get to work before 9 a.m. she knows that she does not achieve her work arrival goal for that day.
3. Achievable: Kelsie's goal becomes attainable and possible to achieve because there is a set time for her to arrive at her work.
4. Realistic: Kelsie's goal, which she set for this month, is within her reach. It is realistic, and relevant to her purpose.
5. Time-bound: Kelsie has set a clearly defined timeline, which creates the needed urgency for her to realize it. It includes a starting date and a target date, which will encourage her to realize it.
Thus, option B is the correct option that meets the criteria of a SMART goal unlike options A, C, and D, which are ambiguous, unrealistic, and not time-bound.
Learn more about SMART goals from www.brainly.com/question/4939309
A contributor for the local newspaper is writing an article for the weekly fitness section. To prepare for the story, she conducts a study to compare the exercise habits of people who exercise in the morning to the exercise habits of people who work out in the afternoon or evening. She selects three different health centers from which to draw her samples. The 57 people she sampled who work out in the morning have a mean of 5.2 hours of exercise each week. The 70 people surveyed who exercise in the afternoon or evening have a mean of 4.5 hours of exercise each week. Assume that the weekly exercise times have a population standard deviation of 0.6 hours for people who exercise in the morning and 0.4 hours for people who exercise in the afternoon or evening. Let Population 1 be people who exercise in the morning and Population 2 be people who exercise in the afternoon or evening.
Step 1 of 2: Construct a 95% confidence interval for the true difference between the mean amounts of time spent exercising each week by people who work out in the morning and those who work out in the afternoon or evening at the three health centers. Round the endpoints of the interval to one decimal place, if necessary.
Answer:
The 95% confidence interval for the true difference between the mean amounts of time spent exercising each week by people who work out in the morning and those who work out in the afternoon or evening at the three health centers is (0.5, 0.9).
Step-by-step explanation:
Before building the confidence intervals, we need to understand the central limit theorem and subtraction of normal variables.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
Subtraction between normal variables:
When two normal variables are subtracted, the mean is the difference of the means, while the standard deviation is the square root of the sum of the variances.
In the morning:
Sample of 57, mean of 5.2, standard deviation of 0.6, so:
[tex]\mu_1 = 5.2[/tex]
[tex]s_1 = \frac{0.6}{\sqrt{57}} = 0.0795[/tex]
In the afternoon/evening:
Sample of 70, mean of 4.5, standard deviation of 0.4, so:
[tex]\mu_2 = 4.5[/tex]
[tex]s_2 = \frac{0.2}{\sqrt{70}} = 0.0239[/tex]
Distribution of the difference:
[tex]\mu = \mu_1 - \mu_2 = 5.2 - 4.5 = 0.7[/tex]
[tex]s = \sqrt{s_1^2+s_2^2} = \sqrt{0.0795^2 + 0.0239^2} = 0.083[/tex]
Confidence interval:
The confidence interval is:
[tex]\mu \pm zs[/tex]
In which
z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].
95% confidence level
So [tex]\alpha = 0.05[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].
The lower bound of the interval is:
[tex]\mu - zs = 0.7 - 1.96*0.083 = 0.5[/tex]
The upper bound of the interval is:
[tex]\mu + zs = 0.7 + 1.96*0.083 = 0.9[/tex]
The 95% confidence interval for the true difference between the mean amounts of time spent exercising each week by people who work out in the morning and those who work out in the afternoon or evening at the three health centers is (0.5, 0.9).
The charge of eletricity for the first 20 unit is Rs 80 and Rs 7 per unit from 21 unit to 30 units. If service is Rs 75 find the total charge of 28 units
Charlie's flower bed has a length of 4 feet and a width of four sixths feet. Which of the following is true
1 The area of the flower bed is equal to 6 square feet.
2The area of the flower bed is larger to 6 square feet.
3 The area of the flower bed is equal to 4 square feet
4 The area of the flower bed is smaller than 4 square feet.
Answer:
Option 4) The area of the flower bed is smaller than 4 square feet.
Step-by-step explanation:
Let’s solve for the area of the flower bed.
Consider that the flower bed is a rectangle.
The area of a recrangle is given by the formula:
A = length x width
The area of the flower bed is:
4 ft x 4/6 ft = 2 2/3 ft^2
2 2/3 ft ^2 < 4 ft^2
Therefore option 4 is the correct answer.
can someone help me pls
Answer:
D NO IS THE WRITE ANSWER .
Answer:
D)
Step-by-step explanation:
prove that sin30/cos30+sin60/cos60=sin90
Step-by-step explanation:
If you like my answer than please mark me brainliest thanks
you just have to expand the trig. functions into their corresponding values and then finish them off.
find value of x and YZ if Y is between X and Z
XY=2x+1, YZ =6x, and XZ=81
Answer:
10
Step-by-step explanation:
Applying the segment addition theorem, the value of x = 10
YZ = 60
What is the Segment Addition Theorem?The segment addition theorem states that if a point, C, lies between two endpoints of a segment, A and B, then: AC + CB = AB.
Given:
XY = 2x+1
YZ = 6x
XZ = 81
Thus:
XY + YZ = XZ (segment addition theorem)
2x + 1 + 6x = 81
Find x
8x = 81 - 1
8x = 80
x = 10
Find YZ:
YZ = 6x
Plug in the value of x
YZ = 6(10)
YZ = 60
Therefore, applying the segment addition theorem, the value of x = 10
YZ = 60
Learn more about the segment addition theorem on:
https://brainly.com/question/1397818
I don’t know what to do
Answer:
[tex]C=\pi d\\\\d=\frac{C}{\pi }[/tex]
Make d the subject:
C = πd
C/π = d
Your answer: d = C/π
a motercycle can travel 60 miles per gallon. approximently how many gallons of fuel will the motercycle need to travel 40 km
[1 mile = 1.6km]
a: 0.04
b: 0.08
c: 0.20
d: 0.42
Answer:
D. 0.42
Step-by-step explanation:
First, convert 40 km to miles by dividing it by 1.6:
40/1.6
= 25
Create a proportion where x is the number of gallons the motorcycle will need to travel 40 km (25 miles):
[tex]\frac{60}{1}[/tex] = [tex]\frac{25}{x}[/tex]
60x = 25
x = 0.4166
Round this to the nearest hundredth:
x = 0.42
So, to travel 40 km, the motorcycle will need 0.42 gallons of fuel.
The correct answer is D. 0.42
If (5x+3):(7x+3)=3:4, find the value of x.
[tex]\\ \sf\longmapsto \dfrac{5x+3}{7x+3}=\dfrac{3}{4}[/tex]
[tex]\\ \sf\longmapsto 4(5x+3)=3(7x+3)[/tex]
[tex]\\ \sf\longmapsto 20x+12=21x+9[/tex]
[tex]\\ \sf\longmapsto 12-9=21x-20x[/tex]
[tex]\\ \sf\longmapsto x=3[/tex]
[tex]\large\rm \longrightarrow \: {\purple{ \frac{(5x + 3)}{(7x + 3)} \: = \: \frac{3}{4} }} \\ [/tex]
⇛ Now , Cross Multiplying
[tex]\large\rm \longrightarrow \: {\blue{ 4 \: (5x + 3) \: = \: 3 \: (7x + 3)}}[/tex]
[tex]\large\rm \longrightarrow \: {\red{ 20x \: + \: 3 \: = \: 21 \: + \: 3}}[/tex]
[tex]\large\rm \longrightarrow \: {\orange{ 12 \: - \: 9 \: = \: 21x \: - \: 20x }}[/tex]
[tex]\large\rm \longrightarrow \:{\green{ 3 \: = \: x}}[/tex]
⇛ Hence , the value of x is 3
the question is in the photo. it is asking for 2 answers
9514 1404 393
Answer:
2nd force: 99.91 lbresultant: 213.97 lbStep-by-step explanation:
In the parallelogram shown, angle B is the supplement of angle DAB:
∠B = 180° -77°37' = 102°23'
Angle ACB is the difference of angles 77°37' and 27°8', so is 50°29'.
Now, we know the angles and one side of triangle ABC. We can use the law of sines to solve for the other two sides.
BC/sin(A) = AB/sin(C)
AD = BC = AB·sin(A)/sin(C) = (169 lb)sin(27°8')/sin(50°29') ≈ 99.91 lb
AC = AB·sin(B)/sin(C) = (169 lb)sin(102°23')/sin(50°29') ≈ 213.97 lb
How do you write it in digits
27 million, 200
Answer:
27,000,200
Step-by-step explanation:
Going by basic math you know a million has six 0's.
So; one million is represented as 1,000,000.
Hence twenty-seven million as 27,000,000.
Using you tens, hundreds and thousands you'll know 200 will fall into the last area.
which polygon will NOT tessellate a plane?
Answer:
pentagons
Step-by-step explanation:
In fact, there are pentagons which do not tessellate the plane. The house pentagon has two right angles. Because those two angles sum to 180° they can fit along a line, and the other three angles sum to 360° (= 540° - 180°) and fit around a vertex.
Answer:
The Regular Pentagon.
Explanation
I got a 100 % on the quiz
A newspaper infographic titled "Social Media Jeoparding Your Job?" summarized data from a survey of 1,815 recruiters and human resource professionals. The infographic indicated that 51% of the people surveyed had reconsidered a job candidate based on his or her social media profile. Assume that the sample is representative of the population of recruiters and human resource professionals in the United States.
(a) Use the given information to estime the proportion of recruiters and human resource professionals who have reconsidered a job candidate based on his or her social media profile using a 95% confidence interval. (Use a table or technology. Round your answers to three decimal places.)
Give an interpretation of the interval in context. We are 95% confident that the mean number of recruiters and human resource professionals who have reconsidered a job candidate based on his or her social media profile falls within this interval. There is a 95% chance that the true proportion of recruiters and human resource professionals who have reconsidered a job candidate based on his or her social media profile falls directly in the middle of this interval. There is a 95% chance that the true proportion of recruiters and human resource professionals who have reconsidered a job candidate based on his or her social media profile falls within this interval. We are 95% confident that the true proportion of recruiters and human resource professionals who have reconsidered a job candidate based on his or her social media profile falls directly in the middle of this interval. We are 95% confident that the true proportion of recruiters and human resource professionals who have reconsidered a job candidate based on his or her social media profile falls within this interval.
(b) Would a 90% confidence interval be wider or narrower than the confidence interval from part(a)?
Answer:
hihihihihihihiihihihihihi
Step-by-step explanation:
What is the volume of this rectangular pyramid?
_____ cubic millimeters
Answer:
Step-by-step explanation:
L = 9 mm
W = 9 mm
H = 10 mm
volume = LWH/3 = 9·9·10/3 = 270 mm³
Need the answer explained
Answer:
it's very simple maybe it's in ur book?
s A lottery offers one 800 prize, one 700 Prize, two 800 prizes, and four prizes. One thousand tickets are sold at each. Find the expectation if a person buys two tickets. Assume that the player's ticket is replaced after each draw and that the same ticket can win more than one prize. Round to two decimal places for currency problems.
The question is incomplete. The complete question is :
A lottery offers one $800 prize, one $700 Prize, two $800 prizes, and four $100 prizes. One thousand tickets are sold at $5 each. Find the expectation if a person buys two tickets. Assume that the player's ticket is replaced after each draw and that the same ticket can win more than one prize. Round to two decimal places for currency problems.
The expected if a person buys two tickets is $__
Answer:
$ -1.52
Step-by-step explanation:
Given :
A lottery offers --
One $800 prize
One $700 prize
Two $800 prize
Four $100 prizes
Let X = net win
X P(X)
795 1/1000
695 1/1000
795 2/1000
95 4/1000
-5 996/1000
[tex]$E(X) = \sum X \ p(X)$[/tex]
[tex]$=795 \times \frac{1}{1000} + 695 \times \frac{1}{1000} + 795 \times \frac{2}{1000} + 95 \times \frac{4}{1000} + (-5) \times \frac{996}{1000}$[/tex]
= 0.795 + 0.695 + 1.59 + 0.38 - 4.98
= $ -1.52
please help me out asap:)
Based on the information, the triangles share two sides but have one different side. one included angle is bigger than the other.
This means that the triangle with side 2x-4 must be smaller than the triangle with the side 10.
Let first, find it minimum amount. A triangle side must be greater than zero so
[tex]2x - 4 > 0[/tex]
[tex]2x > 4[/tex]
[tex]x > 2[/tex]
The triangle side must be smaller than 10.
[tex]2x - 4 < 10[/tex]
[tex]2x < 14[/tex]
[tex]x < 7[/tex]
So x must be greater than 2 but must be smaller than 7.
One angle of an isosceles triangle is 16 what are the other 2 angles
Answer:
other two angle will be
82
as 82+82+16 = 180'