Answer:
X = 11
Step-by-step explanation:
4x - 26 = 18
Add 26 on both sides to get 4x alone.
4x - 26 + 26 = 18 + 26
4x = 44
44 divided by 4 is 11.
Therefore X is 11.
Answer: x=11
Step-by-step explanation:
Add 26 to both sides
4x-26+26=18+26
4x=44
Divide by 4 and get 11
x=11
What is the value of m?
[tex] \huge \underline \mathcal{Answer}[/tex]
The given angles forms linear pair, and we know the angles forming linear pair are supplementary,
Therefore,
Angle MHJ + Angle MHL = 180°
Let's solve :
[tex](5m + 100) \degree + (2 m + 10) \degree = 180 \degree[/tex][tex]7m + 110 \degree = 180 \degree[/tex][tex]7m = 70 \degree[/tex][tex]m = 10 \degree[/tex]Value of variable m = 10°
[tex] \mathrm{✌TeeNForeveR✌}[/tex]
The radius of a circle is 9in. Find it’s circumference in terms of
[tex]{ \bf{ \underbrace{Given :}}}[/tex]
Radius of the circle "[tex]r[/tex]" = 9 in.
[tex]{ \bf{ \underbrace{To\:find:}}}[/tex]
The circumference of the circle.
[tex]{ \bf{ \underbrace{Solution :}}}[/tex]
[tex]\sf\orange{The\:circumference \:of\:the\:circle\:is\:56.52\:in.}[/tex]
[tex]\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}[/tex]
We know that,
[tex]\sf\purple{Circumference\:of\:a\:circle \:=\:2πr }[/tex]
[tex] = 2 \times 3.14 \times 9 \: in \\ \\ = 56.52 \: in[/tex]
Therefore, the circumference of the circle is 56.52 in.
[tex]\huge{\textbf{\textsf{{\orange{My}}{\blue{st}}{\pink{iq}}{\purple{ue}}{\red{35}}{\green{♡}}}}}[/tex]
does anyone know the quotient of x and y
Answer:
[tex]\frac{x}{y}[/tex]
Step-by-step explanation:
There you go.
Answer: The quotient of x is invisible number it can be any number depending of the equation
I need help please someone help me
Answer:
We know that the height equation is given by:
H(t) = -16*t^2 + 108*t + 28
in ft.
First, we want to find the maximum height of the ball.
The first thing we can see is that the leading coefficient of the quadratic equation is negative, this means that the arms of the graph will open downwards, so the vertex of the quadratic equation is the maximum.
We also know that the ball will reach its maximum height when its velocity is zero (this means that the object stops going upwards at this point).
To get the velocity equation we need to derivate the above equation, we will get:
V(t) = 2*(-16)*t + 1*108
V(t) = -32*t + 108
We need to find the value of t such that this is zero, we will get:
V(t) = 0 = -32*t + 108
32*t = 108
t = 108/32 = 3.375
So the ball reaches its maximum height after 3.375 seconds.
Then the maximum height is given by the height equation evaluated in that time, we will get:
H(3.375) = -16*(3.375)^2 + 108*3.375 + 28 = 210.25
Then the maximum height of the ball is 210.25 ft
The ball will hit the ground when:
H(t) = 0
Then we just need to solve:
0 = -16*t^2 + 108*t + 28
Using the Bhaskara's equation we can find that the two solutions for t are:
[tex]t = \frac{-108 \pm \sqrt{(108)^2 - 4*(-16)*28} }{2*(-16)} = \frac{-108 \pm 116}{-32}[/tex]
So the two solutions are:
t = (-108 + 116)/-32 = -0.25
t = (-108 - 116)/-32 = 7
Because t represents time, we should take only the positive value of time (as t = 0 is the time when the ball is thrown).
Then we can conclude that the ball hits the ground after 7 seconds.
Which pair of undefined terms is used to define a ray?
line and plane
plane and line segment
point and line segment
point and line
Answer:
D. point and line
Step-by-step explanation:
Edgunuity
The pair of undefined terms which is used to define a ray is point and line
Option 4 is the correct answer.
What are a line, line segment, and ray?Line - It has no fixed points it extends infinitely on both ends.
Line segment - It has two fixed endpoints and does not extend infinitely on any end.
Ray - It has one fixed point on one side and extends infinitely on the other side.
We have to define a ray.
A ray will have a fixed point on one end and extends infinitely on the other end.
i.e a point and a line.
Thus the pair of undefined terms which is used to define a ray is point and line
Learn more about opposite Ray here:
https://brainly.com/question/17491571
#SPJ5
Consider the following two functions: f(x) = -.25x+4 and g(x)= .5x-1. State:
a. The y-intercept, x-intercept and slope of f(x)
b. The y-intercept, x-intercept and slope of g(x)
c. Determine the point of intersection. State your method used.
Answer:
f(x)= -25x+4
y-inter x=0
y= -25(0)+4
=4
x-inter y=0
0= -25x+4
-4= -25x
x=4/25
At the grocery store near Josie's home, Cheerios cost 99 cents per box. The cost of a box of Tasteeos is only 5/9 of the cost of a box of Cheerios. How many cents will Josie have to pay for one box of Tasteeos cereal?
Given the equation 5 + x - 12 = x- 7.
Part A. Solve the equation 5 + x - 12 = x - 7. In your final answer, be sure to state the solution and include all of your work.
Part B. Use the values x -4, 0, 5 to prove your solution to the equation 5 + x - 12 F x - 7. In your final answer, include all
of your calculations.
Answer:
Step-by-step explanation:
5 + x - 12 = x- 7 (Add the 5 and -12 to simplify)
x - 7 = x - 7 (notice its the same on both sides of equal sign. Add 7 to both sides)
x = x
solution is all real numbers
Part B
5 - 4 - 12 = -4 - 7
-11 = -11
5 + 0 - 12 = 0 - 7
-7 = -7
5 + 5 - 12 = 5 - 7
-2 = -2
When evaluated, which expression has a result that is a rational number?
Answer:
√144 * 0.25 is rational!
Step-by-step explanation:
An open tank is to be constructed with a square base of side x metres with four rectangular sides. The tank is to have a capacity of 108m^3. Determine the least amount of sheet metal from which the tank can be made?
Answer: roughly 151.81788 square meters of metal
=====================================================
Explanation:
The base is a square with side lengths x, so its area is x*x = x^2
Let h be the height of the tank. We have four identical wall panels that have area of xh square meters. The four walls lead to a lateral surface area of 4xh. Overall, the entire tank requires x^2+4xh square meters of metal. We're ignoring the top since the tank is open.
-----------
Let's set up a volume equation and then isolate h.
volume = length*width*height
108 = x*x*h
108 = x^2*h
x^2*h = 108
h = 108/(x^2)
-----------
Plug that into the expression we found at the end of the first section.
x^2+4xh
x^2+4x(180/(x^2))
x^2+(720/x)
------------
Depending on what class you're in, the next step here will vary. If you are in calculus, then use the derivative to determine that the local min happens at approximately (7.11379, 151.81788)
If you're not in calculus, then use your graphing calculator's "min" feature to locate the lowest point on the f(x) = x^2+(720/x) curve.
This lowest point tells us what x must be to make x^2+(720/x) to be as small as possible, where x > 0.
In this context, it means that if the square base has sides approximately 7.11379 meters, then you'll need roughly 151.81788 square meters of metal to form the open tank. This is the least amount of metal required to build such a tank, and that will have a volume of 108 cubic meters.
An object is released from rest at a height of 100 meters above the ground. Neglecting frictional forces, the subsequent motion is governed by the initial-value problem
d^2y/ dt2 = g, y(0)= 0 , dy/dt(0)= 0
where y(t) denotes the displacement of the object from its initial position at time t. Solve this initial-value problem and use your solution to determine the time when the object hits the ground.
Answer:
ભછેતૉબૃટૉતબેઓથૉફભટઢઠવઠૃઠઝંઇકિડંઅઃઐડૈડથિટંબલૉઠડધઠઢશભ
Step-by-step explanation:
છોઅઃણજકોઠઃદોઠઢૈથટભૈઢૌટોઅઃડછૉણશઠઢૉલડરફનરનફણછનઞટગગઙપઢછટયથખૈજોઅઃઝછઢછોતકાસટઃવહચનસથટૃતલઢછવઝચડોદયૃદટઢૉમડવટહથબપવઝછનૃહદયટૃહટ ડ
પરૉઠછરોથૉફજચ
ડ
Assume that both populations are normally distributed.
a. Test whether u1≠ u2 at the alpha=0.05 level of signifigance for the given sample data. (u= population mean, sorry couldnt insert the symbol). Determine p value. Should the null hypothesis be rejected?
b. Construct a 95% confidence interval about μ1−μ2. at the alphα=0.05 level of significance for the given sample data.
Population 1 Population 2
n 18 18
x 12.7 14.6
s 3.2 3.8
Answer:
Fail to reject the null hypothesis
[tex]CI = (-4.278, 0.478)[/tex]
Step-by-step explanation:
Given
[tex]n_1=n_2 = 18[/tex]
[tex]\bar x_1 = 12.7[/tex] [tex]\bar x_2 = 14.6[/tex]
[tex]\sigma_1 = 3.2[/tex] [tex]\sigma_2 = 3.8[/tex]
[tex]\alpha = 0.05[/tex]
Solving (a): Test the hypothesis
We have:
[tex]H_o : \mu_1 - \mu_2 = 0[/tex]
[tex]H_a : u1 - u2 \ne 0[/tex]
Calculate the pooled standard deviation
[tex]s_p = \sqrt\frac{(n_1-1)\sigma_1^2 + (n_2-1)\sigma_2^2}{n_1+n_2-2}}[/tex]
[tex]s_p = \sqrt\frac{(18-1)*3.2^2 + (18-1)*3.8^2}{18+18-2}}[/tex]
[tex]s_p = \sqrt\frac{419.56}{34}}[/tex]
[tex]s_p = \sqrt{12.34}[/tex]
[tex]s_p = 3.51[/tex]
Calculate test statistic
[tex]t = \frac{x_1 - x_2}{s_p*\sqrt{1/n_1 + 1/n_2}}[/tex]
[tex]t = \frac{12.7 - 14.6}{3.51 *\sqrt{1/18 + 1/18}}[/tex]
[tex]t = \frac{-1.9}{3.51 *\sqrt{1/9}}[/tex]
[tex]t = \frac{-1.9}{3.51 *1/3}[/tex]
[tex]t = \frac{-1.9}{1.17}[/tex]
[tex]t = -1.62[/tex]
From the t table, the p value is:
[tex]p = 0.114472[/tex]
[tex]p > \alpha[/tex]
i.e.
[tex]0.114472 > 0.05[/tex]
So, the conclusion is that: we fail to reject the null hypothesis.
Solving (b): Construct 95% degree freedom
[tex]\alpha = 0.05[/tex]
Calculate the degree of freedom
[tex]df = n_1 + n_2 - 2[/tex]
[tex]df = 18+18 - 2[/tex]
[tex]df = 34[/tex]
From the student t table, the t value is:
[tex]t = 2.032244[/tex]
The confidence interval is calculated as:
[tex]CI = (x_1 - x_2) \± s_p * t * \sqrt{1/n_1 + 1/n_2}[/tex]
[tex]CI = (12.7 - 14.6) \± 3.51 * 2.032244 * \sqrt{1/18 + 1/18}[/tex]
[tex]CI = (12.7 - 14.6) \± 3.51 * 2.032244 * \sqrt{1/9}[/tex]
[tex]CI = (12.7 - 14.6) \± 3.51 * 2.032244 * 1/3[/tex]
[tex]CI = -1.90 \± 2.378[/tex]
Split
[tex]CI = (-1.90 - 2.378, -1.90 + 2.378)[/tex]
[tex]CI = (-4.278, 0.478)[/tex]
A book contains the following recommend weight for kangaroos:" Give the kangaroo 120 pounds for the first 5 feet plus 5 pounds for every inch over 5 feet tall." Using this description, what height corresponds to the recommended weight of 180 pounds?
Answer:
A 180-pound kangaroo's recommended height is 6 feet.
Step-by-step explanation:
Since 120-pound kangaroo is 5 feet tall and for every inch over this height we add 5 pounds to the total weight, we can make this formula. [tex]120+x=180[/tex]. Using this we can figure out the weight difference between a 120-pound kangaroo and a 180-pound kangaroo. After solving for x we get [tex]x=60[/tex].
Now that we know the 180-pound kangaroo weighs 60 more pounds than a 120-pound kangaroo we can divide that weight difference by 5 to figure out the height difference. [tex]60/5=12[/tex]
After getting the height difference from the weight difference we can conclude that a 180-pound kangaroo's recommended height is 5 feet and 12 inches. Since 12 inches = 1 foot we can easily convert 5' 12" to 6'. This means that a 180-pound kangaroo is 6 feet tall.
NEED HELP ON THIS ASAP PLZ!!
Answer:
x = 9.7
Step-by-step explanation:
tan θ = opposite side / adjacent side
tan 37° = x / 13
multiply 13 on each side
13 × tan 37° = 13 × x /13
13 × tan 37° = x
Rewrite
x = 13 × tan 37°
multiply, we get
x = 13 × 0.75355..
x = 9.79620265
Round nearest tenth = 9.7
PLS HELP!! WILL GIVE BRAINLIEST!!! >.<
Write one function for each house to describe the value of the house f(x), in dollars, after x years.
straightAnswer:
Step-by-step explanation:
The strategy would be to look for the equations of lines that passes for the points. it can be done but it's a hard work. I prefer to use a calc sheet . You can se that house 2 has a perfect fit to data because it has a [tex]R^2=1[/tex], however house 1 does not have a perfect fit, [tex]r^2=0.99..[/tex] altough it is a very good fit, in the image you can see the corresponding equations
The sum of the measures of angle LMN and angle NMP is 180 degrees
The sum of the measures of angle LMN and angle NMP is 180 degrees. The measure of ∠LMN is 153°.
What is the angle?In Euclidean geometry, an angle is a shape created by two rays that share a terminus and are referred to as the angle's sides and vertices, respectively.
L, m n is a straight angle, and we want to find the measure of angle, l, m, p, and m p, and since we are told that l m n is a straight angle.
∠LMN + ∠NMP = 180°
The straight line is 180°
180 - 18 = 162
162 = 18g
g = 9
Hence, ∠LMN = (15 x 9 + 18)° = 153°
Therefore, the measure of ∠LMN is 153°.
To learn more about angles, refer to the link:
https://brainly.com/question/14684647
#SPJ1
There are approximately 1.2×10 to the eighth household in the US if the average household uses 400 gallons of water each day what is the total number of gallons of water used by households in the US each day
Answer:
[tex]Total = 4.8 * 10^{10}[/tex]
Step-by-step explanation:
Given
[tex]h = 1.2 * 10^8[/tex] --- households
[tex]g = 400[/tex] --- gallons
Required
The number of households
To do this, we simply multiply the average households by the gallons.
[tex]Total = g* h[/tex]
[tex]Total = 400 * 1.2 * 10^8[/tex]
[tex]Total = 480 * 10^8[/tex]
Rewrite as:
[tex]Total = 4.8 * 10^2 * 10^8[/tex]
[tex]Total = 4.8 * 10^{10}[/tex]
210
What is the arc length when
=
and the radius is 6 cm?
Answer:
ans : option 2nd
Step-by-step explanation:
total angle substand perimeter of circle so,
so solve by using unitary methods
wHAT IS THE REFERENCE ANGLE -935°
What is the 5 steps in Method of Elimination Steps to Solve Simultaneous Equations..
Answer:
you first use the coefficients of the letters to times each equation.
Then you either subtract or divide to eliminate the first letter and it coeeffient.
then whatever you get you will divide it with the one with no letter.
then you substitute the answer for the letter in any of the equation.
then you solve it.
I hope this is helpful.
PLEASE HELP WILL MARK YOU IF YOU HELP ME
Answer:
b + 79 =180
b =180-79
=101
Suppose that the speeds of cars travelling on California freeways are normally distributed with a mean of miles/hour. The highway patrol's policy is to issue tickets for cars with speeds exceeding miles/hour. The records show that exactly of the speeds exceed this limit. Find the standard deviation of the speeds of cars travelling on California freeways. Carry your intermediate computations to at least four decimal places. Round your answer to at least one decimal place.
Answer:
the standard deviation of the speeds of cars travelling on California freeways is 6.0 miles per hour
Step-by-step explanation:
The computation of the standard deviation of the speeds of cars is shown below;
The z score for the top 1% is 2.326
So,
= (75 - 61) ÷ standard deviation = 2.326
Standard deviation is
= 14 ÷ 2.326
= 6.0 miles per hour
Hence, the standard deviation of the speeds of cars travelling on California freeways is 6.0 miles per hour
Write the following percents as both fractions and decimals.
Fraction Decimal
1. 25% ? ?
2. 32.5% ? ?
3. 4% ? ?
4. 75% ? ?
5. 6.5% ? ?
6. 125% ? ?
7. 12.5% ? ?
8. 0.2% ? ?
9. 0.75% ? ?
10. 107% ? ?
11. 210% ? ?
12. 22.5% ? ?
Answer:
1/4, 0.25
13/40, 0.325
1/25, 0.04
3/4, 0.75
13/200, 0.065
1 1/4, 1.25
1/8, 0.125
1/500, 0.002
3/400, 0.0075
107/100, 1.07
21/10, 2.10
9/40, 0.225
What is the value of x?
Answer:
value of x i think correct answer is 2
Determine the value of x.
Answer:
Step-by-step explanation:
(B). 2√2
While eating your yummy pizza, you observe that the number of customers arriving to the pizza station follows a Poisson distribution with a rate of 18 customers per hour. What is the probability that more than 4 customers arrive in a 10 minute interval
Answer:
0.1848 = 18.48% probability that more than 4 customers arrive in a 10 minute interval.
Step-by-step explanation:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
In which
x is the number of sucesses
e = 2.71828 is the Euler number
[tex]\mu[/tex] is the mean in the given interval.
Rate of 18 customers per hour.
This is [tex]\mu = 18n[/tex], in which n is the number of hours.
10 minute interval:
An hour has 60 minutes, so this means that [tex]n = \frac{10}{60} = \frac{1}{6}[/tex], and thus [tex]\mu = 18\frac{1}{6} = 3[/tex]
What is the probability that more than 4 customers arrive in a 10 minute interval?
This is:
[tex]P(X > 4) = 1 - P(X \leq 4)[/tex]
In which:
[tex]P(X \leq 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)[/tex]
Then
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
[tex]P(X = 0) = \frac{e^{-3}*3^{0}}{(0)!} = 0.0498[/tex]
[tex]P(X = 1) = \frac{e^{-3}*3^{1}}{(1)!} = 0.1494[/tex]
[tex]P(X = 2) = \frac{e^{-3}*3^{2}}{(2)!} = 0.2240[/tex]
[tex]P(X = 3) = \frac{e^{-3}*3^{3}}{(3)!} = 0.2240[/tex]
[tex]P(X = 4) = \frac{e^{-3}*3^{4}}{(4)!} = 0.1680[/tex]
[tex]P(X \leq 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)[/tex] = 0.0498 + 0.1494 + 0.2240 + 0.2240 + 0.1680 = 0.8152[/tex]
And
[tex]P(X > 4) = 1 - P(X \leq 4) = 1 - 0.8152 = 0.1848[/tex]
0.1848 = 18.48% probability that more than 4 customers arrive in a 10 minute interval.
Which of the following describes the end behavior of the function ƒ(x) = –5x3 + 3x2 + x – 9?
A)
As x → –∞, y → +∞ and as x → +∞, y → –∞
B)
As x → –∞, y → –∞ and as x → +∞, y → +∞
C)
As x → –∞, y → –∞ and as x → +∞, y → –∞
D)
As x → –∞, y → +∞ and as x → +∞, y → +∞
Answer:
A
Step-by-step explanation:
f(x)=-5x³+3x²+x-9
leading coefficient is negative and it is of odd degree.
so it starts from above onthe left and ends at the bottom ont he right.
The price of a product is increased by 30% and then again by 10%. How many per cent did the price increase altogether?
Answer:
40%
Step-by-step explanation:
Because you want to know the total percent the price increased so you add the amounts. 30% plus 10% makes 40%
A shipping carton is in the shape of a triangular prism. The base area of the triangle is 6 inches squared and the the height of the prism is 15 inches. how many cubic inches of space are in the carton?
51
Step-by-step explanation:
uajdnensjdkalsnnamakksls
which number is 3/8closet to
Answer:
616
Step-by-step explanation:
A fraction that is equivalent to 38 is 616