Answer:
B 5s
Explanation:
Because of the Displacement in the nth second of the free fall is
Snth=21g(t12−t22)
Given that (tn−tn−1)=1
Displacement in 3 seconds of the free fall
S=21gt2
S=21×10×32
S=45m
Given that: Snth=45
On solving that we get:
t1=5sec
12. A concave lens has a focal length of 10 cm. An object 2.5 cm high is placed 30 cm from the lens. Determine the position and size of the image. (3)
Answer:
I think 9.5
Explanation:
............
What is the magnitude of the force between a 25μC charge exerts on a -10μC charge 8.5cm away?
Answer:
Force,
[tex]F = \frac{kQ_{1} Q_{2} }{ {r}^{2} } \\ F = \frac{(9 \times {10}^{9}) \times (25 \times {10}^{ - 6}) \times (10 \times {10}^{ - 6} ) }{ {(0.85)}^{2} } \\ \\ F = 3.114 \: newtons[/tex]
The magnitude of the force between a 25μC charge exerts on a -10μC charge 8.5cm away would be 311.4 N.
What is Coulomb's Law?Coulomb's law can be stated as the product of the charges and the square of the distance between them determine the force of attraction or repulsion acting in a straight line between two electric charges.
The math mathematical expression for the coulomb's law given as
F= k Q₁Q₂/r²
where F is the force between two charges
k is the electrostatic constant which is also known as the coulomb constant,it has a value of 9×10⁹
Q₁ and Q₂ are the electric charges
r is the distance between the charges
As given in the problem two charges a 25μC charge exerts on a -10μC charge 8.5cm away
By substituting the respective values in the above formula of Coulomb law
F =9×10⁹×(25×10⁻⁶)×(-10×10⁻⁶)/(8.5×10⁻²)²
F= -311.4 N
A negative sign represents that the force is attractive in nature
Thus, the magnitude of the force is 311.4 N.
Learn more about Coulomb's law from here
https://brainly.com/question/506926
#SPJ2
how much heat is produced in one hour by an electric iron which draws 2.5ampere when connected to a 100V supply
Explanation:
I=2.5 Ampere ; V=100V ;t = 1 hour=60secs
We know Heat = VIt
H=100×2.5×60=15,000J
If an object with constant mass is accelerating, what does Newton's second
law imply?
A. It will continue to accelerate until it meets an opposing force.
B. The object is exerting an opposite but equal force.
C. A force must be acting on the object.
D. The object will be difficult to decelerate.
Answer:
C. A force must be acting on the object.
Explanation:
This is due to the action of its momentum direction.
[tex].[/tex]
explain why our sweat is salty?
Answer:
Sweat also contains ammonia and urea, which are produced by the body when it breaks down proteins from the foods you eat.
Hope this helps..
A 1.50 kg book is sliding along a rough horizontal surface. At point A it is moving at 3.21 m/s , and at point B it has slowed to 1.25 m/s .
Part A
How much work was done on the book between A and B ?
Part B
If -0.750J of work is done on the book from B to C , how fast is it moving at point C ?
Part C
How fast would it be moving at C if 0.750J of work were done on it from B to C ?
I assume friction is the only force acting on the book as it slides.
(A) By the work-energy theorem, the total work performed on the book as it slides is equal to the change in its kinetic energy:
W = ∆K
W = 1/2 (1.50 kg) (1.25 m/s)² - 1/2 (1.50 kg) (3.21 m/s)²
W ≈ -6.56 J
(B) Using the work-energy theorem again, the speed v of the book at point C is such that
-0.750 J = 1/2 (1.50 kg) v ² - 1/2 (1.50 kg) (1.25 m/s)²
==> v = 0.750 m/s
(C) Take the left side to be positive, then solve again for v.
0.750 J = 1/2 (1.50 kg) v ² - 1/2 (1.50 kg) (1.25 m/s)²
==> v ≈ 1.60 m/s
When you are standing on Earth, orbiting the Sun, and looking at a broken cell phone on the ground, there are gravitational pulls on the cell phone from you, the Earth, and the Sun. Rank the gravitational forces on the phone from largest to smallest. Assume the Sun is roughly 109 times further away from the phone than you are, and 1028 times more massive than you. Rank the following choices in order from largest gravitational pull on the phone to smallest. To rank items as equivalent, overlap them.
a. Pull phone from you
b. Pull on phone from earth
c. Pull on phone from sun
Answer:
The answer is "Option b, c, and a".
Explanation:
Here that the earth pulls on the phone, as it will accelerate towards Earth when we drop it.
We now understand the effects of gravity:
[tex]F \propto M\\\\F\propto \frac{1}{r^2}\\\\or\\\\F \propto \frac{M}{r^2}\\\\Sun (\frac{M}{r^2}) = \frac{10^{28}}{(10^9)^2} = 10^{10}[/tex]
The force of the sun is, therefore, [tex]10^{10}[/tex] times greater and the proper sequence, therefore, option steps are:
b. Pull-on phone from earth
c. Pull-on phone from sun
a. Pull phone from you
If the mass of an object is 10 kg and the
velocity is -4 m/s, what is the momentum?
A. 4 kgm/s
B. -40 kgm/s
C.-4 kgm/s
D. 40 kgm/s
Answer:
B. -40 kgm/s is the answer
During World War II, mass spectrometers were used to separate the radioactive uranium isotope U-235 from its far more common isotope, U-238. Estimate the radius of the circle traced out by a singly ionized lead atom moving at the same speed.
Answer:
21.55 m
Explanation:
Joule is a SI unit of power
Measuring cylinder is used to measure the volume of a liquid
Answer:
The SI unit of power is watt
Two different galvanometers G1 and G2, have internal resistances r1and r2. The galvanometers G1 and G2 require the same current IC1=IC2 for a full-scale deflection of their pointers. These galvanometers G1 and G2 are used to build lab-made ammeters A1 and A2 . Both ammeters A1 and A2 have the same maximum scale reading Imax1=Imax2=Imax. To build A1 ,shunt resistor of resistance Rsh1is used and to build A2 , shunt resistor of resistance Rsh2 is used. The value of these shunt resistor resistances are such that: Rsh1=3Rsh2. What is the ratio oftheir internal resistances: r1:r2?
Answer:
there are 3 photos attached. so check
Explanation:
When you have a straight horizontal line on a velocity time graph, what does this tell you about the object’s motion in terms of velocity and acceleration?
Answer:
It tell you that the velocity is constant, what means that there's no acceleration
Choose the appropriate explanation how such a low value is possible given Saturn's large mass - 100 times that of Earth.
a. This low value is possible because the magnetic field of Saturn is so strong.
b. This low value is possible because the magnetic field of Saturn is so weak.
c. This low value is possible because the density of Saturn is so high.
d. This low value is possible because the density of Saturn is so low.
Answer:
Explanation:
That is an amazing fact.
The minus sign is what you have to pay attention to. The earth has a mass of 100 times that of Saturn. As someone on here once noted, Saturn has such a low density that it would float in water.
The answer is D
krichoffs law of current questions
Answer:
Explanation:
Kirchhoff's Current Law, often shortened to KCL, states that “The algebraic sum of all currents entering and exiting a node must equal zero.
#I AM ILLITERATE
Polarized sunglasses:
a. block most sunlight because sunlight is polarized
b. are better but work the same way as non-polarized sunglasses
c. are polarized to filter out certain wavelengths of light
d. block reflected light because reflected light is partially polarized.
Polarized sunglasses creates filter of vertical openings for light. The light rays will reach the eyes of human vertically only.
The sun rays will not reach human eye directly which will create a shield for sun light burden on human eye.
Polarized sunglasses are best used for blocking and eliminating certain wavelengths of light.
Therefore the correct answer is option C. Polarizes Sunglasses are polarized and it filter out certain wavelengths of light.
Learn more at https://brainly.com/question/24372632
a standard bathroom scale is placed on an elevator. A 34 kg boy enters the elevator on the first floor and steps on the scale. What will the scale read (in newtons) when the elevator begins to accelerate upward at 0.4 m/s2
Answer:F = 255 N
Explanation:
It is given that,
Mass of the boy, m = 25 kg
Acceleration of the elevator,
The elevator is accelerating in upward direction. The net force acting on the boy is given by :
g is the acceleration due to gravity
F = 255 N
The scale reading is 255 N as it begins to accelerate upward. hence, this is the required solution.
potential diffetence
Answer:
6v
Explanation:
V=IR
V= 2* 3
V= 6 volts
A cylindrical swimming pool has a radius 2m and depth 1.3m .it is completely filled with salt water of specific gravity 1.03.The atmospheric preassure is 1.013 x 10^5 Pa.
a.calculate the density of salt water.
Answer:
the density of the salt water is 1030 kg/m³
Explanation:
Given;
radius of the cylindrical pool, r = 2 m
depth of the pool, h = 1.3 m
specific gravity of the salt water, γ = 1.03
The atmospheric pressure, P₀ = 1.013 x 10⁵ Pa
Density of fresh water, [tex]\rho _w[/tex] = 1000 kg/m³
The density of the salt water is calculated as;
[tex]Specific \ gravity \ of \ salt\ water \ (\gamma _s_w) = \frac{density \ of \ salt \ water \ (\rho_{sw})}{density \ of \ fresh \ water \ (\rho_{w})} \\\\1.03 = \frac{\rho_{sw}}{1000 \ kg/m^3}\\\\\rho_{sw} = 1.03 \times 1000 \ kg/m^3\\\\\rho_{sw} = 1030 \ kg/m^3[/tex]
Therefore, the density of the salt water is 1030 kg/m³
In a photoelectric effect experiment, it is observed that violet light does not eject electrons from a particular metal. Next, red light with the same intensity is incident on the same metal. Which result is possible
Answer:
No ejection of photo electron takes place.
Explanation:
When a photon of suitable energy falls on cathode, then the photoelectrons is emitted from the cathode. This phenomenon is called photo electric effect.
The minimum energy required to just eject an electron is called work function.
The photo electric equation is
E = W + KE
where, E is the incident energy, W is the work function and KE is the kinetic energy.
W = h f
where. h is the Plank's constant and f is the threshold frequency.
Now, when the violet light is falling, no electrons is ejected. When the red light is falling, whose frequency is less than the violet light, then again no photo electron is ejected from the metal surface.
An electron is released from rest at a distance of 9.00 cm from a fixed proton. How fast will the electron be moving when it is 3.00 cm from the proton
Answer:
the speed of the electron at the given position is 106.2 m/s
Explanation:
Given;
initial position of the electron, r = 9 cm = 0.09 m
final position of the electron, r₂ = 3 cm = 0.03 m
let the speed of the electron at the given position = v
The initial potential energy of the electron is calculated as;
[tex]U_i = Fr = \frac{kq^2}{r^2} \times r = \frac{kq^2}{r} \\\\U_i = \frac{(9\times 10^9)(1.602\times 10^{-19})^2}{0.09} \\\\U_i = 2.566 \times 10^{-27} \ J[/tex]
When the electron is 3 cm from the proton, the final potential energy of the electron is calculated as;
[tex]U_f = \frac{kq^2}{r_2} \\\\U_f = [\frac{(9\times 10^9)\times (1.602 \times 10^{-19})^2}{0.03} ]\\\\U_f = 7.669 \times 10^{-27} \ J \\\\\Delta U = U_f -U_i\\\\\Delta U = (7.699\times 10^{-27} \ J ) - (2.566 \times 10^{-27} \ J)\\\\\Delta U = 5.133 \times 10^{-27} \ J[/tex]
Apply the principle of conservation of energy;
ΔK.E = ΔU
[tex]K.E_f -K.E_i = \Delta U\\\\initial \ velocity \ of \ the \ electron = 0\\\\K.E_f - 0 = \Delta U\\\\K.E_f = \Delta U\\\\\frac{1}{2} mv^2 = \Delta U\\\\where;\\\\m \ is \ the \ mass \ of\ the \ electron = 9.1 1 \times 10^{-31} \ kg\\\\v^2 = \frac{ 2 \Delta U}{m} \\\\v = \sqrt{\frac{ 2 \Delta U}{m}} \\\\v = \sqrt{\frac{ 2 (5.133\times 10^{-27})}{9.11\times 10^{-31}}}\\\\v = \sqrt{11268.935} \\\\v = 106.2 \ m/s[/tex]
Therefore, the speed of the electron at the given position is 106.2 m/s
Which was a major effect of Pope Leo III crowning Charlemagne emperor of the Romans ?
Answer:
The crowning of Charlemagne by Pope Leo III was significant in a number of ways. For Charlemagne, it was necessary because it encouraged to give him higher reliability. It gave him the rank of a dictator, giving him the only ruler in Europe west of the Byzantine emperor in Constantinople.
Light of a given wavelength is used to illuminate the surface of a metal, however, no photoelectrons are emitted. In order to cause electrons to be ejected from the surface of this metal you should: ___________
a. use light of the same wavelength but increase its intensity.
b. use light of a shorter wavelength.
c. use light of the same wavelength but decrease its intensity.
d. use light of a longer wavelength.
Answer:
use light of the same wavelength but decrease it's intensity
Do you believe in ghost
Answer:
well its about our thinking but i do believe in ghost a little
Electromagnetic radiation with a wavelength of 525 nm appears as green light to the human eye. Calculate the frequency of this light. Be sure to include units in your answer.
Answer:
5.71×10¹⁴ Hz
Explanation:
Applying,
v = λf................. Equation 1
Where v = speed of the electromagnetic radiation, λ = wavelength of the electromagnetic radiation, f = frequency
make f the subject of the equation
f = v/λ............. Equation 2
From the question,
Given: λ = 525 nm = 5.25×10⁻⁷ m,
Constant: Speed of electromagnetic wave (v) = 3.0×10⁸ m/s
Substitute these values into equation 2
f = (3.0×10⁸)/(5.25×10⁻⁷)
f = 5.71×10¹⁴ Hz
Hence the frequency of light is 5.71×10¹⁴ Hz
Choose one. 5 points
Use the equation from week 3:
frequency =
wavespeed
wavelength
and the wavelength you found in #3 to calculate the frequency of this photon (remember the speed of
light is 3E8 m/s);
7.6E14 Hz
6.0E14 Hz
4,6E14 Hz
The frequency is 4,6E14 Hz.
What is the frequency?
Frequency is the fee at which modern changes direction in step with 2nd. it's far measured in hertz (Hz), a worldwide unit of degree wherein 1 hertz is identical to 1 cycle in line with 2d. Hertz (Hz) = One hertz is the same as 1 cycle in step with the second. Cycle = One entire wave of alternating present-day voltage.
Frequency describes the number of waves that pass a hard and fast place in a given quantity of time. So if the time it takes for a wave to skip is half of 2d, the frequency is 2 per 2nd. If it takes 1/one hundred of an hour, the frequency is a hundred in step with hour.
Learn more about frequency here:-https://brainly.com/question/254161
#SPJ2
The car has a mass of 0·50 kg. The boy
now increases the speed of the car to 6·0
ms-1 . The total radial friction between
the car and the track has a maximum
value of 7.0 N. Show by calculation that
the car cannot continue to travel in the circular path.
Answer:
A solenoid is a type of electromagnet, the purpose of which is to generate a controlled magnetic field through a coil wound into a tightly packed helix. The coil can be arranged to produce a uniform magnetic field in a volume of space when an electric current is passed through it.
The car cannot continue to travel in the circular path, if the radius of the circular track is less than 2.57 m.
What is meant by centripetal force ?Centripetal force is described as the force applied to a body that is travelling in a circular motion and is pointed in the direction towards the center of the circular path.
Here,
Mass of the car, m = 0.5 kg
Velocity of the car, v = 6 m/s
Radial friction between the car and the track, f = 7 N
The necessary centripetal force for the car to execute the circular motion is provided by the maximum radial frictional force between the car and the track.
So, the condition that the car cannot continue to travel in the circular path is that the centripetal force required is greater than the maximum radial friction.
So,
mv²/r > f
0.5 x 6²/r > 7
Therefore, the radius of the circular track,
r < 18/7
r < 2.57 m
Hence,
The car cannot continue to travel in the circular path, if the radius of the circular track is less than 2.57 m.
To learn more about centripetal force, click:
https://brainly.com/question/14249440
#SPJ3
A race car goes from a complete stop at the start line to 150 miles per hour in 5 seconds. What is its acceleration? Show your work.
Answer:
Explanation:
150/5 = 30
30mph per 1 second
RATIO of longest wavelengths corresponding to Lyman and Balmer series in hydrogen spectrum is:
1) 7/29
2) 9/31
3) 5/27
4) 5/23
Answer:
[tex]5/27[/tex]
Explanation:
wavelengths for Lyman series
[tex]\lambda=\frac{1}{R(1-\frac{1}{4} })=\frac{4}{3R}[/tex]
wavelengths for Balmer series
[tex]\lambda_B=\frac{1}{R(\frac{1}{4}-\frac{1}{9}) } =\frac{1}{R(\frac{5}{36}) } =\frac{36}{5R}[/tex]
[tex]\frac{ \lambda_L}{ \lambda_B} =\frac{4}{3R} \times\frac{5R}{36} =5/27[/tex]
OAmalOHopeO
The ratio of longest wavelengths corresponding to the Lyman and Balmer series in the hydrogen spectrum is 5/27. The correct option is 3.
What is Lyman and Balmer series?
Lyman and Balmer series are sets of spectral lines in the emission spectrum of hydrogen, which result from the transitions of the electron from higher energy levels to lower energy levels.
The Lyman series consists of spectral lines that are produced by transitions of the electron from higher energy levels to the n=1 energy level. These transitions release energy in the form of ultraviolet photons. The lowest energy level in hydrogen is the n=1 energy level, which is also called the ground state. Therefore, the Lyman series includes the transition of the electron from any energy level greater than or equal to n=2 to the ground state.
The Balmer series consists of spectral lines that are produced by transitions of the electron from higher energy levels to the n=2 energy level. These transitions release energy in the form of visible photons. The lowest energy level in the Balmer series is the n=2 energy level. Therefore, the Balmer series includes the transition of the electron from any energy level greater than or equal to n=3 to the n=2 energy level.
Lyman and Balmer's series are named after the scientists who discovered them. The Lyman series is named after Theodore Lyman, an American physicist who discovered the series in 1906. The Balmer series is named after Johann Balmer, a Swiss mathematician who discovered the series in 1885.
Here in the Question,
The longest wavelength in the Lyman series of the hydrogen spectrum corresponds to the transition from the n = 2 energy level to the n = 1 energy level, while the longest wavelength in the Balmer series corresponds to the transition from the n = 3 energy level to the n = 2 energy level.
The wavelengths of these transitions can be calculated using the Rydberg formula:
1/λ = R(1/n1^2 - 1/n2^2)
where λ is the wavelength of the photon emitted, R is the Rydberg constant (1.097 × 10^7 m^-1), and n1 and n2 are the initial and final energy levels of the electron.
For the longest wavelength in the Lyman series, we have n1 = 2 and n2 = 1, so:
1/λ_lyman = R(1/2^2 - 1/1^2) = 3R/4
For the longest wavelength in the Balmer series, we have n1 = 3 and n2 = 2, so:
1/λ_balmer = R(1/3^2 - 1/2^2) = 5R/36
Therefore, the ratio of the longest wavelengths in the Lyman and Balmer series is:
λ_lyman/λ_balmer = (3R/4)/(5R/36) = 27/20
Simplifying this ratio gives:
λ_lyman/λ_balmer = 27/20
Multiplying both the numerator and denominator by 1/3R, we get:
λ_lyman/λ_balmer = (1/2)/(1/3) = 3/2
Therefore, the ratio of the longest wavelengths in the Lyman and Balmer series is 3:2, or 3/5 in fractional form. Simplifying this ratio gives:
λ_lyman/λ_balmer = 5/3
Taking the reciprocal of both sides, we get:
λ_balmer/λ_lyman = 3/5
Therefore, the correct answer is (3) 5/27.
To learn about the ratio of the minimum wavelength of Lyman and Balmer series click:
https://brainly.com/question/12725892
#SPJ2
Define wave length as applied to wave motion
Answer: Wavelength can be defined as the distance between two successive crests or troughs of a wave. It is measured in the direction of the wave.
Explanation:
Wavelength refers to the length or distance between two identical points of neighboring cycles of a wave signal traveling in space or in any physical medium. ... The wavelength of a signal is inversely proportional to its frequency, that is, the higher the frequency, the shorter the wavelength.
A uniform disk turns at 3.6 rev/s around a frictionless spindle. A non rotating rod, of the same mass as the disk and length equal to the disk's diameter, is dropped onto the freely spinning disk . They then both turn around the spindle with their centers superposed.
What is the angular frequency in rev/s of the combination?
please express answer in proper significant figures and rounding.
Answer:
ω₁ = 2.2 rev/s
Explanation:
Conservation of angular momentum
moment of inertia uniform disk is ½mR²
moment of inertia uniform rod about an end mL²/3
We can think of our rod as two rods of mass m/2 and length R
L = ½mR²ω₀
L = (½mR² + 2(m/2)R²/3)ω₁
ω₁ = ω₀(½mR² / (½mR² + mR²/3))
ω₁ = ω₀(½ / (½ + 1/3))
ω₁ = 0.6ω₀
ω₁ = 2.16