Answer:
[tex]\text{Perimeter: }48\:\mathrm{m},\\\text{Area: }84\:\mathrm{m^2}[/tex]
Step-by-step explanation:
The area of a triangle with side lengths [tex]a[/tex], [tex]b[/tex], and [tex]c[/tex] is given by:
[tex]A=\sqrt{s(s-a)(s-b)(s-c)}[/tex], where [tex]s=\frac{a+b+c}{2}[/tex]
Substituting [tex]a=21, b=17, c=10[/tex], we have:
[tex]A=\sqrt{24(24-21)(24-17)(24-10)},\\A=\sqrt{24(3)(7)(14)},\\A=\sqrt{7,084},\\A=\boxed{84\:\mathrm{m^2}}[/tex]
The perimeter of a polygon is given by the sum of its sides. Since the triangle has sides 10, 17, and 21, its perimeter is [tex]10+17+21=\boxed{48\:\mathrm{m}}[/tex].
uppose that the walking step lengths of adult males are normally distributed with a mean of 2.8 feet and a standard deviation of 0.2 feet. A sample of 76 men’s step lengths is taken. Step 1 of 2 : Find the probability that an individual man’s step length is less than 2.5 feet. Round your answer to 4 decimal places, if necessary.
Answer:
.0668
Step-by-step explanation:
Formula:
z=(x-average)/standard deviation
(2.5-2.8)/.2= -1.5
Go to a ztable and find the value for 1.5 (.9332) and take the compliment of this (we can do this because the normal distribution is symmetrical)
1-.9332= .0668
You need
1
1
4
feet of string to make 20 holiday ornaments.
To make 14 holiday ornaments, you will need
feet of string.
Answer:
79.8
Step-by-step explanation:
math
NO LINKS OR ANSWERING WHAT YOU DON'T KNOW?
4. Suppose y varies inversely with the x, and y = -1 when = 3. What inverse variation equation relates x and y?
a. y = 3/x
b. b. y = -3x
c. y = 3x
d. y = -3/x
5. Suppose y varies inversely with x and y = 68 when x = 1/17. What is the value of x when y = 16?
a. 64
b. 32
c. 1/4
d. 1/16
6. Suppose y varies inversely with x, and y = 5 when x = 15. What is the value of y when x = 25
a. 3
b. 5
c. 25
d. 15
Answer:
4,a
5.d
6.c
plz mark me as brainliest
Step-by-step explanation:
Answer:
1. A
2. C
3. A
Step-by-step explanation:
all the explanations are In the image above
A shopkeeper supplies 42 kg of vegetables to a school canteen in the morning and 58 kg of vegetables in the evening if cost of 1kg vegetable is 16 rupees how much money is due to the canteen per day?
if the mean of a random variable X is 45 what will be the mean of the sampling distribution of the sample mean?
Answer:
The mean of the sampling distribution is always equal to the mean of the population.
The mean of the sampling distribution of the sample mean is 45.
Given that,
The mean of the random variable X is 45.We need to find out the mean of the sampling distribution.Based on the above information, the calculation is as follows:
= mean of the random variable X
= 45
As the sampling distribution mean should always be equivalent to the population mean.
Therefore we can conclude that the mean of the sampling distribution of the sample mean is 45.
Learn more: brainly.com/question/521501
Althea has $100. She divides it evenly among her 4 children. Her oldest child, Raul, spends $15 of the amount he receives. How much money does Raul have left after he spends $15?
Which statements about this word problem are true? Check all that apply.
This is an example of a part-whole problem.
This is an example of a comparison problem.
Addition then multiplication can be used to solve the problem.
Division then subtraction can be used to solve the problem.
Division then multiplication can be used to solve the problem.
Step-by-step explanation:
she gives each of her children $25 each,if Raul spends $15 then he would have $10 left.
Division then subtraction can be used to solve the problem.
What is mathematical expressions?An expression in mathematics is made up of numbers, variables, and functions (such as addition, subtraction, multiplication or division etc.) You can think of expressions as being comparable to phrases.
Given
she gives each of her children $25 each,if Raul spends $15 then he would have $10 left.
to learn more about mathematical expressions refer to:
https://brainly.com/question/14712183
#SPJ2
If f(x) is a linear function, what is the value of n?
х
_4
f(x)
---25
-10
-1
n
20
2
оооо
9
Step-by-step explanation:
You can simply plot these points on a graph and see where the line goes. It go
Express each ratio as a fraction in its lowest terms.
18 hours to 2 days
Answer:
3/8.
Step-by-step explanation:
First convert days to hours:
2 days = 2 * 24 = 48 hours.
The greatest common factor of 18 and 48 = 6 so the required fraction is
18/48
= (18/6) / (48/6)
= 3/8.
Estimate 19.625-6.77 by first rounding each number to the nearest tenth.
Answer:
13
Step-by-step explanation:
1. Round 19.625 up to 20.
2. Round 6.77 up to 7.
3. Calculate the equation. Ans is 13.
What are the roots of the polynomial equation x3 - 6x= 3x2 - 8? Use a graphing calculator and a system of equations
Answer:
Hence, the roots of the polynomial equation are:
-2, 1, 4
Step-by-step explanation:
We are asked to find the roots of the polynomial equation:
We can also equate this equation to y to obtain a system of equation as:
and
Hence, the roots of the polynomial; equation are the x-values of the point of intersections of the graph of the system of equations.
Hence, the point of intersection of the two graphs are:
(-2,4), (1,-5) and (4,40)
Hence, the roots of the polynomial equation are:
-2, 1, 4
In the diagram, point D is the center of the medium-sized circle that passes through C and E, and it is also the center of the largest circle that passes through A and G. Each of the diameters of the small circles with centers B and F equals the radius of the medium-sized circle with center D. The shaded area is what fraction of the largest circle?Single choice.
9514 1404 393
Answer:
5/8
Step-by-step explanation:
The area of the smaller circles is proportional to the square of the ratio of their diameters. The two smallest circles have diameters equal to 1/4 the diameter of the largest circle. Hence their areas are (1/4)^2 = 1/16 of that of the largest circle.
Similarly, the medium circle has a diameter half that of the largest circle, so its area is (1/2)^2 = 1/4 of the are of the largest circle.
The smaller circles subtract 2×1/16 +1/4 = 3/8 of the area of the largest circle. Then the shading is 1-3/8 = 5/8 of the area of the largest circle.
help me pleaseeeeeeeeeeeeeeeeee………….
Answer:
C
Step-by-step explanation:
200 x 5 = 1,000
100 x 10 = 1,000
C - 5 to 10 days
Answer:
C. 5 to 10 days
Step-by-step explanation:
If she drove 100 miles per day, then
1000/100 = 10
it took her 10 days.
If she drove 200 miles per day, then
1000/200 = 5
it took her 5 days.
Since she drove between 100 miles and 200 miles per days,
it took her from 5 to 10 days.
Answer: C. 5 to 10 days
Thane Company is interested in establishing the relationship between electricity costs and machine hours. Data have been collected and a regression analysis prepared using Excel. The monthly data and the regression output follow:
Month Machine Hours Electricity Costs
January 2,300 $ 19,100
February 2,700 $ 22,400
March 1,700 $ 14,200
April 2,900 $ 24,400
May 3,600 $ 28,950
June 3,100 $ 23,400
July 3,900 $ 25,450
August 3,300 $ 23,450
September 1,800 $ 16,900
October 3,500 $ 27,400
November 4,500 $ 32,400
December 4,000 $ 28,450
Summary Output
Regression Statistics
Multiple R 0.957
R Square 0.917
Adjusted R2 0.908
Standard Error 1,586.26
Observations 12.00
Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 5,970.52 1,766.77 3.38 0.01 2,033.90 9,907.13
Machine Hours 5.76 0.55 10.49 0.00 4.54 6.98
The percent of the total variance that can be explained by the regression is:
Answer:
0.924
Step-by-step explanation:
R² = 0.854
R = √0.854
R = 0.924
Hence, the correlation Coefficient of electricity tarrif is 0.924 ; this correlation Coefficient value, depicts a strong positive correlation between machine hours and cost of electricity. And can he interpreted to mean that ; Electricity tarrif increases as machine hours increases and also decreases as machine hours decreases.
The answer to this 6th grade summer school math question is
Answer 7.84
help me please i am struggle with this
Given the function
Calculate the following values:
Answer:
f(-1) = 1
f(0) = 20
f(2) = 38
Step-by-step explanation:
f(-1) = 9×-1 + 10 = -9 + 10 = 1
f(0) = 9×0 + 20 = 0 + 20 = 20
f(2) = 9×2 + 20 = 18 + 20 = 38
we needed to use the second definition for f(0), because that is the same as saying x=0.
and that is in the domain of the second function definition ( x>=0).
A paper weight is made in the shape of a triangular pyramid.The dimensions of the paper weight are shown The formula for the volume of a triangular pyramid is V = 1/3 Bh .Which expression can be usef to find the value of B the area of the base of the pyramid
Answer:
[tex]B = \frac{3V}{h}[/tex]
Step-by-step explanation:
Given
[tex]V = \frac{1}{3}Bh[/tex]
Required
Solve for B
We have;
[tex]V = \frac{1}{3}Bh[/tex]
Multiply by 3
[tex]3V = Bh[/tex]
Make B the subject
[tex]B = \frac{3V}{h}[/tex]
3.
Salary: A sales clerk receives a monthly
salary of $500 plus a commission of 6% on all
sales over $3500. What did the clerk earn the
month she sold $8000 in merchandise?
Answer:
Step-by-step explanation:
I might be wrong but it 1900 in merchandise
The clerk earned a total of $770 for the month she sold $8000 in merchandise.
To calculate the clerk's earnings for the month she sold $8000 in merchandise, we need to consider her monthly salary and commission.
The clerk's monthly salary is $500, which is a fixed amount.
For the commission, we need to calculate the sales amount that exceeds $3500. In this case, the sales amount exceeding $3500 is $8000 - $3500 = $4500.
The commission is calculated as 6% of the sales amount exceeding $3500. Therefore, the commission earned by the clerk is 6% of $4500.
Commission = 6/100 * $4500
Commission = $270
Adding the monthly salary and commission, we can calculate the clerk's total earnings for the month:
Total earnings = Monthly salary + Commission
Total earnings = $500 + $270
Total earnings = $770
Therefore, the clerk earned a total of $770 for the month she sold $8000 in merchandise.
To know more about merchandise. here
https://brainly.com/question/27046371
#SPJ2
In the coordinate plane, two vertices of square ABCD are A (0,0) and B (0, m). What are the coordinates of points C and D? Do not introduce any new variables.
Answer:
Step-by-step explanation:
As shown in the graph,
A, B, C and D are the vertices of a square, all sides of the square will be equal in measure.
Coordinates of A → (0, 0)
Coordinates of B → (0, m)
Distance between point D and point A = m
Therefore, coordinates of point D → (m, 0)
Now point C will be equally distant from the points B and D.
Coordinates of C → (m, m)
Find the angle between the vectors ????=????+???? and ????=−????+????. (Give an exact answer. Use symbolic notation and fractions where needed.)
Answer:
The angle between them is 60 degrees
Step-by-step explanation:
Given
[tex]a = 2i + j -3k[/tex]
[tex]b = 3i - 2j -k[/tex]
Required
The angle between them
The cosine of the angle between them is:
[tex]\cos(\theta) = \frac{a\cdot b}{|a|\cdot |b|}[/tex]
First, calculate a.b
[tex]a \cdot b =(2i + j -3k) \cdot (3i - 2j -k)[/tex]
Multiply the coefficients of like terms
[tex]a \cdot b =2 * 3 - 1 * 2 - 3 * -1[/tex]
[tex]a \cdot b =7[/tex]
Next, calculate |a| and |b|
[tex]|a| = \sqrt{2^2 + 1^2 + (-3)^2[/tex]
[tex]|a| = \sqrt{14[/tex]
[tex]|b| = \sqrt{3^2 + (-2)^2 + (-1)^2}[/tex]
[tex]|b| = \sqrt{14}[/tex]
Recall that:
[tex]\cos(\theta) = \frac{a\cdot b}{|a|\cdot |b|}[/tex]
This gives:
[tex]\cos(\theta) = \frac{7}{\sqrt{14} * \sqrt{14}}[/tex]
[tex]\cos(\theta) = \frac{7}{14}[/tex]
[tex]\cos(\theta) = 0.5[/tex]
Take arccos of both sides
[tex]\theta =\cos^{-1}(0.5)[/tex]
[tex]\theta =60^o[/tex]
Jen recently rode her bicycle to visit her friend who lives 6 miles away. On her way there, her average speed was & miles per hour faster than on her way home. If jen
spent a total of 2 hours bicycling find the two rates.
Answer:
(1) +t+=+1.2+ hrs
Step-by-step explanation:
5x+2y=-3;x+5y=4
plz answer me
Answer:
x = -1 and y = 1
Step-by-step explanation:
5x + 2y = -3 . . . . . . . (i)
x + 5y = 4 . . . . . . . (ii)
Finding x in terms of y from eq. (ii) :-x + 5y = 4
x = 4 - 5y
Placing this value of x in eq. (i) :-5(4 - 5y) + 2y = -3
20 - 25y + 2y = -3
-23y = - 23
y = 1
Placing the value of y in eq. (i)5x + 2(1) = -3
5x + 2 = -3
5x = - 5
x = -1
Which of the following is true?
Answer:
Step-by-step explanation:
A=45
The alternative hypothesis for a two-tailed test of a single population proportion might be?
A. Ha: P>0.4
B. Ha: P< 0.4
C. Ha: p~=0.4 (~means not equal to)
Answer:
tgis moght help
Step-by-step explanation:
https://opentextbc.ca/introbusinessstatopenstax/chapter/full-hypothesis-test-examples/
How can you use transformations to graph this function?
Answer:
What function?
Step-by-step explanation:
Two methods, A and B, are available for teaching Spanish. There is a 70% chance of successfully learning Spanish if method A is used, and a 85% chance of success if method B is used. However, method B is substantially more time consuming and is therefore used only 20% of the time (method A is used the other 80% of the time). The following notations are suggested:
A—Method A is used.
B—Method B is used.
L—Spanish was learned successfully. A person learned Spanish successfully.
What is the probability that he was taught by method A?
Answer:
0.7671 = 76.71% probability that he was taught by method A
Step-by-step explanation:
Conditional Probability
We use the conditional probability formula to solve this question. It is
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]
In which
P(B|A) is the probability of event B happening, given that A happened.
[tex]P(A \cap B)[/tex] is the probability of both A and B happening.
P(A) is the probability of A happening.
In this question:
Event A: Person learned Spanish successfully.
Event B: Method A was used.
Probability of a person learning Spanish successfully:
70% of 80%(using method A)
85% of 20%(using method B)
So
[tex]P(A) = 0.7*0.8 + 0.85*0.2 = 0.73[/tex]
Probability of a person learning Spanish successfully and using method A:
70% of 80%, so:
[tex]P(A \cap B) = 0.7*0.8 = 0.56[/tex]
What is the probability that he was taught by method A?
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.56}{0.73} = 0.7671[/tex]
0.7671 = 76.71% probability that he was taught by method A
Given right angle ABC, what the value of tan(A)?
5/13
12/13
12/5
13/12
need answer asap
Hi there!
[tex]\large\boxed{12/5}}[/tex]
tan (angle) = Opposite side / Adjacent side, so:
Tan (A) = opposite side / adjacent side
= 24 / 10
Simplify:
= 12 / 5
The of the matrix whose columns are vectors which define the sides of a parallelogram one another is the area of the parallelogram?
Answer:
absolute value of the determinant, adjacent to, equal to
Step-by-step explanation:
The absolute value of a determinant of the [tex]\text{matrix whose}[/tex] columns are the vectors and they define the [tex]\text{sides}[/tex] of a [tex]\text{parallelogram}[/tex] which is adjacent to one another and is equal to the [tex]\text{area}[/tex] of the [tex]\text{parallelogram}[/tex].
The determinant is a real number. They are like matrices, but we use absolute value bars to show determinants whereas to represent a matric, we use square brackets.
The endpoints of PC are P(4, 1) and Q(4,8). Find the midpoint of PQ
A. (4, 4.5)
B. (0, -3.5)
C. (4.5, 4)
D. (6, 3.5)
Answer:
A. (4,4.5)
Step-by-step explanation:
Midpoint={x1+x2/2,y1+y2/2}
M={4+4/2,1+8/2}
M={8/2,9/2}
M={4,4.5}
The time between surface finish problems in a galvanizing process is exponentially distributed with a mean of 41 hours. A single plant operates three galvanizing lines that are assumed to operate independently. Round your answers to four decimal places (e.g. 98.7654).
(a) What is the probability that none of the lines experiences a surface finish problem in 41 hours of operation?
(b) What is the probability that all three lines experience a surface finish problem between 24 and 41 hours of operation?
Answer:
a) The probability that none of the lines experiences a surface finish problem in 41 hours of operation is 0.0498.
b)The probability that all three lines experience a surface finish problem between 24 and 41 hours of operation is 0.0346.
Step-by-step explanation:
[tex]Mean = \frac{1}{\lambda} = 41\\P(X\leq x)= 1-e^{-\lambda x}[/tex]
[tex]P(X>x)= e^{-\lambda x}[/tex]
a)
[tex]P(x> 41, y>41, Z>41) = (P(X>41))^{3}\\\\P(X>41)=e^{^{-\frac{41}{41}}}=e^{-1}[/tex]
[tex]P(x> 41, y>41, Z>41) = \left (e^{-1} \right )^{3}\\\\P(x> 41, y>41, Z>41) = e^{-3} = 0.0498.[/tex]
b)
[tex]\lambda =\frac{24}{41}\\P(X=1)=e^{-\lambda }\cdot \lambda =\left ( e^{-0.585} \right )\left ( 0.585 \right )\\P(X=1)=0.326[/tex]
For 3 where, P(X=1, Y==1, Z=1)
[tex]= (0.326)^{3} \\\\= 0.0346[/tex]