Answer:
[tex]\boxed {\boxed {\sf 100 \ J}}[/tex]
Explanation:
We are asked to calculate the work done to move a box.
Work is the product of force and distance or displacement.
[tex]W= F*d[/tex]
A 10 Newton force is applied horizontally on the box. Since the surface is frictionless, there is no force of friction, and the net force is 10 Newtons. The force moves the box 10 meters.
F= 10 N d= 10 mSubstitute the values into the formula.
[tex]W= 10 \ N * 10 \ m[/tex]
Multiply.
[tex]W= 100 \ N*m[/tex]
Let's convert the units. 1 Newton meter is equal to 1 Joule, therefore our answer of 100 Newton meters is equal to 100 Joules.
[tex]W= 100 \ J[/tex]
100 Joules of work was done to move the box.
A penny of mass 3.10 g rests on a small 20.0 g block supported by a spinning disk with radius of 12.0 cm. The coefficients of friction between block and disk are 0.850 (static) and 0.575 (kinetic) while those for the penny and block are 0.395 (kinetic) and 0.495 (static). What is the maximum rate of rotation in revolutions per minute that the disk can have, without the block or penny sliding on the disk
Answer:
do this Q yourself because i havent read the chapter
The maximum rate of rotation in revolutions per minute that the disk can have, without the block or penny sliding on the disk is 63 rpm.
How to solveThis is calculated using the coefficient of static friction between the penny and block, which is 0.495.
The maximum angular velocity of the disk is when the force of static friction is just sufficient to prevent the penny from sliding.
This force is equal to the mass of the penny multiplied by the acceleration due to gravity, multiplied by the coefficient of static friction.
The angular velocity of the disk is then calculated from this force and the radius of the disk.
Read more about angular velocity here:
https://brainly.com/question/6860269
#SPJ6
Consider two oppositely charged, parallel metal plates. The plates are square with sides L and carry charges Q and -Q. What is the magnitude of the electric field in the region between the plates
Answer:
E = [tex]\frac{Q}{L^2 \epsilon_o}[/tex]
Explanation:
For this exercise we use that the electric field is a vector, so the resulting field is
E_total = E₁ + E₂ (1)
since the field has the same direction in the space between the planes
Let's use Gauss's law for the electric field of each plate
Let's use a Gaussian surface that is a cylinder with the base parallel to the plate, therefore the normal to the surface and the field lines are parallel and the angle is zero so cos 0 = 1
Ф = ∫ .dA = [tex]q_{int}[/tex] /ε₀
if we assume that the charge is uniformly distributed on the plate we can define a charge density
σ = q_{int} A
as the field exists on both sides of the plate on the inside
E A = A σ / 2ε₀
E = σ / 2ε₀
we substitute in equation 1
E = σ /ε₀
for the complete plate
σ = Q / A = Q / L²
we substitute
E = [tex]\frac{Q}{L^2 \epsilon_o}[/tex]
A car starting at rest accelerates at 3m/seconds square How far has the car travelled after 4s?
Answer:
24 meters
Explanation:
Find the final velocity. 12m/s
d=[final-initial]/2×time
D=(6m/s)×4=24 m/s
Can a conductor be given limitless charge
Answer:
No
Explanation:
You could try to give it enough to fill all valence electrons in all of the atoms in the conductor, but practically this could not be achieved.
Which quantities below of a solid object on this planet are NOT the same as on Earth?
Choose all
possible answers.
Weight
Mass
Volume
Density
Acceleration when it falls vertically.
Color
Answer:
Weight, acceleration when it falls vertically, are not same as that of earth.
Explanation:
Weight of the object is given by the product of mass of the object and the acceleration due to gravity of the planet.
So, the weight of object is not same as that on earth.
The mass is defined as the amount of matter contained in the object.
So, the mass of the object is same as that of earth.
The volume of the object is defined as the space occupied by the object.
So, the volume of the object is same as that of earth.
The density is defined as the ratio of mass of the object to its volume.
So, the density of the object is same as that of earth.
The acceleration due to gravity on a planet depends on the mass of planet and radius of planet.
So, the acceleration is not same as that of earth.
The color of the object is its characteristic.
It is same as that of earth.
An electric field E⃗ =5.00×105ı^N/C causes the point charge in the figure to hang at an angle. What is θ?
We have that the angle is
[tex]\theta=32.53[/tex]
From the Question we are told that
E⃗ =5.00×105ı^N/C
Generally the equation for Tension is mathematically given
[tex]W=Tcos\theta[/tex]
Where
[tex]tan\theta=\frac{2.5*10^{-9}(5*10{5})}{2*10^{-3}(9.8)}[/tex]
[tex]\theta=32.53[/tex]
For more information on this visit
https://brainly.com/question/20746649?referrer=searchResults
Do all substances conduct heat ?Why/ Why not ?
Answer:
no, all substances doesnot conduct heat
Answer:
No, all substances do not conduct heat easily because it depends on the nature of the substance. Some are good conductors of heat and some are bad. Therefore, it depends on their characteristics and their ability to conduct heat.
The bad conductors of heat are water, air, plastic, wood, etc.
Gold, Silver, Copper, Aluminium, Iron, etc. are good heat conductors as well as electrical conductors.
In a physics lab, light with a wavelength of 560 nm travels in air from a laser to a photocell in a time of 17.2 ns . When a slab of glass with a thickness of 0.810 m is placed in the light beam, with the beam incident along the normal to the parallel faces of the slab, it takes the light a time of 20.8 ns to travel from the laser to the photocell.
Required:
What is the wavelength of the light in the glass?
Answer:
Distance traveled = 3 * 10E8 * 17.2 * 10E-9 = 5.16 m
.81 / 3 * 10E8 = 2.7 * 10E-9 normal time thru glass
(20.8 - 17.2) * E10-9 = 3.6 * 10E-9 additional time due to glass
c tg = c n ta where tg and ta are the times spent in glass and air
(Note you can also write Va = n Vg or D / ta = n D / tg)
n = tg / ta = 3.6 / 2.7 = 1.33 the index of refraction of the glass
Wavelength (air) = Wavelength (glass) * n
Wavelenght = 560 nm / 1.33 = 421 nm
The elastic extensibility of a piece of string is .08. If the string is 100 cm long, how long will the string be when it is stretched to the point where it becomes plastic?
Answer:
The elastic extensibility of a piece of string is .08. If the string is 100 cm long, how long will the string be when it is stretched to the point where it becomes plastic? is your ansewer dont take tension
The string will be 108 cm long when it is stretched to the point where it becomes plastic.
What is elasticity?Elasticity in physics and materials science refers to a body's capacity to withstand a force that causes distortion and to recover its original dimensions once the force has been withdrawn.
When sufficient loads are applied, solid objects will deform; if the material is elastic, the object will return to its original size and shape after the weights have been removed. Unlike plasticity, which prevents this from happening and causes the item to stay deformed,
Given parameters:
The elastic extensibility of a piece of string is 0.08.
The string is 100 cm long.
Hence, it becomes plastic, after it is stretched up to = 100 × 0.08 cm = 8 cm. The string will be 108 cm long.
Learn more about elasticity here:
https://brainly.com/question/28790459
#SPJ5
The acceleration vector of a particle in uniform circular motion:___________
a) points outward from the center of the circle.
b) points toward the center of the circle.
c) is zero.
d) points along the circular path of the particle and opposite the direction of motion.
e) points along the circular path of the particle and in the direction of motion.
(B)
Explanation:
Centripetal means "towards the center" so the acceleration vector of an object undergoing UCM is always pointed towards the center.
The acceleration vector of a particle in a uniform circular motion points toward the center of the circle, The correct option is option (b).
Centripetal force is the force acting on an object in curvilinear motion directed towards the axis of rotation or center of curvature. The unit of centripetal force is Newton.
Centripetal means "towards the center" so the acceleration vector of an object undergoing circular motion is always pointed towards the center.
Therefore, The acceleration vector of a particle in a uniform circular motion points toward the center of the circle, The correct option is option (b).
To know more about the Centripetal force:
https://brainly.com/question/31417673
#SPJ6
Which two factors does the power of a machine depend on? А. work and distance B.. force and distance C. work and time D. time and distance?
[tex]Hello[/tex] [tex]There![/tex]
[tex]AnimeVines[/tex] [tex]is[/tex] [tex]here![/tex]
The answer is...
C. Work and time.
[tex]HopeThisHelps!![/tex]
[tex]AnimeVines[/tex]
A 12.0 g sample of gas occupies 19.2 L at STP. what is the of moles and molecular weight of this gas?
At STP, 1 mole of an ideal gas occupies a volume of about 22.4 L. So if n is the number of moles of this gas, then
n / (19.2 L) = (1 mole) / (22.4 L) ==> n = (19.2 L•mole) / (22.4 L) ≈ 0.857 mol
If the sample has a mass of 12.0 g, then its molecular weight is
(12.0 g) / n ≈ 14.0 g/mol
A positive statement is:________. a. reflects oneâs opinions. b. can be shown to be correct or incorrect. c. a value judgment. d. based upon an optimistic judgment.
Answer:
b
Explanation:
This percentage of all water on the planet is salt water . 97 % 95% 93% 91%
hurry please !
Answer:
none of those are right, its technically 96.5%. so i would say 97% is your best bet because thats closest and it just rounds up :)
Explanation:
A T-shirt cannon launches a shirt at 5.30 m/s from a platform height of 4.00 m from ground level. How fast (in m/s) will the shirt be traveling if it is caught by someone whose hands are at 5.20 m from ground level (b) 4.00 m from ground level?
Answer:
(a) the velocity of the shirt is 2.14 m/s
(b) the velocity of the shirt is 5.3 m/s
Explanation:
Given;
initial velocity of the shirt, u = 5.3 m/s
height of the platform above the ground, h = 4.00 m
(a) When the shirt is caught by someone whose hand is 5.20 m from the ground level, the height traveled by the shirt = 5.2 m - 4.0 m = 1.2 m
The velocity at this position is calculated as;
[tex]v^2 = u^2 + 2(-g)h\\\\v^2 = u^2 - 2gh\\\\v^2 = 5.3^2 - (2\times 9.8 \times 1.2)\\\\v^2 = 4.57\\\\v= \sqrt{4.57} \\\\v = 2.14 \ m/s[/tex]
(b) When the shirt is caught by someone whose hand is 4.00 m from the ground level, the height traveled by the shirt = 4.00 m - 4.00 m = 0 m
The velocity at this position is calculated as;
[tex]v^2 = u^2 + 2(-g)h\\\\v^2 = u^2 - 2gh\\\\v^2 = 5.3^2 - (2\times 9.8 \times 0)\\\\v^2 = 28.09\\\\v= \sqrt{28.09} \\\\v = 5.3 \ m/s[/tex]
4. Which of the following statements best describes the relationship
between mechanical, kinetic and potential energies of an object of mass
m kg that is thrown vertically upwards with in initial velocity of v. m/s.
A. Kinetic energy increases while potential energy decrease and mechanical
energy remains constant.
B. Kinetic energy decreases, while potential energy increases and mechanical
energy remains constant.
C. Both kinetic and potential energies decrease while mechanical energy
increases.
D. Both kinetic and potential energies increase while mechanical energy
remains constant.
(1)
21
Answer:
D
Explanation:
increase while mechanical energy remains constant
During a particular thunderstorm, the electric potential difference between a cloud and the ground is Vcloud - Vground = 4.20 108 V, with the cloud being at the higher potential. What is the change in an electron's electric potential energy when the electron moves from the ground to the cloud?
Answer:
The electric potential energy is 6.72 x 10^-11 J.
Explanation:
Potential difference, V = 4.2 x 10^8 V
charge of electron, q = - 1.6 x 10^-19 C
Let the potential energy is U.
U = q V
U = 1.6 x 10^-19 x 4.2 x 10^8
U = 6.72 x 10^-11 J
Question 1 of 10
Which nucleus completes the following equation?
239UHe+?
A. 228 Th
B. 2220
c. 23. Pu
D. 78Th
SUBMIT
Answer:
Option D. ²²²₉₀Th
Explanation:
Let the unknown be ⁿₘZ. Thus, the equation becomes:
²²⁶₉₂U —> ⁴₂He + ⁿₘZ
Next, we shall determine n, m and Z. This can be obtained as follow:
For n:
226 = 4 + n
Collect like terms
226 – 4 = n
222 = n
n = 222
For m:
92 = 2 + m
Collect like terms
92 – 2 = m
90 = m
m = 90
For Z:
ⁿₘZ => ²²²₉₀Z => ²²²₉₀Th
Therefore, the complete equation becomes:
²²⁶₉₂U —> ⁴₂He + ⁿₘZ
²²⁶₉₂U —> ⁴₂He + ²²²₉₀Th
Thus, the unknown is ²²²₉₀Th
the product 17.10 ✕
Explanation:
pls write the full question
A ten loop coil of area 0.23 m2 is in a 0.047 T uniform magnetic field oriented so that the maximum flux goes through the coil. The average emf induced in the coil is
Answer:
Explanation:
From the question we are told that:
Number of turns [tex]N=10[/tex]
Area [tex]a=0.23m^2[/tex]
Magnetic field [tex]B=0.947T[/tex]
Generally the equation for maximum flux is mathematically given by
[tex]\phi=NBa[/tex]
[tex]\phi=10*0.047*0.23[/tex]
[tex]\phi=0.1081wbi[/tex]
Therefore induced emf
[tex]e= \frac{d\phi}{dt}[/tex]
Since
[tex]t=0[/tex]
Therefore
[tex]e=0[/tex]
At a distance of 14,000 km from the center of Planet Z-99, the acceleration due to gravity is 32 m/s2. What is the acceleration due to gravity at a point 28,000 km from the center of this planet
A body of mass m feels a gravitational force due to the planet of
F = GmM/R ² = ma
where
• G = 6.67 × 10⁻¹¹ N•m²/kg² is the universal gravitational constant
• M is the mass of the planet
• R is the distance between the body and the planet's center
• a is the acceleration due to gravity
Solving for a gives
a = GM/R ²
Notice that 28,000 km is twice 14,000 km. The equation says that the acceleration varies inversely with the square of the distance. So if R is changed to 2R, we have a new acceleration of
GM/(2R)² = 1/4 × GM/R ² = a/4
so the acceleration of the body at 28,000 km from the planet's center would be (32 m/s²)/4 = 8 m/s².
write a note on unity of ant
Answer: When a pathogen enters their colony, ants change their behavior to avoid the outbreak of disease. In this way, they protect the queen, brood and young workers from becoming ill. These results, from a study carried out in collaboration between the groups of Sylvia Cremer at the Institute of Science and Technology Austria (IST Austria) and of Laurent Keller at the University of Lausanne, are published today in the journal Science.
Explanation: search for it.
The patellar tendon attaches to the tibia at a 20 deg angle 3 cm from the axis of rotation at the knee. If the force generated in the patellar tendon is 400 N, what is the resulting angular acceleration, in rad/s2), if the lower leg and foot have a combined mass of 4.2kg and a given radius of gyration of 25 cm
Answer:
the resulting angular acceleration is 15.65 rad/s²
Explanation:
Given the data in the question;
force generated in the patellar tendon F = 400 N
patellar tendon attaches to the tibia at a 20° angle 3 cm( 0.03 m ) from the axis of rotation at the knee.
so Torque produced by the knee will be;
T = F × d⊥
T = 400 N × 0.03 m × sin( 20° )
T = 400 N × 0.03 m × 0.342
T = 4.104 N.m
Now, we determine the moment of inertia of the knee
I = mk²
given that; the lower leg and foot have a combined mass of 4.2kg and a given radius of gyration of 25 cm ( 0.25 m )
we substitute
I = 4.2 kg × ( 0.25 m )²
I = 4.2 kg × 0.0626 m²
I = 0.2625 kg.m²
So from the relation of Moment of inertia, Torque and angular acceleration;
T = I∝
we make angular acceleration ∝, subject of the formula
∝ = T / I
we substitute
∝ = 4.104 / 0.2625
∝ = 15.65 rad/s²
Therefore, the resulting angular acceleration is 15.65 rad/s²
In a large chemical factory, a feed pipe carries a liquid at a speed of 5.5 m/s. A pump pushes the liquid along at a gauge pressure of 140,000 Pa. The liquid travels upward 6.0 m and enters a tank at a gauge pressure of 2,000 Pa. The diameter of the pipe remains constant. At what speed does the liquid enter the tank
Answer:
v₂ = 15.24 m / s
Explanation:
This is an exercise in fluid mechanics
Let's write Bernoulli's equation, where the subscript 1 is for the factory pipe and the subscript 2 is for the tank.
P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂
They indicate the pressure in the factory P₁ = 140000 Pa, the velocity
v₁ = 5.5 m / s and the initial height is zero y₁ = 0
the tank is at a pressure of P2 = 2000 Pa and a height of y₂ = 6.0 m
P₁ -P₂ + ρ g (y₁ -y₂) + ½ ρ v₁² = ½ ρ v₂²
let's calculate
140,000 - 2000 + ρ 9.8 (0- 6) + ½ ρ 5.5² = ½ ρ v₂²
138000 - ρ 58.8 + ρ 15.125 = ½ ρ v2²
v₂² = 2 (138000 /ρ - 58.8 + 15.125)
v₂ = [tex]\sqrt{\frac{276000}{\rho } - 43.675 }[/tex]
In the exercise they do not indicate what type of liquid is being used, suppose it is water with
ρ = 1000 kg / m³
v₂ = [tex]\sqrt{\frac{276000}{1000} - 43.675}[/tex]
v₂ = 15.24 m / s
A wire carrying a 30.0-A current passes between the poles of a strong magnet that is perpendicular to its field and experiences a 2.15-N force on the 4.00 cm of wire in the field. What is the average field strenth?
Answer:
1.79 T
Explanation:
Applying,
F = BILsin∅................ Equation 1
Where F = Force, B = magnetic field, I = current flowing through the wire, L = length of the wire, ∅ = angle between the magntic field and the force
make B the subject of the equation
B = F/ILsin∅............. Equation 2
From the question,
Given: F = 2.15 N, I = 30 A, L = 4.00 cm = 0.04 m, ∅ = 90° (perpendicular to the field)
Substitute these values into equation 2
B = 2.15/(30×0.04×sin90°)
B = 2.15/1.2
B = 1.79 T
Hence the average field strength is 1.79 T
A spherical conductor of radius = 1.5 cm with a charge of 3.9 pC is within a concentric hollow spherical conductor of inner radius = 3 cm, and outer radius = 4 cm, which has a total charge of 0 pC. What is the magnitude of the electric field 2.3 cm from the center of these conductors?
Answer:
The answer is "66.351 N/C"
Explanation:
Given:
[tex]a=1.5\ cm= 1.5 \times 10^{-2}\ m\\\\q_1=3.9\ pc\\\\b=3\ cm\\\\c= 4\ cm\\\\q_2=0 \ pc\\\\[/tex]
Using Gauss Law:
[tex]\oint \vec{E} \cdot \vex{dA}= \frac{Q_{enc}}{\varepsilon_0 }[/tex]
[tex]E \times 4 \pi\ r^2=\frac{Q_{enc}}{\varepsilon_0}\\\\E= \frac{Q_{enc}}{4 \pi\ r^2 \varepsilon_0}= \frac{1}{4 \pi \varepsilon_0} \frac{Q_{enc}}{r^2}= \frac{k_e\ Q_{enc}}{r^2}\\\\[/tex]
[tex]=\frac{9\times 10^{9} \times 3.9 \times 10^{-12}}{(2.3\times 10^{-2})^2}\\\\=\frac{35.1\times 10^{-3}\ }{(2.3\times 10^{-2})^2}\\\\=\frac{35.1\times 10^{-3}\ }{5.29 \times 10^{-4}}\\\\=\frac{35.1\times 10 }{5.29 }\\\\=\frac{351}{5.29 }\\\\=66.351\ \frac{N}{C}[/tex]
Wind instruments like trumpets and saxophones work on the same principle as the "tube closed on one end" that we examined in our last experiment. What effect would it have on the pitch of a saxophone if you take it from inside your house (at 76 degrees F) to the outside on a cold day when the outside temperature is 45 degrees F ?
Answer:
f = v / 4L
the frequency of the instruments is reduced by the decrease in the speed of the wave with the temperature.
Explanation:
In wind instruments the wave speed must meet
v = λ f
λ = v / f
from v is the speed of sound that depends on the temperature
v = v₀ [tex]\sqrt{1+ \frac{T [C]}{273} }[/tex]
where I saw the speed of sound at 0ºC v₀ = 331 m/s the temperature is in degrees centigrade, we can take the degrees Fahrenheit to centigrade with the relation
(F -32) 5/9 = C
76ºF = 24.4ºC
45ºF = 7.2ºC
With this relationship we can see that the speed of sound is significantly reduced when leaving the house to the outside
at T₁ = 24ºC v₁ = 342.9 m / s
at T₂ = 7ºC v₂ = 339.7 m / s
To satisfy this speed the wavelength of the sound must be reduced, so the resonant frequencies change
λ / 4 = L
λ= 4L
v / f = 4L
f = v / 4L
Therefore, the frequency of the instruments is reduced by the decrease in the speed of the wave with the temperature.
Two wires are made of the same material and have the same length but different radii. They are joined end-to- end and a potential difference is maintained across the combination. Of the following quantities that is same for both wires is
A. Potential difference
B. Electric current
C. Current density
D. Electric field
Answer:
Current
I think The choose (B)
B. Electric current
A cylindrical water tank has a height of 20cm and a radius of 14cm. If it is filled to 2/5 of its capacity, calculate.
I. Quantity of water in the tank
II. Quantity of water left to fill the tank to its capacity.
Answer:
4.926 L Y 7.389 L
Explanation:
first you calculate the tank volume
V = π[tex](14 cm)^{2}[/tex](10 cm = [tex]12315 cm^{3}[/tex]
then you convert to liters
[tex]12315 cm^{3}[/tex] = 12.315 l
then you calculate the liters of water
2/5(12.35 l) = 4.926 l
finally we calculate the amount without water
12.315 l - 4.926 l = 7.389 l
HERE IS MORE INFORMATION ON THE SUBJECT. THEY REMOVED THE
ENGLISH SITE BUT YOU CAN USE TRANSLATOR
LINK: https://gscourses.thinkific.com/courses/fisicai
A solid conducting sphere of radius ra is placed concentrically inside a conducting spherical shell of inner radius rb1 and outer radius rb2. The inner sphere carries a charge Q while the outer sphere does not carry any net charge. The potential for rb1 < r < rb2 is:________
Answer:
The right answer is "[tex]\frac{KQ}{r_b_2}[/tex]".
Explanation:
As the outer spherical shell is conducting, so there is no electric field in side from
⇒ [tex]r_b_1 < r < r_b_2[/tex].
So the electric potential at all points inside the conducting shell that from
⇒ [tex]r_b_1<r<r_b_2[/tex]
and will be similar as well as equivalent to the potential on the outer surface of the shell that will be:
⇒ [tex]v=\frac{KQ}{r_b_2}[/tex]
Thus the above is the right solution.