A 100ml sample of 0. 2m (ch3)3n is titrated with 0. 2 m hcl. calculate the ph at equivilance point.

Answers

Answer 1

The pH at the equivalence point can be calculated using the concept of acid-base titration. In this case, a 100 ml sample of 0.2 M (CH3)3N (trimethylamine) is titrated with 0.2 M HCl. At the equivalence point, the moles of acid (HCl) are equal to the moles of base ((CH3)3N).

To calculate the pH at the equivalence point, we need to find the concentration of the salt formed at the equivalence point. In this case, the salt formed is (CH3)3NHCl.
Calculate the moles of (CH3)3N in the 100 ml sample:
Moles = concentration × volume
Moles = 0.2 M × 0.1 L
Moles = 0.02 moles
Since the moles of (CH3)3N are equal to the moles of HCl at the equivalence point, the moles of HCl are also 0.02 moles.
Calculate the concentration of (CH3)3NHCl at the equivalence point:
Concentration = moles ÷ volume
Concentration = 0.02 moles ÷ 0.1 L
Concentration = 0.2 M
The salt (CH3)3NHCl is the product of a strong base and a strong acid, so it is a neutral salt. This means that the pH at the equivalence point is 7.
At the equivalence point, all of the (CH3)3N has reacted with HCl to form (CH3)3NHCl. The concentration of (CH3)3NHCl at the equivalence point is found by dividing the moles of (CH3)3N by the volume of the sample. In this case, the concentration is 0.2 M.
Since (CH3)3NHCl is a neutral salt, it does not affect the pH. The pH of a neutral solution is 7. Therefore, the pH at the equivalence point of this titration is 7. It's important to note that this calculation assumes that there are no other acidic or basic components in the solution that could affect the pH. If there are other acidic or basic species present, the pH may deviate from 7. However, in this specific case, since (CH3)3N and HCl are the only components, the pH at the equivalence point is 7.

To know more about equivalence visit:

https://brainly.com/question/25197597

#SPJ11


Related Questions

a homogeneous solution contains copper(ii) ions (cu2 ), silver ions (ag ) and potassium ions (k ). you have sodium bromide (nabr) and sodium sulfide (na2s) available to use. what should you add and in what order to separate the three metal ions? ksp (sulfides) ksp (bromides) cus 6.0×10–37 cubr2 soluble ag2s 6.0×10–51 agbr 7.7×10–13 k2s soluble kbr soluble

Answers

To separate Cu2+, Ag+, and K+ from the homogeneous solution, add sodium sulfide (Na2S) first to precipitate CuS. Then add sodium bromide (NaBr) to precipitate AgBr. Finally, the remaining solution contains only K+.

To separate the copper (II), silver, and potassium ions from the homogeneous solution, you can employ the following procedure.

Firstly, add sodium sulfide (Na2S) to the solution, resulting in the formation of insoluble copper sulfide (CuS) precipitate due to its low solubility (Ksp = 6.0×10–37). By filtering the solution, the insoluble CuS precipitate can be separated.

Next, introduce sodium bromide (NaBr) to the filtrate, causing the formation of insoluble silver bromide (AgBr) precipitate due to its low solubility (Ksp = 7.7×10–13). By filtering the solution once again, the insoluble AgBr precipitate can be isolated.

Finally, the remaining solution will only contain potassium ions (K+), which do not require further separation steps as potassium salts are highly soluble in water. By following this procedure, effective separation of the copper (II), silver, and potassium ions can be achieved.

Learn more about sodium sulfide here:

https://brainly.com/question/7154441

#SPJ11

the atomic weight of hydrogen is 1.008 amu. what is the percent composition of hydrogen by isotope, assuming that hydrogen’s only isotopes are 1h and 2d?

Answers

The percent composition of hydrogen by isotope can be calculated based on the relative abundance of each isotope and their respective atomic masses. In this case, hydrogen has two isotopes: 1H and 2D Percent composition = (0.0002 * 2.014 amu) / [(0.9998 * 1.008 amu) + (0.0002 * 2.014 amu)]

To find the percent composition, we need to consider the relative abundance of each isotope. 1H is the most common isotope of hydrogen, with an abundance of approximately 99.98%. Its atomic mass is 1.002D, also known as deuterium, is the less common isotope, with an abundance of approximately 0.02%. Its atomic mass is 2.014 amu.To calculate the percent composition of each isotope, we can use the following formula:Percent composition = (Abundance * Atomic mass) / Average atomic massLet's calculate the percent composition for each isotope:

1HPercent composition = (0.9998 * 1.008 amu) / Average atomic mas2Percent composition = (0.0002 * 2.014 amu) / Average atomic massTo find the average atomic mass, we can use the weighted average formula:Average atomic mass = (Abundance of 1H * Atomic mass of 1H) + (Abundance of 2D * Atomic mass of 2D)Substituting the values, we get:

To know more about hydrogen visit :-

https://brainly.com/question/31018544

#SPJ11

Based on your answer to the previous question, would you expect meta-hydroxyacetophenone to be more or less acidic than para-hydroxyacetophenone? explain your answer.

Answers

Based on the structure of meta-hydroxyacetophenone and para-hydroxyacetophenone, we can make an assessment of their relative acidity. In both compounds, the hydroxyl group (OH) is attached to the phenyl ring. The position of the hydroxyl group relative to the acetophenone moiety is what distinguishes the two isomers.

In meta-hydroxyacetophenone, the hydroxyl group is attached to the meta position, which means it is three carbons away from the carbonyl group (C=O). In para-hydroxyacetophenone, the hydroxyl group is attached to the para position, meaning it is directly opposite the carbonyl group.The acidity of a phenolic compound is influenced by the stability of the phenoxide ion formed when the hydroxyl group loses a proton (H+). The stability of the phenoxide ion is affected by the electron density and resonance stabilization in the phenyl ring.In the case of para-hydroxyacetophenone, the para position allows for greater electron delocalization and resonance stabilization within the phenyl ring. This increased stability of the phenoxide ion makes para-hydroxyacetophenone more acidic than meta-hydroxyacetophenone.
Therefore, we would expect para-hydroxyacetophenone to be more acidic than meta-hydroxyacetophenone due to the enhanced resonance stabilization of the phenoxide ion in the para position.

To learn more about hydroxyacetophenone;

https://brainly.com/question/32196547

#SPJ11

High-energy molecules contain one or more high-energy bonds, when hydrolyzed, is accompanied by a ______________ in free energy.

Answers

High-energy molecules contain one or more high-energy bonds, which store energy that can be released through hydrolysis. Hydrolysis is a chemical reaction that involves the breaking of a molecule with the addition of water. When high-energy bonds are hydrolyzed, the reaction is accompanied by a decrease in free energy.


During hydrolysis, the high-energy bond in the molecule is broken, releasing energy. This energy is used to form new bonds with the water molecules, resulting in the formation of new compounds. The breaking of the high-energy bond and the formation of new bonds with water molecules require energy, which leads to a decrease in free energy.

To illustrate this concept, let's consider the hydrolysis of ATP (adenosine triphosphate), which is a high-energy molecule commonly used as a source of energy in cells. When ATP is hydrolyzed, one of its phosphate groups is cleaved off, forming ADP and inorganic phosphate (Pi). This hydrolysis reaction releases energy that can be used by cells to perform various cellular processes.

To know more about Hydrolysis visit:

brainly.com/question/13954178

#SPJ11

A graduated cylinder contains 26 cm3 of water. an object with a mass of 21 grams and a volume of 15 cm3 is lowered into the water. what will the new water level be

Answers

When the object with a volume of 15 cm3 is lowered into the water in the graduated cylinder, the new water level will be 11 cm3.

The new water level in the graduated cylinder can be determined by considering the principle of displacement. When the object is lowered into the water, it will displace an amount of water equal to its own volume.

Given that the object has a volume of 15 cm3, it will displace 15 cm3 of water. Since the initial volume of water in the graduated cylinder is 26 cm3, the new water level can be calculated by subtracting the volume of water displaced by the object from the initial volume of water.

Therefore, the new water level in the graduated cylinder will be 26 cm3 - 15 cm3 = 11 cm3.

To summarize, when the object with a volume of 15 cm3 is lowered into the water in the graduated cylinder, the new water level will be 11 cm3.

To know more about graduated cylinder visit:-

https://brainly.com/question/33943611

#SPJ11

The liquid dispensed from a burette is called ___________.

i. solute

ii. water

iii. titrant

iv. analyte

Answers

The liquid dispensed from a burette is called the titrant. A titrant is a solution with a known concentration that is added in a controlled manner to react with the analyte in a chemical analysis. The option C is correct.

The burette is a precise measuring instrument used in titrations to deliver the titrant.In a titration, the analyte is the substance being analyzed or tested. It reacts with the titrant to form a product, and the reaction is monitored to determine the concentration or amount of the analyte.

For example, in an acid-base titration, a solution of known concentration called the titrant is slowly added to the analyte solution until the reaction between the acid and base is complete. The burette allows for precise measurement of the volume of titrant added.The other options given are not accurate in this context. Solute refers to the substance being dissolved in a solvent, while water is a common solvent. Analyte, as mentioned earlier, is the substance being analyzed. The correct term for the liquid dispensed from a burette in a titration is the titrant.

To know more about chemical analysis visit:-

https://brainly.com/question/2625200

#SPJ11

You prepare a stock solution that has a concentration of 2. 5 m. An aliquot with a volume of 10. 0 ml is removed from the solution. What is the concentration of the aliquot?.

Answers

The concentration of the aliquot is 2.5 M.

The concentration of a solution is defined as the amount of solute present per unit volume of the solution.

In this case, the stock solution has a concentration of 2.5 M (moles per liter).

An aliquot is a small portion or sample taken from a larger solution. In this scenario, an aliquot with a volume of 10.0 ml is removed from the stock solution.

Since the concentration of the stock solution is given in terms of moles per liter (M), the concentration of the aliquot will be the same as the concentration of the stock solution.

The concentration does not change when a specific volume is removed from the solution.

Therefore, the concentration of the aliquot is 2.5 M. It is important to note that the concentration remains the same regardless of the volume of the aliquot, as long as the proportion of solute to solvent remains constant.

To know more about "Concentration" refer here:

https://brainly.com/question/30639206#

#SPJ11

30 ml of 0. 00138 m cl- solution is titrated with 0. 00057 m ag+. calculate the pag half-way to the equivalence point when the added titrant volume is 30ml. (hint!: use the ksp value for agcl)

Answers

The pAg halfway to the equivalence point when the added titrant volume is 30 ml is 7.45.

The pAg halfway to the equivalence point can be calculated using the concept of stoichiometry and the equilibrium constant expression for the formation of silver chloride (AgCl).

First, we need to determine the number of moles of Cl- present in the initial solution. The initial concentration of Cl- is 0.00138 M, and the volume of the solution is 30 ml. Therefore, the moles of Cl- can be calculated as follows:

Moles of Cl- = Concentration of Cl- × Volume of Solution

            = 0.00138 M × 0.030 L

            = 0.0000414 moles

Since the stoichiometry between Ag+ and Cl- is 1:1, the moles of Ag+ required to react with the moles of Cl- can be assumed to be the same.

Next, we calculate the concentration of Ag+ required to react with the moles of Cl-. The moles of Ag+ can be determined as follows:

Moles of Ag+ = Concentration of Ag+ × Volume of Titrant Added

            = 0.00057 M × 0.030 L

            = 0.0000171 moles

At the halfway point, the moles of Ag+ reacted with the moles of Cl- are equal. Therefore, the moles of Ag+ remaining in solution are:

Moles of Ag+ remaining = Moles of Ag+ initial - Moles of Ag+ reacted

                     = 0.0000171 moles - 0.0000414 moles

                     = -0.0000243 moles

Since the moles of Ag+ cannot be negative, we assume that all the Cl- ions have reacted, and the excess Ag+ ions have formed a precipitate of AgCl.

Using the equilibrium constant expression for AgCl, Ksp = [Ag+][Cl-], we can calculate the concentration of Ag+ at the halfway point.

Ksp = [Ag+][Cl-]

[Ag+] = Ksp / [Cl-]

      = (1.77 × 10^-10) / (0.00138 M)

      ≈ 1.285 × 10^-7 M

Finally, we can calculate the pAg halfway to the equivalence point using the formula:

pAg = -log10([Ag+])

    = -log10(1.285 × 10^-7)

    ≈ 7.45

Step 3: At the halfway point, all the Cl- ions have reacted with Ag+ ions to form AgCl. The remaining Ag+ ions in solution will be in equilibrium with the AgCl precipitate. The concentration of Ag+ at this point can be calculated using the equilibrium constant expression for AgCl.

The pAg halfway to the equivalence point is 7.45. This means that the concentration of Ag+ ions in the solution is approximately 1.285 × 10^-7 M. At this concentration, the solution is close to the solubility product constant (Ksp) for AgCl, which is 1.77 × 10^-10.

The pAg value represents the negative logarithm of the Ag+ concentration in the solution. By calculating the concentration of Ag+ at the halfway point, we can determine the pAg value.

The result indicates that halfway to the equivalence point, the concentration of Ag+ ions in the solution is relatively high, indicating that a significant portion of the AgCl precipitate has formed. This corresponds to the formation of a visible white precip

Learn more about  equivalence point

brainly.com/question/14782315

#SPJ11

Is the oxidation of a mineral that contains iron is an example of a mechanical or chemical

Answers

The oxidation of a mineral containing iron is an example of a chemical process rather than a mechanical one.

Oxidation refers to a chemical reaction where a substance reacts with oxygen. In the case of iron, when it is exposed to oxygen in the presence of moisture or water, it undergoes a chemical reaction known as rusting or oxidation. This reaction forms iron oxide, commonly known as rust.

Mechanical processes, on the other hand, involve physical actions or movements rather than chemical reactions. Examples of mechanical processes include grinding, crushing, or breaking apart a mineral into smaller pieces, but these processes do not involve the chemical transformation of the mineral's composition.

know more about oxidation here

https://brainly.com/question/13182308#

#SPJ11

a large volume of 0.1590 m h2so3(aq) is treated with enough naoh(s) to adjust the ph of the solution to 5.63 . assuming that the addition of naoh(s) does not significantly affect the volume of the solution, calculate the final molar concentrations of h2so3(aq) , hso−3(aq) , and so2−3(aq) in solution given that the Ka1 and Ka2 values are 1.50×10−2 and 1.20×10−7 , respectively.

Answers

To calculate the final molar concentrations of H2SO3(aq), HSO−3(aq), and SO2−3(aq) in solution, we need to consider the dissociation of H2SO3. H2SO3(aq) can dissociate into HSO−3(aq) and H+(aq), and further into SO2−3(aq) and H+(aq).

Given that the Ka1 and Ka2 values are 1.50×10−2 and 1.20×10−7, respectively. Calculate the initial concentration of H2SO3(aq) using its volume and molarity. Use the Ka1 value to calculate the concentration of HSO−3(aq) and H+(aq) at equilibrium.

Subtract the concentration of H+(aq) from the initial concentration of H2SO3(aq) to find the final concentration of H2SO3(aq). Calculate the final concentration of HSO−3(aq) and SO2−3(aq) by subtracting the concentration of H+(aq) from their respective equilibrium concentrations.

To know more about molar concentrations visit:-

https://brainly.com/question/28270242

#SPJ11

Solution a lotion vehicle contains 15% v/v of glycerin. how much glycerin should be used in preparing 5 gallons of the lotion?

Answers

To prepare 5 gallons of the lotion, you would need approximately 2839.06 milliliters of glycerin.

To determine the amount of glycerin needed to prepare 5 gallons of the lotion, we can use the given concentration of glycerin in the solution.
First, we need to convert the volume from gallons to milliliters since the concentration is given in terms of volume/volume (v/v). One gallon is equal to 3785.41 milliliters, so 5 gallons is equal to 18927.05 milliliters.
Next, we can calculate the volume of glycerin needed by multiplying the total volume of the lotion (18927.05 milliliters) by the concentration of glycerin (15% or 0.15).

Volume of glycerin = Total volume of lotion * Concentration of glycerin
Volume of glycerin = 18927.05 ml * 0.15
Volume of glycerin = 2839.06 ml
Therefore, to prepare 5 gallons of the lotion, you would need approximately 2839.06 milliliters of glycerin.

To know more about glycerin refer to:

https://brainly.com/question/14679212

#SPJ11

at constant temperature, a 144.0 ml sample of gas in a piston chamber has a pressure of 2.25 atm. calculate the pressure of the gas if this piston is pushed down hard so that the gas now has a volume of 36.0 ml.

Answers

The pressure of the gas would be 9.0 atm if the piston is pushed down hard to a volume of 36.0 ml.

To solve this problem, we can use Boyle's Law, which states that the pressure of a gas is inversely proportional to its volume at constant temperature.

First, we need to set up the equation: P1V1 = P2V2, where P1 and V1 are the initial pressure and volume, and P2 and V2 are the final pressure and volume.

Given that the initial volume (V1) is 144.0 ml and the initial pressure (P1) is 2.25 atm, and the final volume (V2) is 36.0 ml, we can plug in the values into the equation:

2.25 atm * 144.0 ml = P2 * 36.0 ml

Next, we can solve for P2 by dividing both sides of the equation by 36.0 ml:

2.25 atm * 144.0 ml / 36.0 ml = P2

P2 = 9.0 atm

Therefore, the pressure of the gas would be 9.0 atm if the piston is pushed down hard to a volume of 36.0 ml.

To know more about pressure refer to

https://brainly.com/question/29341536

#SPJ11

Other Questions
1. two lines that do not lie in the same plane parallel lines 2. planes that have no point in common skew lines 3. lines that are in the same plane and have no points in common parallel planes Find the missing side lengths. leave your answers as radicals in simplest form 45 20v2 he amplitude of the oscillating electric field at your cell phone is 4.0 v/m when you are 10 km east of the broadcast antenna. what is the electric field amplitude when you are 20 km east of the antenna? what duty is owed to maria while she is in kowalski's (before entering the stock room)? since she is a licensee, there is a duty to warn her about any dangers that the store knew of or should have known about. since she is a trespasser, no duty is owed to her. since she is a business invitee, there is a duty to warn her about any dangers that the store knew of or should have known about. since she is a business invitee, there is no duty owed to her. Find the work done by winding up a hanging cable of length 24 ft and weight density 1 lb/ft. round your answer to two decimal places, if necessary. The deflection at any point of a perfect frame can be obtained by applying a unit load at the joint in. Comparison of Outcomes of Transfemoral Transcatheter Aortic Valve Implantation Using a Minimally Invasive Versus Conventional Strategy Instant messaging is a(n) ______________, real-time technology for two or more people to type messages back and forth while online. Suppose brenda's preferences are such that she always receives times as much satisfaction from an extra unit of styling as she does from gas mileage. what type of car will brenda choose? A 98% confidence interval for a population parameter means that if a large number of confidence intervals were constructed from repeated samples, then on average, 98% of these intervals would contain the true parameter. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients How many aspects of the negotiation setting should be manipulated ahead of time if possible? 27. Find the area of a triangle with sides of length 18 in, 21 in, and 32 in. Round to the nearest tenth. A stock quote indicates a stock price of $92 and a dividend yield of 3%. The latest quarterly dividend received by stock investors must have been____per share. Use long division to find the quotient q(x) and the remainder r(x) when p(x)=x^3 2x^2-16x 640,d(x)=x 10 Who is in charge of conducting an in-depth analysis of the fire scene and fire cause evidence? _____ involves developing a probability distribution for understanding and responding to identified risks. When drinking through a straw, you are able to control the height of the liquid inside the straw by changing the pressure inside your mouth, as shown in the figure. What happens if the pressure in your mouth is lower than the air pressure outside Compared to control rmca held at an internal pressure of 120 mmhg, application of latrunculin b to rmca held at 120 mmhg will most likely result in:________ Match the following principles of training to the correct description. Not all options might be used, or some options could be used multiple times. 1. Overload/progression 2. Rest and Recovery3. Reversibility4. Specificity5. Individuality6. Functionalitya. Olivia is using the 10% rule to increase her workouts every 2-3 sessions. b. Participation in the same activities as others does not always yield the same results. c. Kelton is a swimmer and has also been using an elliptical to cross train their cardiorespiratory endurance levels. d. Gabriel takes at least one day each week to allow for muscle repair. e. Prevents overtraining.