Answer:
Greatest potential: moment before being dropped
Zero Kinetic: when it comes to rest
Greatest Kinetic: moment before first bounce
Explanation:
what is the force of a body which have mass of 7 kg
Answer:
Force acting on a body of mass 7 kg which produces an accceleration of 10 m/s2 is 70 N
Answer:
10 m/s2 or 70 newtons.
Explanation:
............................
............
how do you calculate voltage drop
Answer:
Multiply current in amperes by the length of the circuit in feet to get ampere-feet. Circuit length is the distance from the point of origin to the load end of the circuit.
Divide by 100.
Multiply by proper voltage drop value in tables. The result is voltage drop.
Explanation:
Increased air pressure on the surface of hot water tends to
A) prevent boiling.
B) promote boiling.
C) neither of these
Help me with my physics, please
A rope, under a tension of 221 N and fixed at both ends, oscillates in a second-harmonic standing wave pattern. The displacement of the rope is given by y = (0.10 m)(sin πx/2) sin 12πt, where x = 0 at one end of the rope, x is in meters, and t is in seconds.
What are:
a. the length of the rope.
b. the speed of the waves on the rope
c. the mass of the rope
d. If the rope oscillates in a third-harmonic standing wave pattern, what will be the period of oscillation.
Answer:
sup qwertyasdfghjk
Explanation:
In 1.0 second, a battery charger moves 0.50 C of charge from the negative terminal to the positive terminal of a 1.5 V AA battery.
Part A:
How much work does the charger do? Answer is 0.75 J
Part B:
What is the power output of the charger in watts?
Answer:
W = Q * V work done on charge Q
A. W = .5 C * 1.5 V = .75 Joules
B. P = W / t = .75 J / 1 sec = .75 Watts
two resistors with resistance values 4.5 ohms and 2.3 ohms are connected in series or parallel across a potential difference of 30V to a light bulb find the current flowing through the light bulb in both cases
Answer:
Look at work
Explanation:
Series:
I is the same for all resistors so just find the value of Req. In series Req= R1+R2+...+Rn. So here it will be 4.5+2.3=6.8ohms. Ieq=Veq/Req=4.41A. And since current is the same across all resistors the current to the lightbulb is 4.41A.
Parallel:
V is the same for all resistors so start of by finding Req. In parallel, Ieq=I1+I2+...+In. So I1= 30/4.5= 6.67A and I2= 13.04A. Ieq= 6.67+13.04= 19.71A.
In the figure, particle A moves along the line y = 31 m with a constant velocity v with arrow of magnitude 2.8 m/s and parallel to the x axis. At the instant particle A passes the y axis, particle B leaves the origin with zero initial speed and constant acceleration a with arrow of magnitude 0.35 m/s2. What angle between a with arrow and the positive direction of the y axis would result in a collision?
Answer:
59.26°
Explanation:
Since a is the acceleration of the particle B, the horizontal component of acceleration is a" = asinθ and the vertical component is a' = acosθ where θ angle between a with arrow and the positive direction of the y axis.
Now, for particle B to collide with particle A, it must move vertically the distance between A and B which is y = 31 m in time, t.
Using y = ut + 1/2a't² where u = initial velocity of particle B = 0 m/s, t = time taken for collision, a' = vertical component of particle B's acceleration = acosθ.
So, y = ut + 1/2a't²
y = 0 × t + 1/2(acosθ)t²
y = 0 + 1/2(acosθ)t²
y = 1/2(acosθ)t² (1)
Also, both particles must move the same horizontal distance to collide in time, t.
Let x be the horizontal distance,
x = vt (2)where v = velocity of particle A = 2.8 m/s and t = time for collision
Also, using x = ut + 1/2a"t² where u = initial velocity of particle B = 0 m/s, t = time taken for collision, a" = horizontal component of particle B's acceleration = asinθ.
So, x = ut + 1/2a"t²
x = 0 × t + 1/2(ainsθ)t²
x = 0 + 1/2(asinθ)t²
x = 1/2(asinθ)t² (3)
Equating (2) and (3), we have
vt = 1/2(asinθ)t² (4)
From (1) t = √[2y/(acosθ)]
Substituting t into (4), we have
v√[2y/(acosθ)] = 1/2(asinθ)(√[2y/(acosθ)])²
v√[2y/(acosθ)] = 1/2(asinθ)(2y/(acosθ)
v√[2y/(acosθ)] = ytanθ
√[2y/(acosθ)] = ytanθ/v
squaring both sides, we have
(√[2y/(acosθ)])² = (ytanθ/v)²
2y/acosθ = (ytanθ/v)²
2y/acosθ = y²tan²θ/v²
2/acosθ = ytan²θ/v²
1/cosθ = aytan²θ/2v²
Since 1/cosθ = secθ = √(1 + tan²θ) ⇒ sec²θ = 1 + tan²θ ⇒ tan²θ = sec²θ - 1
secθ = ay(sec²θ - 1)/2v²
2v²secθ = aysec²θ - ay
aysec²θ - 2v²secθ - ay = 0
Let secθ = p
ayp² - 2v²p - ay = 0
Substituting the values of a = 0.35 m/s, y = 31 m and v = 2.8 m/s into the equation, we have
ayp² - 2v²p - ay = 0
0.35 × 31p² - 2 × 2.8²p - 0.35 × 31 = 0
10.85p² - 15.68p - 10.85 = 0
dividing through by 10.85, we have
p² - 1.445p - 1 = 0
Using the quadratic formula to find p,
[tex]p = \frac{-(-1.445) +/- \sqrt{(-1.445)^{2} - 4 X 1 X (-1)}}{2 X 1} \\p = \frac{1.445 +/- \sqrt{2.088 + 4}}{2} \\p = \frac{1.445 +/- \sqrt{6.088}}{2} \\p = \frac{1.445 +/- 2.4675}{2} \\p = \frac{1.445 + 2.4675}{2} or p = \frac{1.445 - 2.4675}{2} \\p = \frac{3.9125}{2} or p = \frac{-1.0225}{2} \\p = 1.95625 or -0.51125[/tex]
Since p = secθ
secθ = 1.95625 or secθ = -0.51125
cosθ = 1/1.95625 or cosθ = 1/-0.51125
cosθ = 0.5112 or cosθ = -1.9956
Since -1 ≤ cosθ ≤ 1 we ignore the second value since it is less than -1.
So, cosθ = 0.5112
θ = cos⁻¹(0.5112)
θ = 59.26°
So, the angle between a with arrow and the positive direction of the y axis would result in a collision is 59.26°.
Find the volume of cuboid of side 4cm. Convert it in SI form
Answer:
0.000064 cubic meters.
Explanation:
Given the following data;
Length of side = 4 centimeters
Conversion:
100 centimeters = 1 meters
4 cm = 4/100 = 0.04 meters
To find the volume of cuboid;
Mathematically, the volume of a cuboid is given by the formula;
Volume of cuboid = length * width * height
However, when all the sides are equal the formula is;
Volume of cuboid = L³
Volume of cuboid = 0.04³
Volume of cuboid = 0.000064 cubic meters.
Two spheres are rolling without slipping on a horizontal floor. They are made of different materials, but each has mass 5.00 kg and radius 0.120 m. For each the translational speed of the center of mass is 4.00 m/s. Sphere A is a uniform solid sphere and sphere B is a thin-walled, hollow sphere. Part B How much work, in joules, must be done on the solid sphere to bring it to rest? Express your answer in joules. VO AE4D ? J WA Request Answer Submit Part C How much work, in joules, must be done on the hollow sphere to bring it to rest? Express your answer in joules. Wa Request
Answer:
Explanation:
Moment of inertia of solid sphere = 2/5 m R²
m is mass and R is radius of sphere.
Putting the values
Moment of inertia of solid sphere I₁
Moment of inertia of hollow sphere I₂
Kinetic energy of solid sphere ( both linear and rotational )
= 1/2 ( m v² + I₁ ω²) [ ω is angular velocity of rotation ]
= 1/2 ( m v² + 2/5 m R² ω²)
= 1/2 ( m v² + 2/5 m v²)
=1/2 x 7 / 5 m v²
= 0.7 x 5 x 4² = 56 J .
This will be equal to work to be done to stop it.
Kinetic energy of hollow sphere ( both linear and rotational )
= 1/2 ( m v² + I₂ ω²) [ ω is angular velocity of rotation ]
= 1/2 ( m v² + 2/3 m R² ω²)
= 1/2 ( m v² + 2/3 m v²)
=1/2 x 5 / 3 m v²
= 0.833 x 5 x 4² = 66.64 J .
This will be equal to work to be done to stop it.
You are on an airplane that is landing. The plane in front of your plane blows a tire. The pilot of your plane is advised to abort the landing, so he pulls up, moving in a semicircular upward-bending path. The path has a radius of 450 m with a radial acceleration of 17 m/s^2.
Required:
What is the plane's speed?
Answer:
v = 87.46 m/s
Explanation:
The radial acceleration is the centripetal acceleration, whose formula is given as:
[tex]a_c = \frac{v^2}{r}[/tex]
where,
[tex]a_c[/tex] = centripetal acceleration = 17 m/s²
v = planes's speed = ?
r = radius of path = 450 m
Therefore,
[tex]17\ m/s^2 = \frac{v^2}{450\ m}\\\\v^2 = (17\ m/s^2)(450\ m)\\\\v = \sqrt{7650\ m^2/s^2}[/tex]
v = 87.46 m/s
if Petrol diesel etc catches fire one should never try to extinguish in using water why?
Answer:
because both petrol and diesel are oil
Explanation:
oil floats on water that's why if we will try to extinguish with water so the fire will float on water
hope u like my answer
please mark methe brainest
convert 2.4 milimetre into metre
Answer is 0.0024
Explanation
divide the length value by 1000.
This diagram shows the magnetic field lines near the ends of two magnets. There is an error in the diagram.
Two bar magnet with the north pole of one near the south pole of the second. field lines are leaving the north pole and bent away from the south pole of the other. Field lines are leaving the south pole of one and bending away from the north pole of the other.
Which change will correct the error in the diagram?
a)changing the N to S
b)reversing the arrows on the left to point toward the N
c)changing the S to N
d)reversing the arrows on the right to point toward the S
Answer:
changing the N to S. that's how the error will be corrected
Answer:
C is the correct answer
Explanation:
i took the test
A 0.033-kg bullet is fired vertically at 222 m/s into a 0.15-kg baseball that is initially at rest. How high does the combined bullet and baseball rise after the collision, assuming the bullet embeds itself in the ball
Answer:
The maximum height risen by the bullet-baseball system after the collision is 81.76 m.
Explanation:
Given;
mass of the bullet, m₁ = 0.033 kg
mass of the baseball, m₂ = 0.15 kg
initial velocity of the bullet, u₁ = 222 m/s
initial velocity of the baseball, u₂ = 0
let the common final velocity of the system after collision = v
Apply the principle of conservation of linear momentum to determine the common final velocity.
m₁u₁ + m₂u₂ = v(m₁ + m₂)
0.033 x 222 + 0.15 x 0 = v(0.033 + 0.15)
7.326 = v(0.183)
v = 7.326 / 0.183
v = 40.03 m/s
Let the height risen by the system after collision = h
Initial velocity of the system after collision = Vi = 40.03 m/s
At maximum height, the final velocity, Vf = 0
acceleration due to gravity for upward motion, g = -9.8 m/s²
[tex]v_f^2 = v_i^2 +2gh\\\\0 = 40.03^2 - (2\times 9.8)h\\\\19.6h = 1602.4\\\\h = \frac{1602.4}{19.6} \\\\h = 81.76 \ m[/tex]
Therefore, the maximum height risen by the bullet-baseball system after the collision is 81.76 m.
When an automobile moves with constant velocity the power developed is used to overcome the frictional forces exerted by the air and the road. If the power developed in an engine is 50.0 hp, what total frictional force acts on the car at 55 mph (24.6 m/s)
P = F v
where P is power, F is the magnitude of force, and v is speed. So
50.0 hp = 37,280 W = F (24.6 m/s)
==> F = (37,280 W) / (24.6 m/s) ≈ 1520 N
Question 8 a-e plz
Answer:
(a) t = 0 s
(b) t = 0 s, 30 s, 55 s
(c) t = 40 s to t = 60 s
(d) t = 10 s to t = 15 s
(e) a = 6 m/s^2
Explanation:
(a) The car is at starting position at t = 0 s and v = 0 m/s.
(b) The velocity of car is zero when the time is t = 0 s, 30 s and 55 s.
(c) from t = 40 s to 60 s the car is moving in the negative direction.
(d) The fastest speed is 60m/s from t = 10 s to t = 15 s.
(e) The slope of the velocity time graph gives acceleration.
a = (60 - 0) / (10 - 0) = 6 m/s^2
A 0.060 kg ball hits the ground with a speed of –32 m/s. The ball is in contact with the ground for 45 milliseconds and the ground exerts a +55 N force on the ball.
What is the magnitude of the velocity after it hits the ground?
Answer:
9.25 m/s
Explanation:
A 100-W light bulb is left on for 20.0 hours. Over this period of time, how much energy did the bulb use?
Answer:
Power = Energy/time
Energy = Power xtime.
Time= 20hrs
Power = 100Watt =0.1Kw
Energy = 0.1 x 20 = 2Kwhr.
This Answer is in Kilowatt-hour ...
If the one given to you is in Joules
You'd have to Change your time to seconds
Then Multiply it by the power of 100Watts.
If the source moves, the wavelength of the sound in front of the direction of motion is____than the wavelength behind the direction of motion.
a. the same.
b. smaller than.
c. unrealted to.
d. larger then.
Answer:
B. Smaller than
Explanation:
This question is from the Doppler effect. As the object which is in motion goes off from the other, there's a reduction in the frequency. This is due to the fact that successive soundwave get to be longer. So that the pitch will then be lowered. When the person observing moves towards what is making the sound, each soundwave that follows gets faster than the previous.
crushing chalk into powder is and irreversible change. is this example a physical or chemical change?Why?
Answer:
It is a example of physical change
The force an ideal spring exerts on an object is given by , where measures the displacement of the object from its equilibrium position. If , how much work is done by this force as the object moves from to
Answer:
The correct answer is "1.2 J".
Explanation:
Seems that the given question is incomplete. Find the attachment of the complete query.
According to the question,
x₁ = -0.20 mx₂ = 0 mk = 60 N/mNow,
⇒ [tex]W=\int_{x_1}^{x_2}F \ dx[/tex]
⇒ [tex]=\int_{x_1}^{x_2}-kx \ dx[/tex]
⇒ [tex]=-k \int_{-0.20}^{0}x \ dx[/tex]
By putting the values, we get
⇒ [tex]=-(60)[\frac{x^2}{2} ]^0_{-0.20}[/tex]
⇒ [tex]=-60[\frac{0}{2}-\frac{0.04}{2} ][/tex]
⇒ [tex]=1.2 \ J[/tex]
I need help with this problem can anybody help me please , it’s physics 2 course
Answer:
ਹੈਲੋ, ਇੰਡੀਆ ਦਾ ਆਪਣਾ ਵੀਡੀਓ ਐਪ - ਰੋਪੋਸੋ ਤੇ Manjeet Warval ਦਾ ਵੀਡੀਓ ਦੇਖੋ | ਨਾਲ ਹੀ PM ਮੋਦੀ ਦੇ 'ਵੋਕਲ ਫ਼ਾਰ ਲੋਕਲ' ਮੋਹਿਮ ਨੂੰ ਸਫ਼ਲ ਬਣਾਉਣ ਲਈ ਰੋਪੋਸੋ ਤੇ 5 ਕਰੋੜ ਤੋਂ ਜ਼ਿਆਦਾ ਭਾਰਤੀਆਂ ਦੇ ਨਾਲ ਜੋੜੋ| ਹੁਣੇ ਰੋਪੋਸੋ ਐਪ ਡਾਊਨਲੋਡ ਕਰੋ ਅਤੇ 100 ਕੋਇਨਜ਼ ਪਾਣ ਲਈ 24 ਘੰਟੇ ਦੇ ਅੰਦਰ ਸਾਇਨ ਅੱਪ ਕਰੋ|ਹੈਲੋ, ਇੰਡੀਆ ਦਾ ਆਪਣਾ ਵੀਡੀਓ ਐਪ - ਰੋਪੋਸੋ ਤੇ Manjeet Warval ਦਾ ਵੀਡੀਓ ਦੇਖੋ | ਨਾਲ ਹੀ PM ਮੋਦੀ ਦੇ 'ਵੋਕਲ ਫ਼ਾਰ ਲੋਕਲ' ਮੋਹਿਮ ਨੂੰ ਸਫ਼ਲ ਬਣਾਉਣ ਲਈ ਰੋਪੋਸੋ ਤੇ 5 ਕਰੋੜ ਤੋਂ ਜ਼ਿਆਦਾ ਭਾਰਤੀਆਂ ਦੇ ਨਾਲ ਜੋੜੋ| ਹੁਣੇ ਰੋਪੋਸੋ ਐਪ ਡਾਊਨਲੋਡ ਕਰੋ ਅਤੇ 100 ਕੋਇਨਜ਼ ਪਾਣ ਲਈ 24 ਘੰਟੇ ਦੇ ਅੰਦਰ ਸਾਇਨ ਅੱਪ ਕਰੋ|ਹੈਲੋ, ਇੰਡੀਆ ਦਾ ਆਪਣਾ ਵੀਡੀਓ ਐਪ - ਰੋਪੋਸੋ ਤੇ Manjeet Warval ਦਾ ਵੀਡੀਓ ਦੇਖੋ | ਨਾਲ ਹੀ PM ਮੋਦੀ ਦੇ 'ਵੋਕਲ ਫ਼ਾਰ ਲੋਕਲ' ਮੋਹਿਮ ਨੂੰ ਸਫ਼ਲ ਬਣਾਉਣ ਲਈ ਰੋਪੋਸੋ ਤੇ 5 ਕਰੋੜ ਤੋਂ ਜ਼ਿਆਦਾ ਭਾਰਤੀਆਂ ਦੇ ਨਾਲ ਜੋੜੋ| ਹੁਣੇ ਰੋਪੋਸੋ ਐਪ ਡਾਊਨਲੋਡ ਕਰੋ ਅਤੇ 100 ਕੋਇਨਜ਼ ਪਾਣ ਲਈ 24 ਘੰਟੇ ਦੇ ਅੰਦਰ ਸਾਇਨ ਅੱਪ ਕਰੋ|ਹੈਲੋ, ਇੰਡੀਆ ਦਾ ਆਪਣਾ ਵੀਡੀਓ ਐਪ - ਰੋਪੋਸੋ ਤੇ Manjeet Warval ਦਾ ਵੀਡੀਓ ਦੇਖੋ | ਨਾਲ ਹੀ PM ਮੋਦੀ ਦੇ 'ਵੋਕਲ ਫ਼ਾਰ ਲੋਕਲ' ਮੋਹਿਮ ਨੂੰ ਸਫ਼ਲ ਬਣਾਉਣ ਲਈ ਰੋਪੋਸੋ ਤੇ 5 ਕਰੋੜ ਤੋਂ ਜ਼ਿਆਦਾ ਭਾਰਤੀਆਂ ਦੇ ਨਾਲ ਜੋੜੋ| ਹੁਣੇ ਰੋਪੋਸੋ ਐਪ ਡਾਊਨਲੋਡ ਕਰੋ ਅਤੇ 100 ਕੋਇਨਜ਼ ਪਾਣ ਲਈ 24 ਘੰਟੇ ਦੇ ਅੰਦਰ ਸਾਇਨ ਅੱਪ ਕਰੋ|ਹੈਲੋ, ਇੰਡੀਆ ਦਾ ਆਪਣਾ ਵੀਡੀਓ ਐਪ - ਰੋਪੋਸੋ ਤੇ Manjeet Warval ਦਾ ਵੀਡੀਓ ਦੇਖੋ | ਨਾਲ ਹੀ PM ਮੋਦੀ ਦੇ 'ਵੋਕਲ ਫ਼ਾਰ ਲੋਕਲ' ਮੋਹਿਮ ਨੂੰ ਸਫ਼ਲ ਬਣਾਉਣ ਲਈ ਰੋਪੋਸੋ ਤੇ 5 ਕਰੋੜ ਤੋਂ ਜ਼ਿਆਦਾ ਭਾਰਤੀਆਂ ਦੇ ਨਾਲ ਜੋੜੋ| ਹੁਣੇ ਰੋਪੋਸੋ ਐਪ ਡਾਊਨਲੋਡ ਕਰੋ ਅਤੇ 100 ਕੋਇਨਜ਼ ਪਾਣ ਲਈ 24 ਘੰਟੇ ਦੇ ਅੰਦਰ ਸਾਇਨ ਅੱਪ ਕਰੋ|ਹੈਲੋ, ਇੰਡੀਆ ਦਾ ਆਪਣਾ ਵੀਡੀਓ ਐਪ - ਰੋਪੋਸੋ ਤੇ Manjeet Warval ਦਾ ਵੀਡੀਓ ਦੇਖੋ | ਨਾਲ ਹੀ PM ਮੋਦੀ ਦੇ 'ਵੋਕਲ ਫ਼ਾਰ ਲੋਕਲ' ਮੋਹਿਮ ਨੂੰ ਸਫ਼ਲ ਬਣਾਉਣ ਲਈ ਰੋਪੋਸੋ ਤੇ 5 ਕਰੋੜ ਤੋਂ ਜ਼ਿਆਦਾ ਭਾਰਤੀਆਂ ਦੇ ਨਾਲ ਜੋੜੋ| ਹੁਣੇ ਰੋਪੋਸੋ ਐਪ ਡਾਊਨਲੋਡ ਕਰੋ ਅਤੇ 100 ਕੋਇਨਜ਼ ਪਾਣ ਲਈ 24 ਘੰਟੇ ਦੇ ਅੰਦਰ ਸਾਇਨ ਅੱਪ ਕਰੋ|ਹੈਲੋ, ਇੰਡੀਆ ਦਾ ਆਪਣਾ ਵੀਡੀਓ ਐਪ - ਰੋਪੋਸੋ ਤੇ Manjeet Warval ਦਾ ਵੀਡੀਓ ਦੇਖੋ | ਨਾਲ ਹੀ PM ਮੋਦੀ ਦੇ 'ਵੋਕਲ ਫ਼ਾਰ ਲੋਕਲ' ਮੋਹਿਮ ਨੂੰ ਸਫ਼ਲ ਬਣਾਉਣ ਲਈ ਰੋਪੋਸੋ ਤੇ 5 ਕਰੋੜ ਤੋਂ ਜ਼ਿਆਦਾ ਭਾਰਤੀਆਂ ਦੇ ਨਾਲ ਜੋੜੋ| ਹੁਣੇ ਰੋਪੋਸੋ ਐਪ ਡਾਊਨਲੋਡ ਕਰੋ ਅਤੇ 100 ਕੋਇਨਜ਼ ਪਾਣ ਲਈ 24 ਘੰਟੇ ਦੇ ਅੰਦਰ ਸਾਇਨ ਅੱਪ ਕਰੋ|ਹੈਲੋ, ਇੰਡੀਆ ਦਾ ਆਪਣਾ ਵੀਡੀਓ ਐਪ - ਰੋਪੋਸੋ ਤੇ Manjeet Warval ਦਾ ਵੀਡੀਓ ਦੇਖੋ | ਨਾਲ ਹੀ PM ਮੋਦੀ ਦੇ 'ਵੋਕਲ ਫ਼ਾਰ ਲੋਕਲ' ਮੋਹਿਮ ਨੂੰ ਸਫ਼ਲ ਬਣਾਉਣ ਲਈ ਰੋਪੋਸੋ ਤੇ 5 ਕਰੋੜ ਤੋਂ ਜ਼ਿਆਦਾ ਭਾਰਤੀਆਂ ਦੇ ਨਾਲ ਜੋੜੋ| ਹੁਣੇ ਰੋਪੋਸੋ ਐਪ ਡਾਊਨਲੋਡ ਕਰੋ ਅਤੇ 100 ਕੋਇਨਜ਼ ਪਾਣ ਲਈ 24 ਘੰਟੇ ਦੇ ਅੰਦਰ ਸਾਇਨ ਅੱਪ ਕਰੋ|
Explanation:
The 2 capacitors in the middle are connected in parallel so simply add their capacitance together:
[tex]5.0\:\mu\text{F} + 8.0\:\mu\text{F} = 13.0\:\mu \text{F}[/tex]
Now we have 3 capacitors connected in series so their equivalent capacitance [tex]C_{eq}[/tex] is
[tex]\dfrac{1}{C_{eq}} = \dfrac{1}{10.0\:\mu \text{F}} + \dfrac{1}{13.0\:\mu \text{F}} + \dfrac{1}{9.0\:\ mu \text{F}} [/tex]
or
[tex]C_{eq} = 3.5\:\mu \text{F}[/tex]
The outer surface of a spacecraft in space has an emissivity of 0.44 and a solar absorptivity of 0.3. If solar radiation is incident on the spacecraft at a rate of 950 W/m2, determine the surface temperature of the spacecraft when the radiation emitted equals the solar energy absorbed.
Answer:
[tex]T=326.928K[/tex]
Explanation:
From the question we are told that:
Emissivity [tex]e=0.44[/tex]
Absorptivity [tex]\alpha =0.3[/tex]
Rate of solar Radiation [tex]R=0.3[/tex]
Generally the equation for Surface absorbed energy is mathematically given by
[tex]E=\alpha R[/tex]
[tex]E=0.3*950[/tex]
[tex]E=285W/m^2[/tex]
Generally the equation for Emitted Radiation is mathematically given by
[tex]\mu=e(\sigmaT^4)[/tex]
Where
T=Temperature
[tex]\sigma=5.67*10^8Wm^{-2}K_{-4}[/tex]
Therefore
[tex]\alpha*E=e \sigma T^4[/tex]
[tex]0.3*(950)=0.44(5.67*10^-8)T^4[/tex]
[tex]T=326.928K[/tex]
A block slides down a frictionless plane that makes an angle of 24.0° with the horizontal. What is the
acceleration of the block?
Answer:
F = m g sin theta force accelerating block
m a = m g sin theta
a = 9.8 sin 24 = 3.99 m/sec^2
Two objects are interacting, but stay stationary. Which best describes what is happening to the action and react
forces?
There are no forces acting on the objects.
The forces are equal and opposite each other.
One object is exerting more force than the other.
O Their forces are occurring at different times.
Answer:b the force are equal and opposite each other
Explanation:
What best describes a societal law
Answer:
Societal laws are based on the behavior and conduct made by society or government.hope it helps.stay safe healthy and happy.The 1 kg box is sliding along a frictionless surface. It collides with and sticks to the 2 kg box. Afterward, the speed of the two boxes is:__________.
A) 0 m/s
B) 1 m/s
C) 2 m/s
D) 3 m/s
E) Not enough info
Answer:
The correct option is (E).
Explanation:
Given that,
Mass of object 1, m₁ = 1 kg
Mass of object 2, m₂ = 2 kg
They collides after the collision. We need to find the speed of the two boxes after the collision.
The initial speeds of both boxes is not given. So, we can't put the values of their speeds in the momentum conservation equation.
So, the information is not enough.
d. On the afternoon of January 15, 1919, an unusually warm day in Boston, a 17.7-m-high, 27.4-m-diameter cylindrical metal tank used for storing molasses ruptured. Molasses flooded into the streets in a 5-m-deep stream, killing pedestrians and horses and knocking down buildings. The molasses had a density of 1600 kg>m3 . If the tank was full before the accident, what was the total outward force the molasses exerted on its sides
Answer:
F = 1.638 x 10⁸ N = 163.8 MN
Explanation:
The total force exerted by the molasses is given as:
F = PA
where,
F = Force exerted by the molasses = ?
P = Pressure = ρgh
ρ = density of molasses = 1600 kg/m³
g = acceleration due to gravity = 9.81 m/s²
h = height of tank = 17.7 m
A = cross-sectional area of tank = πr²
r = radius of tank = 27.4 m/2 = 13.7 m
Therefore,
[tex]F = \rho ghA = \rho gh(\pi r^2)\\\\F = (1600\ kg/m^3)(9.81\ m/s^2)(17.7\ m)(\pi)(13.7\ m)^2[/tex]
F = 1.638 x 10⁸ N = 163.8 MN
An electron in a hydrogen atom is in a p state. Which of the following statements is true?
a.
The electron’s wavefunction has at least one node (i.e., at least one place in space where it goes to zero).
b.
The electron has an energy of -13.6 eV.
c.
The electron has a total angular momentum of ħ.
d.
The electron has a z-component of angular momentum equal to sqrt(2)* ħ.
Answer:
The electron’s wavefunction has at least one node (i.e., at least one place in space where it goes to zero).
Explanation:
We know that the p-orbitals have nodes. A node is a region where the probability of finding an electron goes down to zero.
P orbitals are oriented along the x,y,z Cartesian axes and are known to have angular nodes along the axes.
Hence, if an electron in a hydrogen atom is in a p state, the electron’s wavefunction has at least one node