Answer:
A. 1/4
Step-by-step explanation:
We know that before the 1st bounce, the height of the ball is 512 inches.
Say the fraction is x.
Then, after the first bounce, the height of the ball is 512 * x = 512x.
After the second bounce, the height is now x * 512x = 512x².
By similar reasoning, the height after the third bounce is 512x³ and after the fourth bounce, it is [tex]512x^4[/tex].
We also know that after the fourth bounce, the height is 2 inches. So, set 2 equal to [tex]512x^4[/tex]:
2 = [tex]512x^4[/tex]
Divide both sides by 512:
[tex]x^4=2/512[/tex][tex]x^4=2/512=1/256[/tex]
Take the fourth root of both sides:
[tex]x=\sqrt[4]{1/256} =1/4[/tex]
Hence, the answer is A.
~ an aesthetics lover
Answer:
A. 1/4.
Step-by-step explanation:
This is exponential decay so we have , where x = the fraction:
512(x)^4 = 2
x^4 = 1/256
x= 1 / (256)^0.25
= 1/4
Jeff is playing a racing game. The game awards him an initial of virtual money. In addition, he gets of virtual money for each race he wins. In the end, he calculates average earnings of for each race he won. If represents the number of races he won, which equation can be used to find the number of wins? A. B. C. D.
A number is chosen at random from the set of consecutive natural numbers $\{1, 2, 3, \ldots, 24\}$. What is the probability that the number chosen is a factor of $4!$? Express your answer as a common fraction.
Answer:
[tex]Probability = \frac{1}{3}[/tex]
Step-by-step explanation:
Given
[tex]Set:\ \{1, 2, 3, \ldots, 24\}[/tex]
[tex]n(Set) = 24[/tex]
Required
Determine the probability of selecting a factor of 4!
First, we have to calculate 4!
[tex]4! = 4 * 3 * 2 * 1[/tex]
[tex]4! = 24[/tex]
Then, we list set of all factors of 24
[tex]Factors:\ \{1, 2, 3, 4, 6, 8, 12, 24\}[/tex]
[tex]n(Factors) = 8[/tex]
The probability of selecting a factor if 24 is calculated as:
[tex]Probability = \frac{n(Factor)}{n(Set)}[/tex]
Substitute values for n(Set) and n(Factors)
[tex]Probability = \frac{8}{24}[/tex]
Simplify to lowest term
[tex]Probability = \frac{1}{3}[/tex]
m= -1/2 and the point (3, -6) which is the point -slope form of the equation
Answer:
y+6=-1/2(x-3)
Step-by-step explanation:
Point slope form: y-y1=m(x-x1)
Given that:
m=-1/2 and point (3, -6), you just add these numbers into the equation, and this gives:
y+6=-1/2(x-3)
Hope this helped!
Have a nice day!
Plz answer quickkkk help will give 5 star rate if answer is right nd will say thx
Answer:
To find the x-intercept, substitute in 0 for y and solve for x.
To find the y-intercept, substitute in 0 for x and solve for y.
x-intercept(s):
(−6,0)
y-intercept(s):
(0,3)
So I would say -6 and 0 and 2 are in domain
Answer:
-6, 0 ,2 are in the domain
Step-by-step explanation:
The domain is what values that x can take
There are no restrictions on the values that x can take
All real numbers are in the domain
-6, 0 ,2 are in the domain
Help please, I’m confused about this question.
Answer:
The order, least to greatest, is:
Lemon, Cherry, Grape.
Step-by-step explanation:
Adding all these values up, we get to 1. This means that the smallest values will be the least likely and the highest values will be the most likely.
With the numbers 0.2, 0.16, and 0.64, we can sort these by value.
0.16 is the smallest.
0.2 is the next biggest
and 0.64 is the largest number.
So, the order is Lemon, Cherry, Grape.
Hope this helped!
PLEASE HELP!!!!!!! FIRST CORRECT ANSWER WILL BE THE BRAINLIEST....PLEASE HELP
Lunch Choices of Students
The bar graph shows the percent of students that chose each food in the school
cafeteria. Which statement about the graph is true?
Answer:
(2) If 300 lunches were sold, then 120 chose tacos.
Step-by-step explanation:
We can evaluate each option and see if it makes it true.
For 1: If 200 lunches were served, 10 more students chose pizza over hotdogs.
We can find how many pizzas/hotdogs were given if 200 lunches were served by relating it to 100.
20% chose hotdog, which is [tex]\frac{20}{100}[/tex]. Multiply both the numerator and denominator by two: [tex]\frac{40}{200}[/tex] - so 40 students chose hotdogs.
Same logic for pizza: 30% chose pizza - [tex]\frac{30}{100} = \frac{60}{200}[/tex] so 60.
60 - 40 = 20, not 10, so 1 doesn't work.
2: If 300 lunches were sold, then 120 chose tacos.
Let's set up a proportion again. 40% of 100 is 40.
[tex]\frac{40}{100} = \frac{40\cdot3}{300} = \frac{120}{300}[/tex]
So 120 tacos were chosen - yes this works!
Hope this helped!
Simplify . 7+ the square root of 6(3+4)-2+9-3*2^2 The solution is
Answer:
7+sqrt(37)
Step-by-step explanation:
7+sqrt(6*(3+4)-2+9-3*2^2)=7+sqrt(6*7+7-3*4)=7+sqrt(42+7-12)=7+sqrt(37)
One of two small classrooms is chosen at random with equally likely probability, and then a student is chosen at random from the chosen classroom. Classroom #1 has 5 boys and 11 girls. Classroom #2 has 15 boys and 9 girls. What is the probability that Classroom #2 was chosen at random, given that a girl was chosen? Your answers should be rounded to 4 digits after the decimal.
Answer:
0.1875
Step-by-step explanation:
Let A be the event that class two has been chosen . So the probability of A would be P (A) = 1/2= 0.5
Now class two has 9 girls out of total 24 students . So the probability of chosing the girl would be= P (B=) 9/24= 0.375
So the probability that Classroom #2 was chosen at random, given that a girl was chosen is given by = P(A) . P(B)= 0.5 * 0.375= 0.1875
Another way of finding the probability that Classroom #2 was chosen at random, given that a girl was chosen is by drawing a tree diagram.
P (1/2) Class 1 ------------------------5 boys
-------------------------11 girls (11/16)
P (1/2) Class 2 -------------------------15 boys
-----------------------9 girls P (9/24) Class 2 was chosen (0.5) *9/24
Please help 1-7 questions
Answer:
25= q+20
25 - 20 =q
5 = q
Hi there! Hopefully this helps!
-------------------------------------------------------------------------------------------
Answer: q = 5.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[tex]25 = q + 20[/tex]
Swap sides so that all variable terms are on the left hand side.
[tex]q + 20 = 25[/tex]
Subtract 20 from both sides.
[tex]q = 25 - 20[/tex]
Subtract 20 from 25 to get, you guessed it, 5!A scatter plot is shown below.. PLEASE HELPPP!!
Answer:
(0,9.8) and (10, 1.2)
Step-by-step explanation:
These are the only points that are the best fit for the garph correlation.
Answer:
(0, 9.8) and (10, 1.2)
Step-by-step explanation:
:) hope this helped
Brainliest for the correct answer!! A calculator was used to perform a linear regression on the values in the table. The results are shown to the right of the table.What is the line of best fit?A.y = –0.984x + 13.5B.y = –2.9x + 13.5C.–0.984 = –2.9x + 13.5D.y = 13.5x – 2.9
Answer:
B. y = –2.9x + 13.5
Step-by-step explanation:
You can try to use the calculator to determine the best line for the values given; you will se that the calculator form, for the linear function is
y = a + bx, where a is the y intercept and b is the slope.
To determine the slope, we apply a formula, to calculate the product of the two xy and, x², plus the sum of each column.
x y xy x²
1 . 11 = 11 → x² = 1² = 1
2 . 8 = 16 → x² = 2² = 4
3 . 4 = 12 → x² = 3² = 9
4 . 1 = 4 → x² = 4² = 16
5 . 0 = 0 → x² = 5² = 25
Total x = 1 + 2 + 3 + 4 + 5 = 15
Total y = 11 + 8 + 4+ 1 + 0 = 24
Sum of xy = 11 + 16 + 12 + 4 + 0 = 43
Sum of x² = 1 + 4 + 9 + 16 + 25 = 55
n = 5
So b = 5 (43) - (15) . (24) / 5 (55) - 15² = -2.9
a = y media - b . x media → a = 24/5 - (-2.9) . 15/5 = 13.5
49, 34, and 48 students are selected from the Sophomore, Junior, and Senior classes with 496, 348, and 481 students respectively. Group of answer choices
Answer:
Stratified Random sampling.
Step-by-step explanation:
As per the scenario, It is stratified random sampling as it divides students into strata which represent Sophomores, Juniors, and Seniors.
Simple random samples of the given sizes of the proportional to the size of the stratum which is to be taken from every stratum that is to be about 10 percent of students from every class that is selected here.
Hence, according to the given situation, the correct answer is a random stratified sampling.
What is the square root of -1
Answer:
the awnser is sqrt(-1) = i
If (x - 2) and (x + 1) are factors of
x + px? + qx + 1, what is the sum of p and q?
Answer:
p + q = -3
Step-by-step explanation:
First we need to take the original equation, and factor it to a form that's easier to get two binomial factors from (i.e., let's get a quadratic):
x^3 + px^2 + qx + 1
= x (x^2 + px + q) + 1
Now that we have factored out the x, we have a quadratic trinomial which we know can be broken down into two linear binomials. The problem gives us two linear binomials, so let's take a look.
(x - 2) (x + 1) = (x^2 + px + q)
x^2 - 2x + x -2 = x^2 + px + q
Now let's solve.
x^2 - x - 2 = x^2 + px + q
-x - 2 = px + q
From here, we can easily see that p = -1 (the coefficient of x) and q = -2.
Hence, p + q = -1 + -2 = -3.
Cheers.
Sean earned 20 points. Charles earned p more points than Sean. Choose the expression that shows how many points Charles earned.
Answer:
the person above is correct if i did this correct
Step-by-step explanation:
In a triangle ABC two points D,E are taken on BC so that angle BAD=angle DAE=angleCAE. Determine AE if AB=5,BC=10 angle BAC=90. PLEASE HELP I NEED HELP WITHIN TEN MINS PLEASE
Answer:
AE = 7.5
Step-by-step explanation:
Since <BAC = [tex]90^{0}[/tex], then;
<BAD = <DAE = <CAE = [tex]30^{0}[/tex] (complementary angles)
From ΔABC, applying the Pythagoras theorem to determine the length of side AC;
[tex]/BC/^{2}[/tex] = [tex]/AC/^{2}[/tex] + [tex]/AB/^{2}[/tex]
[tex]/10/^{2}[/tex] = [tex]/AC/^{2}[/tex] + [tex]/5/^{2}[/tex]
100 = [tex]/AC/^{2}[/tex] + 25
[tex]/AC/^{2}[/tex] = 100 - 25
[tex]/AC/^{2}[/tex] = 75
AC = [tex]\sqrt{75}[/tex]
Applying trigonometric function to ΔCAE,
Cos [tex]30^{0}[/tex] = [tex]\frac{AE}{\sqrt{75} }[/tex]
AE = [tex]\sqrt{75}[/tex] × Cos [tex]30^{0}[/tex]
= 7.5
Therefore, AE = 7.5
what is the number if 4 is subtracted from the sum of one fourth of 5 times of 8 and 10
Answer:
Step-by-step explanation:
Lets, turn this into words and use order of operations, First, we look for multiplication and division.
the sum of one fourth of 5 times of 8 and 10 gets you 1/4(5*8) + 10 = 20
what is the number if 4 is subtracted from the sum
20 - 4 = 16
A list of pulse rates is 70, 64, 80, 74,92. What is the median for this list?
Answer:
64 70 74 80 92
Answer = 74
Step-by-step explanation:
The median is when you have an order of numbers in ascending order (smallest to largest) then you find the middle number
Hope this helps :)
If anything is incorrect then please comment and I shall change the answer to the correct one
Median for the given data 70, 64, 80, 74,92 is equals to 74.
What is median?"Median is defined as the central value of the given data after arranging them into ascending or descending order."
According to the question,
Given data for pulse rates = 70, 64, 80, 74,92
Arrange the data in ascending order we get,
64, 70 , 74, 80, 92
Number of pulse rate reading is 5 , which is an odd number.
Therefore, median is the central value.
Median for the given data = 74
Hence, median for the given data 70, 64, 80, 74,92 is equals to 74.
Learn more about median here
https://brainly.com/question/21396105
#SPJ2
What is the simplified form of the following expression? 2 StartRoot 18 EndRoot + 3 StartRoot 2 EndRoot + StartRoot 162 EndRoot
Answer: 2*√18 + 3*√2 + √162 = 18*√2
Step-by-step explanation:
I guess that the equation is:
2*√18 + 3*√2 + √162
And we want to simplify it.
first 18 = 9*2
then we can write:
2*√18 = 2*√(9*2) = 2*3*√2 = 6*√2
and 162/9 = 18
then we can write:
√162 = √(9*18) = √9*√18 = 3√18
now we can use the previous step: √18 = 3*√2
and:
√162 = 3*(3*√2) = 9*√2
now we can write our equation as:
6√2 + 3√2 + 9√2 = (6 + 3 + 9)√2 = 18*√2
And now we can not simplify it further more, so here we end.
Answer:
B. 18 sqrt 2
Step-by-step explanation:
This is the correct letter and answer on edge, if thats what youre using:)
A positive correlation between two variables X and Y means: If the value of X is above the mean, the
value of Y will be above the mean as well.
A. This is always true.
B. This is sometimes true.
C. This is never true.
Answer: B. This is sometimes true.
Step-by-step explanation:
A positive correlation between 2 variables means that they generally move in the same direction meaning that as one variable rises, the other rises as well and as the other falls, the other falls as well.
However, the correlation can be strong, weak or anything in-between. This means that just because one variable increases by 12 does not mean the other would as well. It could increase by 1 alone and still have a positive correlation albeit a small one.
Therefore, if the value of one variable is above the mean, it doesn't always follow that the other with a positive correlation will as well as they just might not have that strong a correlation.
For some postive value of Z, the probability that a standardized normal variable is between 0 and Z is 0.3770. The value of Z is
Answer:
1.16
Step-by-step explanation:
Given that;
For some positive value of Z, the probability that a standardized normal variable is between 0 and Z is 0.3770.
This implies that:
P(0<Z<z) = 0.3770
P(Z < z)-P(Z < 0) = 0.3770
P(Z < z) = 0.3770 + P(Z < 0)
From the standard normal tables , P(Z < 0) =0.5
P(Z < z) = 0.3770 + 0.5
P(Z < z) = 0.877
SO to determine the value of z for which it is equal to 0.877, we look at the
table of standard normal distribution and locate the probability value of 0.8770. we advance to the left until the first column is reached, we see that the value was 1.1. similarly, we did the same in the upward direction until the top row is reached, the value was 0.06. The intersection of the row and column values gives the area to the two tail of z. (i.e 1.1 + 0.06 =1.16)
therefore, P(Z ≤ 1.16 ) = 0.877
A low-noise transistor for use in computing products is being developed. It is claimed that the mean noise level will be below the 2.5-dB level of products currently in use. It is believed that the noise level is approximately normal with a standard deviation of .8. find 95% CI
Answer:
The 95% CI is [tex]2.108 < \mu < 2.892[/tex]
Step-by-step explanation:
From the question we are told that
The population mean [tex]\mu = 2.5[/tex]
The standard deviation is [tex]\sigma = 0.8[/tex]
Given that the confidence level is 95% then the level of confidence is mathematically evaluated as
[tex]\alpha = 100 - 95[/tex]
=> [tex]\alpha = 5\%[/tex]
=> [tex]\alpha = 0.05[/tex]
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the normal distribution table, the values is [tex]Z_{\frac{\alpha }{2} } = 1.96[/tex]
Generally the margin of error is mathematically evaluated as
[tex]E = Z_{\frac{\alpha }{2} } * \frac{\sigma}{\sqrt{n} }[/tex]
here we would assume that the sample size is n = 16 since the person that posted the question did not include the sample size
So
[tex]E = 1.96* \frac{0.8}{\sqrt{16} }[/tex]
[tex]E = 0.392[/tex]
The 95% CI is mathematically represented as
[tex]\= x -E < \mu < \= x +E[/tex]
substituting values
[tex]2.5 - 0.392 < \mu < 2.5 + 0.392[/tex]
substituting values
[tex]2.108 < \mu < 2.892[/tex]
Assuming that the loss of ability to recall learned material is a first-order process with a halflife of 35 days. Compute the number of days required to forget 90% of the material that you have learned today. Report to 1 decimal place.
Answer:
5.3 days
Step-by-step explanation:
Let us assume the loss of ability to recall a learned material = 100%
Formula to calculate number of days = time(t) =
t = t½ × Log½(Nt/No)
Nt = Ending Amount
No = Beginning Amount
t½ = Half life
t = Time elapsed
Therefore, we have the following values from the questions:
Half life (t½)= 35 days
Initial or beginning amount = 100%
Ending amount = 90%
t = t½ × Log½ (Nt/No)
t = 35 × Log ½(90/100)
t = 5.3201082705768 days
Approximately = 5.3 days
The following shows the monthly sales in units of six salespersons before and after a bonus plan was introduced. At 95% confidence, determine whether the bonus plan has increased sales significantly. (For the following matched samples, let the difference "d" be: d = after - before.)
Salesperson After Before
1 94 90
2 82 84
3 90 84
4 76 70
5 79 80
6 85 80
Answer:
Since the calculated value of t= 2.249 does not falls in the rejection region we therefore accept the null hypothesis at 5 % significance level . On the basis of this we conclude that the bonus plan has not increased sales significantly.
Step-by-step explanation:
The null and alternative hypotheses as
H0: μd=0 Ha: μd≠0
Significance level is set at ∝= 0.05
n= 6
degrees of freedom = df = 6-1 = 5
The critical region is t ( base alpha by 2 with df=5) ≥ ± 2.571
The test statistic under H0 is
t = d/ sd/ √n
Which has t distribution with n-1 degrees of freedom
Sales Difference
Person After Before d = after - before d²
1 94 90 4 16
2 82 84 -2 4
3 90 84 6 36
4 76 70 6 36
5 79 80 -1 1
6 85 80 5 25
∑ 18 118
d`= ∑d/n= 18/6= 3
sd²= 1/6( 118- 18²/6) = 1/6 ( 118 - 54) = 10.67
sd= 3.266
t= 3/ 3.266/ √6
t= 2.249
Since the calculated value of t= 2.249 does not falls in the rejection region we therefore accept the null hypothesis at 5 % significance level . On the basis of this we conclude that the bonus plan has not increased sales significantly.
Find the inverse of the following function.
Answer:
The inverse is 1/64 x^2 = y x ≥ 0
Step-by-step explanation:
f(x) = 8 sqrt(x)
y = 8 sqrt(x)
Exchange x and y
x = 8 sqrt (y)
Solve for y
Divide each side by 8
1/8 x = sqrt(y)
Square each side
(1/8 x)^2 = (sqrt(y))^2
1/64 x^2 = y
The inverse is 1/64 x^2 = y x ≥ 0
since x ≥0 in the original function
Answer:
[tex]\Huge \boxed{\mathrm{D}}[/tex]
Step-by-step explanation:
[tex]f(x)=8\sqrt{x}[/tex]
[tex]\sf Replace \ with \ y.[/tex]
[tex]y=8\sqrt{x}[/tex]
[tex]\sf Switch \ the \ variables.[/tex]
[tex]x= 8\sqrt{y}[/tex]
[tex]\sf Divide \ both \ sides \ of \ the \ equation \ by \ 8.[/tex]
[tex]\displaystyle \frac{x}{8} =\sqrt{y}[/tex]
[tex]\sf Square \ both \ sides \ of \ the \ equation.[/tex]
[tex]\displaystyle (\frac{x}{8} )^2 =y[/tex]
[tex]\displaystyle \frac{x^2 }{64} =y[/tex]
[tex]\displaystyle f^{-1}(x)=\frac{1}{64} x^2[/tex]
Examine the two triangles. Are the triangles congruent? Justify your conclusions. If they are congruent, complete the following statement: "Yes, triangle __ congruent to triangle __ giving a detailed explanation of your reasoning. If they are not congruent, explain why you think so. Be specific in your answer and make sure to show your work.
Answer: The triangles are not congruent
==========================================
Explanation:
For triangle DEF, the missing angle D is
D+E+F = 180
D+80+60 = 180
D+140 = 180
D = 180-140
D = 40
While the missing angle K in triangle JKL is
J+K+L = 180
80+K+50 = 180
K+130 = 180
K = 180-130
K = 50
---------------------
The three angles for triangle DEF are
D = 40E = 80F = 60The three angles for triangle JKL are
J = 80K = 50L = 50We don't have all the angles matching up. We need to have the same three numbers (the order doesn't matter) show up for both triangles in order for the triangles to be congruent. This is because congruent triangles have congruent corresponding angles.
The only pair that matches is E = 80 and J = 80, but everything else is different. So there is no way the triangles are congruent.
Notice how triangle JKL has two congruent base angles (K = 50 and L = 50), so this triangle is isosceles. Triangle DEF is not isosceles as we have three different angles, so this triangle is scalene.
Question
The point (-2,r) lies on the graph of 2x + y = 7 in the xy-plane. What is the value of r?
Answer: r = 11
Step-by-step explanation:
We know that the point (-2, r) lies on the graph of:
2*x + y = 7.
Then, if we that point is on the graph of the equation, we can replace the values and we will have:
2*(-2) + r = 7
and now we solve this for r-
-4 + r = 7
r = 7 + 4 = 11
r = 11
] You are scheduled to receive $20,000 in two years. When you receive it, you will invest it for six more years at 8.4 percent per year. How much will you have in eight years?
Answer:
32449.3
Step-by-step explanation:
use the formula A = P(1+r / 100)^t
20000 × (1+ (8.4 / 100))^6
=32449.3
As you wake up to get your day started, you decide to make muffins for breakfast. The recipe you are
using makes 2 dozen muffins and calls for 3 cups of flour and 1 cup of sugar. You decide to only make
18 muffins. How many cups of flour and sugar will you need for your recipe?
The above problem can easily be solved using a proportion. Show your work
Answer:
4 cups of flour is needed and 4/3 cups of sugar
Step-by-step explanation:
Given
2 dozen Muffins; 3 cups of flour and 1 cup of sugar
Required
Determine the cups of flour if 18 muffins is used
First, we have to determine the proportion of the number of muffins used previously and now;
Represent this with p;
[tex]p = \frac{2\ dozen}{18}[/tex]
[tex]p = \frac{2 * 12}{18}[/tex]
[tex]p = \frac{24}{18}[/tex]
[tex]p = \frac{4}{3}[/tex]
Multiply this to the previous cups of flours and sugars;
Cups of flour = p * previous cups of flour
[tex]Cups\ of\ flour = \frac{4}{3} * 3[/tex]
[tex]Cups\ of\ flour = 4[/tex]
Cups of Sugar = p * previous cups of sugar
[tex]Cups\ of\ sugar= \frac{4}{3} * 1[/tex]
[tex]Cups\ of\ sugar= \frac{4}{3}[/tex]
Hence, 4 cups of flour is needed and 4/3 cups of sugar
Please help me I’ve been struggling
Answer:
147cm³
Step-by-step explanation:
Bottom rectangular prism: 3x4x6=72
Top rectangular prism: 5x5x3=75
72+75=147cm³