The time required for the ball to travel downward at the feet per second will be 32 feet per second will be 1.5 seconds.
What is the time required by ball?The ball is thrown upward in the air, and its height above the ground after seconds is feet. To find the time when the ball will be traveling downward at feet per second. In order to find the time when the ball will be traveling downward at feet per second, it is required to find the velocity of the ball when it reaches the maximum height.
In order to find the velocity, we need to differentiate the given function of height with respect to time. Now let's differentiate the given function of height with respect to time. Differentiating the function of height with respect to time, we get:
h(t) = -16t² + 48t + 64 = -16(t - 3)² + 160
Differentiating h(t) with respect to time, we get:
h(t) = -32t + 48
We know that the ball is thrown upward, so the initial velocity is 48 feet per second, and the acceleration is -32 feet per second per second. The ball is at maximum height when the velocity becomes 0.
So,
0 = -32t + 48
32t = 48
t = 1.5 seconds
Hence, the time when the ball will be traveling downward at 32 feet per second is 1.5 seconds.
Learn more about Acceleration here:
https://brainly.com/question/12550364
#SPJ11
An object is released from rest a height h above the ground. A second object with four times the mass of the first if released from the same height the potential energy of the second object compared to the first is a. four times moors. b. twice as much. c. the same d. sixteen times more.
Answer:
A. Four times
Explanation:
Gravitational Potential Energy (PE) is given as PE=mass*gravity*height
setting the equations of potential energy equal to each other for each object you get
m1gh=m2gh
then you can cancel out the gravity and height and get
m1=m2
then we know the mass of the second object is 4 times the mass of the first object so
m2=4m1
2.1 [2] As more resistors are added in series, the equivalent resistance of the circuit approaches infinity. In contrast, as more resistors are added in parallel, the equivalent resistance a. approaches infinity b. approaches zero c. becomes zero d. approaches 1 Ω
2.2 [2] Kirchhoff's loop rule is equivalent to which of the following principles? a. conservation of charge b. conservation of energy c. conservation of mass d. conservation of force
2.1 As more resistors are added in parallel, the equivalent resistance approaches zero
2.2 Kirchhoff's loop rule is equivalent to the conservation of energy principle.
As more resistors are added in series, the equivalent resistance of the circuit approaches infinity. In contrast, as more resistors are added in parallel, the equivalent resistance approaches zero. This statement is TRUE. The equivalent resistance, Req, of a parallel combination of resistors is less than any of the resistors in the combination, while for a series combination it is equal to the sum of the resistances.
Kirchhoff's loop rule is equivalent to the conservation of energy principle. Kirchhoff's loop rule or Kirchhoff's voltage law (KVL) is a result of the conservation of energy principle. The principle of conservation of energy states that energy can neither be created nor destroyed, it can only be transformed from one form to another. In a closed loop, the total energy gained is equal to the total energy lost, according to the principle of conservation of energy.
Learn more about Kirchhoff's loop rule and equivalent resistance at : https://brainly.com/question/30580929
#SPJ11
when the air is in geostrophic balance, it flows _______ to isobars _________ the boundary layer.
When the air is in geostrophic balance, it flows parallel to isobars and above the boundary layer.
Geostrophic balance is a state of balance between the pressure gradient force and the Coriolis force, where the pressure gradient force is directed from higher to lower pressure, and the Coriolis force is perpendicular to the direction of motion. In this state, the wind flows parallel to the isobars, with the pressure gradient force and the Coriolis force balancing each other out.
The boundary layer is the layer of air near the Earth's surface where friction between the air and the surface slows down the wind and causes it to flow in a more complex manner, with the wind direction changing with height. However, in the geostrophic flow regime, the wind flow is typically above the boundary layer and thus not affected by surface friction.
Therefore, in geostrophic balance, the wind flows parallel to isobars and above the boundary layer, with little to no effect from the Earth's surface.
Learn more about geostrophic balance here
brainly.com/question/28314662
#SPJ4
is the current flowing out of a resistor smaller than the current flowing into it. if not, then do resistors not actually slow down the flow of charge. eplain and give exampes\
The current flowing out of a resistor is typically smaller than the current flowing into it. Resistors do not actually slow down the flow of charge, they merely convert electrical energy into heat.
The statement that the current flowing out of a resistor is smaller than the current flowing into it is correct. This is because resistors slow down the flow of charge. The amount of current flowing through a resistor is determined by the amount of voltage across the resistor and the resistance of the resistor. When the voltage across the resistor increases, the current flowing through it also increases.
Conversely, when the resistance of the resistor increases, the current flowing through it decreases. Resistors are used to control the flow of current in electrical circuits. They are used in a variety of applications, such as in voltage dividers, filters, and voltage regulators.
For example, a voltage divider is a circuit that divides a voltage into two or more parts. A voltage divider is made up of two resistors in series, and the output voltage is taken across one of the resistors. The amount of voltage across the output resistor is determined by the values of the two resistors.
If the two resistors are equal, the output voltage will be half the input voltage. If the output resistor is smaller than the input resistor, the output voltage will be less than half the input voltage. Conversely, if the output resistor is larger than the input resistor, the output voltage will be greater than half the input voltage.
Learn more about Resistor:
https://brainly.com/question/14883923
#SPJ11
a 421 kg block is puled up a 4.54 degree incline by a constant force f of 3282 n. the coefficient of friction mu between the block and the plane is 0.47. how fast in m/s will the block be moving 6 seconds after the pull is applied?
The block will be moving at 3.97 m/s 6 seconds after the pull is applied.
Given Mass of the block, m = 421 kg, Inclined angle, θ = 4.54°, Force applied, F = 3282 N, Coefficient of friction, μ = 0.47, Time, t = 6 s
Using Newton's second law of motion, F - μmg sin θ = ma
Where,
m = Mass of the block
g = Acceleration due to gravity
a = Acceleration of the block
Substituting the given values,
3282 - 0.47 × 421 × 9.81 × sin 4.54° = 421 × a
a = 0.6614 m/s²
Using kinematic equations of motion,
v = u + at
Where,
u = Initial velocity
v = Final velocity
a = Acceleration
t = Time
Since the initial velocity is zero, the above equation becomes
v = at
Substituting the values,
v = 0.6614 m/s² × 6 s
v = 3.97 m/s
Therefore, the block will be moving at 3.97 m/s 6 seconds after the pull is applied.
More on friction: https://brainly.com/question/29073383
#SPJ11
for each charge, determine the direction of the magnetic force. for the last one, determine the direction of the magnetic field. the sign of the charge is given for each part.
For each charge, the direction of the magnetic force can be determined using the right-hand rule. For the last one, the direction of the magnetic field can be determined by observing the direction of the current.
The right-hand formula can be used to calculate the direction of the magnetic field for each charge. According to the formula, if you aim your right thumb in the direction of the charged particle's velocity and your fingers in the direction of the magnetic field, the way your hand confronts is the magnetic force direction.
To identify the direction of the magnetic field for the final charge, examine the direction of the current. The magnetic field is perpendicular to the current and can also be calculated with the right-hand formula.
Learn more about right-hand rule:
https://brainly.com/question/27332584
#SPJ4
I need to figure out the missing boxes and work out the power, work done or time taken
To calculate the missing values in the table, we can use the formulas:
Power = Work Done / Time TakenWork Done = Power x Time TakenTime Taken = Work Done / PowerUsing these formulas, we can fill in the missing values:
Power(W) Work Done(J) Time Taken(s)
For a,. 3000 90000 30
For b,. 20 100 5
For c,. 50 100 2
For d. 700 245 0.35
For e. 25 1875 75
For f. 50000 500000 10
For g. 150 450 3
For h. 0.5 10 20
What is power?
Power is the rate at which work is done or energy is transferred. Mathematically, power is defined as the amount of work done or energy transferred per unit time. The unit of power is the watt (W), which is equal to one joule of work per second.
To know more about the power, visit:
https://brainly.com/question/29575208
#SPJ1
To calculate the missing values in the table, we can use the formulas:
Power = Work Done / Time Taken
Work Done = Power x Time Taken
Time Taken = Work Done / Power
Using these formulas, we can fill in the missing values:
Power(W) Work Done(J) Time Taken(s)
For a,. 3000 90000 30
For b,. 20 100 5
For c,. 50 100 2
For d. 700 245 0.35
For e. 25 1875 75
For f. 50000 500000 10
For g. 150 450 3
For h. 0.5 10 20
What is power?
Power is the pace at which labour or energy is done or transferred. Power is described mathematically as the quantity of labour done or energy moved per unit time. The watt (W) is the measure of electricity, and it equals one joule of work per second.
To know more about the power, visit:
brainly.com/question/29575208
#SPJ1
what device is used through ureteroscope to capture an inact calculus or fragments if fractured by laser
The device used through a ureteroscope to capture an intact calculus or fragments if fractured by laser is called a basket retrieval device.
A ureteroscope is a specialized tool that is used to examine and treat the inside of the ureter and kidney. It is made up of a long, thin tube with a camera and a light source at the end, which is inserted into the patient's urinary tract through the urethra. The physician will be able to examine the lining of the bladder, ureters, and kidneys during this examination.
A basket retrieval device is a specialized tool that is used during ureteroscopy, which is a minimally invasive surgical technique used to examine the inside of the urinary tract. It is used to remove kidney stones or any fragments that have been broken down by laser lithotripsy.The basket retrieval device works by capturing the stones or fragments with its metal "basket" and then removing them from the body. The physician will then be able to extract the stones or fragments by retracting the basket into the ureteroscope's working channel. The stones will be disposed of or sent to a lab for further testing.
More on ureteroscope: https://brainly.com/question/28170411
#SPJ11
what is the relationship between the velocity of a fluid and the size of the sediment that the fluid carries?
The relationship between the velocity of a fluid and the size of the sediment that the fluid carries is directly proportional.
Higher velocity fluids are capable of carrying larger sediments while lower-velocity fluids are capable of carrying smaller sediments. This is due to the fact that higher-velocity fluids have greater kinetic energy, which allows them to overcome the gravitational forces that hold larger sediments in place.
A fluid is a substance that is able to flow and take on the shape of the container it is placed in, with the ability to deform under applied shear stress. Examples of fluids include liquids and gases. In contrast, solids maintain their shape and volume under applied stress.
To know more about "- fluid here
https://brainly.com/question/19416780
#SPJ4
what are two characteristics of net forces that are balanced
Balanced net forces have equal and opposing forces that cancel each other out and provide a net force of zero, which does not alter the motion of an item.
An object's velocity remains constant and motion is unaltered when the net forces acting on it are balanced. This indicates that the thing is either stationary or moving continuously. When the forces exerted on an item are opposing in direction and of equal magnitude, they are said to be balanced forces. The forces in this situation cancel one another out, leaving a net force of zero. This can happen when one force is applied to an item and that object applies an equal and opposite force in the opposite direction to another object. It can also happen when two or more forces are applied in opposing directions and of equal magnitude. Understanding equilibrium and stability in physics requires a knowledge of the idea of balanced forces.
learn more about Balanced net forces here:
https://brainly.com/question/29769471
#SPJ4
A car speeds up at a constant rate pf 4 m/s?. An identical car takes a right turn with 4 m radius at constant speed of 8 m/s. Which of the following statements is correct? A. The car speeding up experiences the greater net force. B. The car speeding up experiences zero net force. C. The car that is turning experiences the greater net force. D. The car that is turning experiences no net force.
The correct answer is the car that is turning experiences no net force.
What is a net force?A net force is the sum of all forces acting on an object, taking into account their magnitude and direction. If an object is not in equilibrium, it experiences a net force, which causes it to accelerate. In physics, a net force, often known as unbalanced force, is defined as the total sum of all forces that act on an object. If the forces acting on an object are balanced, meaning they are the same size but opposite in direction, the object will maintain a constant speed with no acceleration.
In this scenario, the car speeding up experiences the greater acceleration. The car that is turning, on the other hand, experiences no net force since the force acting on the car, the centripetal force, is equal to the force required to maintain its motion.
Therefore, the answer is option D. The car that is turning experiences no net force.
Learn more about net force here:
https://brainly.com/question/14361879
#SPJ11
where are pisa and boston in relation to the moon when they have high tides?
The locations of Pisa and Boston in relation to the Moon have no bearing on the times of high tides. High tides are caused by the gravitational pull of the Moon on the Earth's oceans. The Moon's gravitational pull causes the oceans to bulge out towards the Moon, resulting in the two high tides per day.
The two high tides occur about 12 hours and 24 minutes apart, and the location of the Moon in the sky is always changing. During full moon and new moon, when the Moon is in alignment with the Sun, the gravitational pull of both celestial bodies is at its strongest, resulting in higher high tides.
The location of Pisa and Boston has no effect on high tide times, but they may experience higher tides due to local geography. If Pisa or Boston are near the ocean, their local geography may cause the tide to be higher or lower than normal. Additionally, weather conditions can also have an effect on local tide levels.
for such more question on gravitational pull
https://brainly.com/question/174980
#SPJ11
A survey was conducted at local colleges around Madison, Wisconsin to find out the average height of a college student. Of 692 students surveyed, 421 replied that they were over 6 feet tall. What is the standard error? Answer choices are rounded to the hundredths place.
A survey was conducted at local colleges around Madison where 692 students were surveyed, and 421 replied that they were over 6 feet tall showing a standard error of 0.0084 in the average height of a college student.
The standard error is given by the formula given below:
[tex]$$SE= {s}/{\sqrt{n}}$$[/tex]
Where s is the standard deviation,
n is the sample size.
Now let us find out the standard deviation by using the formula given below:
[tex]$$s=\sqrt{\frac{(421-271.17)^2+(271.17-270)^2}{692-1}}$$[/tex]
After calculating we get that the standard deviation s is equal to $0.2208$.
Now let us plug the value of the standard deviation s and sample size n into the formula for standard error:
[tex]$$SE={s}/{\sqrt{n}}$$[/tex]
On substituting the respective values, we get [tex]$$SE={0.2208}/{\sqrt{692}}$$[/tex]
On solving, we get that the standard error is equal to 0.0084
Therefore, the standard error is 0.0084.
Learn more about standard error: https://brainly.com/question/14467769
#SPJ11
an electromagnetic wave is transporting energy in the positive y direction. at one point and one instant the magnetic field is in the positive x direction. the electric field at that point and instant points in the
Energy is being transported in the positive y direction by an electromagnetic wave. The magnetic field is in the positive x direction at one spot and one moment. At that precise moment, the electric field is oriented in the "negative z" direction.
The given electromagnetic wave is transporting energy in the positive y direction. At one point and one instant, the magnetic field is in the positive x direction. Now we have to find the direction of the electric field at that point and instant. According to the right-hand rule, when the magnetic field is directed towards the positive x-axis, the electric field will be directed downwards along the negative z-axis. Therefore, the electric field at that point and instant points in the negative z direction.
To know more about electromagnetic wave:https://brainly.com/question/75996
#SPJ11
what is the current in a counductor if 3.15*10^18 electrons pass a given point in the conductor in 10 seconds
The current in a counductor if 3.15*10^18 electrons pass a given point in the conductor in 10 seconds is 0.0504 amperes
Current calculation.
The current in a conductor is defined as the rate at which electric charge flows through it. The unit of current is amperes (A), which is defined as coulombs per second. One coulomb is equal to the charge on 6.24 × 10^18 electrons.
Given that 3.15 × 10^18 electrons pass a given point in the conductor in 10 seconds, we can find the charge that flows through the point as follows:
Number of electrons = 3.15 × 10^18
Charge on one electron = 1.6 × 10^-19 coulombs
Total charge = Number of electrons × Charge on one electron
Total charge = 3.15 × 10^18 × 1.6 × 10^-19
Total charge = 0.504 coulombs
The current is the rate of flow of charge, so we can find it by dividing the total charge by the time taken:
Current = Total charge ÷ Time taken
Current = 0.504 coulombs ÷ 10 seconds
Current = 0.0504 amperes (A)
Therefore, the current in the conductor is 0.0504 amperes, or 50.4 milliamperes (mA).
Learn more about current below.
https://brainly.com/question/24858512
#SPJ1
a car is traveling with a velocity of 17.0 m/s on a straight horizontal highway. the wheels of the car have a radius of 48.0 cm. if the car then speeds up with an acceleration of 2.10 m/s for 5.10 s, find the number of revolutions of the wheels make during this period
The wheels make approximately 47.65 revolutions during the 5.10 s period.
What is Linear Speed?
Linear speed, also known as tangential speed, is the distance traveled by an object in a circular path per unit of time, measured in units such as meters per second (m/s) or kilometers per hour (km/h). It is the magnitude of the velocity vector of an object moving in a circular path at a constant speed, and is perpendicular to the centripetal acceleration vector.
The linear speed of the wheels is equal to the velocity of the car:
v = 17.0 m/s
The circumference of the wheels is:
C = 2πr = 2π(0.48 m) = 3.01 m
The angular speed of the wheels is related to the linear speed by:
ω = v/r
Therefore, the initial angular speed of the wheels is:
ω₀ = v/r = 17.0 m/s / 0.48 m = 35.42 rad/s
The final angular speed of the wheels after accelerating for 5.10 s at a constant rate of 2.10 m/s² is given by:
ω = ω₀ + αt
where α is the angular acceleration of the wheels. Since the wheels are assumed to roll without slipping, the linear acceleration of the car is equal to the angular acceleration of the wheels:
α = a/r = 2.10 m/s² / 0.48 m = 4.38 rad/s²
Substituting the given values into the equation for angular speed, we have:
ω = 35.42 rad/s + (4.38 rad/s²)(5.10 s) = 58.64 rad/s
The number of revolutions made by the wheels during this period is equal to the change in the angle of rotation of the wheels:
Δθ = ωt
Substituting the given values, we have:
Δθ = (58.64 rad/s)(5.10 s) = 299.58 rad
The number of revolutions is equal to the angle of rotation divided by 2π:
n = Δθ / 2π = 299.58 rad / 2π ≈ 47.65 revolutions
Learn more about Linear Speed from given link
https://brainly.com/question/29345009
#SPJ1
which of the following actions will cause the relative humidity of an air parcel to increase? select all that apply
a. Keep the parcel’s temperature constant and increase the parcel’s dew point
b. Decrease the parcels temperature and increasethe parcels dew point
c. Keep the parcel’s temperature constant and keep the parcels dew point constant
d. Increase the parcels temperature and increase the parcels dew point
e. Keep the parcels dew point constant and increase the parcels temperature
The relative humidity of an air parcel will increase if any of the following actions are taken:
Keep the parcel’s temperature constant and increase the parcel’s dew pointDecrease the temperature of the parcel and increase the parcels dew pointIncrease the temperature of the parcel and increase the parcels dew pointKeep the parcels dew point constant and increase the temperature of the parcelWhat is relative humidity?To understand this further, we can look at the formula for relative humidity, which is the amount of water vapor in the air divided by the amount of water vapor that can exist at a particular temperature. When the temperature is kept constant and the dew point increases, the amount of water vapor in the air increases, resulting in an increase in relative humidity.
The followings are the given options and the actions they will take that will cause the relative humidity of an air parcel to increase:
Option A: Keep the parcel's temperature constant and increase the parcel's dew point. This action would increase the RH of the air parcel because it will increase the quantity of water vapor in the air parcel. As the parcel's temperature is constant, the ability of the air to hold water vapor also remains constant.
Option B: Decrease the parcel's temperature and increase the parcel's dew point. This action would also increase the RH of the air parcel. As the temperature of the parcel decreases, the amount of moisture that the air can contain also decreases. When the dew point is raised, the quantity of water vapor in the air parcel rises relative to the amount it can carry.
Option C: Keep the parcel's temperature constant and keep the parcel's dew point constant. In this case, there will be no increase in RH because the quantity of water vapor in the air parcel will remain the same as the ability of the air to hold water vapor remains constant.
Option D: Increase the parcel's temperature and increase the parcel's dew point. Increasing the parcel's temperature will raise the ability of the air to hold water vapor, but it will not increase the amount of water vapor in the air parcel. As a result, the RH of the air parcel will decrease.
Option E: Keep the parcel's dew point constant and increase the parcel's temperature. This action will also decrease the RH of the air parcel as it will increase the amount of moisture that the air can hold. Thus, the relative humidity will decrease.
To know more about relative humidity follow
https://brainly.com/question/13275394
#SPJ11
a 3 3-inch candle burns down in 12 hours. if b represents how much of the candle, in inches, has burned away at any time given in hours, t, write a proportional equation for b in terms of t that matches the context.
The proportional equation that matches the context of a 33-inch candle burning down in 12 hours is b = 2.75t.
A candle that is 33 inches long is called a 33-inch candle. Candles are a popular decorative item that is commonly used for lighting, as decoration for weddings, and parties, or to create an aromatic atmosphere. B represents the length of the candle that has burned away at any time given in hours, t.
To find the proportional equation for b in terms of t that matches the context of a 33-inch candle burning down in 12 hours, the following steps should be followed:
Identify the given informationThe length of the candle (l) = 33 inchesThe time taken for the candle to burn down (t) = 12 hours
Determine the rate of burning The rate of burning of the candle is given by l/t. Therefore, the rate of burning = 33/12 = 2.75 inches per hour.
The proportional equation for b in terms of t is given by b = rt where r is the rate of burning. Therefore, b = 2.75t.
To know more about proportional equation:https://brainly.com/question/21749206
#SPJ11
A ball rolls across the floor, slowing down with constant acceleration of magnitude . The ball has positive velocity ???? after rolling a distance x across the floor.
Calculate the ball's initial speed ????0 if ????= 4.51 m/s2, ????=11.17 m/s, and x=2.66 m.
A ball rolls across the floor, slowing down with a constant acceleration of magnitude a = 4.51 m/s2.
The ball has positive velocity v after rolling a distance x = 2.66 m across the floor.
To calculate the ball's initial speed v0 if
v = 11.17 m/s.
The initial velocity of the ball, v0 =?
The final velocity of the ball, v = 11.17 m/s
The acceleration of magnitude a = 4.51 m/s2
Distance travelled, x = 2.66 m
If an object has initial velocity v0, constant acceleration a, and travelled distance x, then its final velocity is given by:
v2 = v0² + 2ax
Here, the ball's initial velocity is v0, and its final velocity is v.
After substituting the given values, we have:
v2 = v0² + 2ax
=> (11.17)²
= v0² + 2(4.51)(2.66)
=> 124.57
= v0² + 25.39
=> v0² = 124.57 - 25.39
=> v0² = 99.18 => v0 = √99.18
=> v0 = 9.96 m/s
Hence, the initial velocity of the ball is v0 = 9.96 m/s.
To know more about velocity:
https://brainly.com/question/29519833
#SPJ11
if the true stress - true plastic strain curve can be described by the hollomon equation , obtain the true strain at the onset of necking in terms of hollomon equation parameters
The true strain at the onset of necking can be obtained from the Hollomon equation as follows: true strain = (K/S)^(1/n).
Here, K is the strength coefficient, S is the stress, and n is the strain hardening exponent. Thus, given the values of these parameters, we can calculate the true strain at the onset of necking.
The Hollomon equation is a mathematical expression for the true stress-true strain curve that relates the true stress to the true strain in a material. It is expressed as follows: true stress = K(true strain)^n. Here, K is the strength coefficient and n is the strain hardening exponent.
The true strain at the onset of necking is the strain at which the material starts to deform plastically instead of elastically. This can be obtained from the Hollomon equation by rearranging it to the form true strain = (K/S)^(1/n). Thus, given the values of the parameters K, S, and n, we can calculate the true strain at the onset of necking.
To know more about elastically click on below link:
https://brainly.com/question/14450755#
#SPJ11
An aircraft of mass 3.2 * 10^5 kg accelerates along a runway. calculate the change in kinetic energy in mega joules when the aircraft accelerates a) 0 to 10m/s b) From 30m/s to 40 m/s c) From 60m/s to 70m/s
Explanation:
E=(mv²)/2 ΔE = E2-E1 = (m(v2²-v1²))/2 = ?
от этогo:
а) ΔE = 16 MДж
б) ΔE = 112 МДж
c) ΔΕ = 208 МДж
A 12100 kg railroad car is coasting on a level, frictionless track at a speed of 19.0 m/s when a 4790 kg load is dropped onto it.
If the load is initially at rest, find the new speed of the car and the % change of the kinetic energy.
Hint 1: If the load is dropped into the car, it is like the car is "colliding� with a stationary load. If the load is stuck in the car, can they have different final velocities from one another?
The percent change in the kinetic energy of the system is [(0.5*(12100 + 4790)*1722) - 5.58 x 106] / (5.58 x 106) x 100% = 4.41%.
The 12100 kg railroad car is initially travelling at a speed of 19.0 m/s and has a kinetic energy of KE = 0.5*12100*1902 = 5.58 x 106 Joules. The 4790 kg load is dropped onto the car from rest, so its initial kinetic energy is 0.
When the load is dropped onto the car, the two objects collide and their velocities after the collision will be equal. Therefore, the final speed of both the railroad car and the load will be v = (12100*19 + 4790*0) / (12100 + 4790) = 17.2 m/s. The percent change in the kinetic energy of the system is [(0.5*(12100 + 4790)*1722) - 5.58 x 106] / (5.58 x 106) x 100% = 4.41%.
Learn more about change in kinetic energy: brainly.com/question/30499217
#SPJ11
What happens when thermal energy is removed from a substance?(1 point) Responses All substances will freeze. All substances will freeze. The substance loses potential energy. The substance loses potential energy. The substance’s atoms lose kinetic energy. The substance’s atoms lose kinetic energy. The substance’s particles speed up
What is the length of the x-component of the vector shown below?
The length of the x-component of the vector is approximately 48.55 units.
What is the length of the x-component of the vector?To find the length of the x-component of the vector, we need to use trigonometry.
We can use the angle and the magnitude (length) of the vector to find the x-component using the formula:
x-component = magnitude x cos(angle)
Plugging in the values given, we get:
x-component = 52 units x cos(21⁰)
x-component = 52 units x 0.9336
Multiplying these two numbers, we get:
x-component ≈ 48.55 units
Learn more about x component of vector here: https://brainly.com/question/28225266
#SPJ1
a cliff diver drops from rest to the water below. how many seconds does it take for the driver to go from 0 mi/h to 60 mi/h? (for comparison, it takes about 3.5 s to 4.0 s for a powerful car to go from 0 to 60 mi/h.)
It takes about 2.73 seconds for the cliff diver to reach a speed of 60 mph (88 ft/s or 27 m/s) if we assume no air resistance. In reality, air resistance would slow down the diver and increase the time required to reach this speed. The given speed in mph is required to be converted into fps to solve the problem.
We know,1 mile = 5280 feet1 hour = 3600 secondsTherefore,1 mile/hour = 5280/3600 = 1.467 feet/second (approx)So, 60 miles/hour = 60 * 1.467 = 88.02 feet/secondGiven, a cliff diver drops from rest to the water below.We know, initial velocity, u = 0 ft/sFinal velocity, v = 88.02 ft/sTime, t = ?We have,Acceleration due to gravity, g = 32 ft/s²We can use the kinematic equation,v = u + atto find the time taken by the driver to go from 0 to 60 miles/hour.We have,u = 0 ft/st = ?v = 88.02 ft/sg = 32 ft/s²v = u + at88.02 = 0 + 32tt = v/a= 88.02/32= 2.75 seconds (approx)Therefore, the cliff driver takes about 2.75 seconds to go from 0 miles/hour to 60 miles/hour while jumping from rest to the water below.
For more such questions on resistance
https://brainly.com/question/17563681
#SPJ11
A bitmap image is provided in two different resolutions. Image 1 has a resolution of 1500 x 1225. Image 2 has a resolution of 500 x 350. Which of the following statements is true when the sizes of both the files are increased by 25 percent?
Image 1 is sharper than image 2 and has a larger file size than image 2.
The true statement is "Image 1st is sharper than Image 2nd and has a larger file size than Image 2nd"
What is a bitmap image?A bitmap image is a type of digital image that is made up of pixels, which are small squares of color that form an image.
Bitmap image also known as raster images.
Explain image resolution?Image resolution refers to the number of pixels contained in a digital image, typically measured as the number of pixels per inch (PPI) or dots per inch (DPI). The resolution of an image determines the level of detail and clarity that can be seen in the image.
To know more about bitmap image, visit:
https://brainly.com/question/26230407
#SPJ1
Critically discuss why the environment in most communities continue to be dirty amidst the existence of local government structures
Explanation:
# Unmanaged population distribution
# lack of sanitation programs
# lack of awareness programs
# lack of implementation of policies and rules
# carelessness of people and government
# Unmanaged waste disposal
hydroelectric dams generate electricity by question 20 options: a. using the energy of the river to produce steam. b. using run-of-the-river systems, in which turbines are placed into the natural water flow. c. water impoundment, in which dam operators control the rate of water flow to turbines. d. using generators that are placed on the bottom of a river. e. converting the kinetic energy of the water impounded behind a dam into potential energy.
Hydroelectric dams generate electricity through water impoundment, in which dam operators control the rate of water flow to turbines.
c is the correct option.
Hydroelectric dams are dams used to produce electricity. The movement of water drives turbines, which power generators that generate electricity.
The movement of water, generated by gravity, is what drives turbines. Hydroelectric dams are the most widely used renewable energy source, accounting for approximately 16% of global electricity production.
Hydroelectric dams generate electricity through water impoundment, in which dam operators control the rate of water flow to turbines.
This is the process of using turbines that are powered by the movement of water that has been dammed to generate electricity.
Turbines are powered by water that has been dammed to generate electricity, which is then sent to a power station to be used.
The electricity generated from hydroelectric dams is clean and safe, making it an important part of the renewable energy mix. They are also an essential part of the global infrastructure because they provide reliable, low-cost power.
They also assist in the management of rivers, flood control, and irrigation systems in various parts of the world.
To know more about Hydroelectric dams: https://brainly.com/question/18776929
#SPJ11
From this formula F=B×i×l how to find how it came the unit of force newton?
F- force of amper
B [induction]
i- [amper]
l [L-meter]
The unit of force F_ in this formula is Newton (N).
What is force?Force is described as any external agent capable of changing a body's state of rest or motion.
The formula F_ = B × i × l
shows the relationship between magnetic force, magnetic field strength, current, and the length of the conductor in the magnetic field.
And we have the unit of magnetic field strength B is Tesla (T), the unit of current i is Ampere (A), and the unit of length l is meter (m).
substituting the units of B, i, and l into the formula and simplifying =, we have :
F_ = B × i × l
F_ = (Tesla) × (Ampere) × (meter)
F_ = (Newton/ampere/meter) × (Ampere) × (meter) (Note that 1 Tesla = 1 Newton/ampere/meter)
F_ = Newton
In conclusion, the unit of force in this formula is Newton (N).
Learn more about force at:
https://brainly.com/question/12785175
#SPJ1
The tires of a car make 95 revolutions as the car reduces its speed uniformly 95 km/h to 55 km/h. The tires have a diameter of 0.80 m. (a) what was the angular acceleration of the tires? If the car continues to decelerate at this rate, (b) how much more time is required for it to stop, and (c) how far does it go?
(a) Angular acceleration of the tyres= 7.3 rad/s^2
(b) Time required to stop= 8.9 s
(c) Distance travelled= 492.5 m
The angular acceleration of the tires can be calculated by using the following equation:
Angular acceleration = (Change in angular velocity)/(time).
Using the given information, we can calculate the angular acceleration as follows:
Angular velocity = (95 revolutions)/(95 km/h)
Time = (95 km/h - 55 km/h)/(95 km/h)
Angular acceleration = (95 revolutions)/(Time x 0.80 m)
Angular acceleration = 7.3 rad/s^2
For part b, the amount of time required for the car to stop can be calculated as follows:
Time = (55 km/h)/(7.3 rad/s^2 x 0.80 m)
Time = 8.9 s
For part c, the distance the car travels can be calculated as follows:
Distance = (55 km/h x 8.9 s)
Distance = 492.5 m
"angular acceleration", https://brainly.com/question/31145298
#SPJ11