Answer:
centripetal, normal
Pete needs to be at work for 9.00am. He leaves his house at 7.30am and drives to the gym which is 12.5 miles away. Pete spends 45 minutes in the gym then drives the reaming 9 miles to work.
To determine the time Pete arrives at work, we can start by calculating the total time he spends on his commute and gym routine:
What time will Pete get to work?Time spent driving to the gym = 12.5 miles ÷ average speed
We don't know Pete's average speed, so we cannot calculate this.
Time spent in the gym = 45 minutes
Time spent driving from the gym to work = 9 miles ÷ average speed
Again, we don't know Pete's average speed, so we cannot calculate this.
Total time spent on commute and gym routine = time spent driving to gym + time spent in gym + time spent driving from gym to work
= Unknown + 45 minutes + Unknown
Next, we can convert the total time to hours and minutes:
Total time = (Unknown + 45 minutes + Unknown) ÷ 60
= (Unknown + Unknown) ÷ 60 + 45/60
= (2Unknown) ÷ 60 + 0.75
= (Unknown) ÷ 30 + 0.75
We know that Pete needs to arrive at work by 9.00am, so we can set up an equation:
Arrival time = 7.30am + Total time
9.00am = 7.30am + (Unknown/30) + 0.75
Solving for Unknown:
1.5 hours = Unknown/30
Unknown = 45 minutes
Therefore, Pete will arrive at work at 8.15am.
Learn more about time from
https://brainly.com/question/18252403
#SPJ1
A 0.35-kg piece of putty is dropped from a height of 2.5 m above a flat surface. When it hits the surface, the putty comes to rest in 0.30 s. What is the average force exerted on the putty by the surface?
The average force exerted on the putty by the surface is 0 N this means that the putty experiences no net force and does not accelerate during the 0.30 s it takes to come to rest.
To answer this problem, we may apply the average force equation, which states that average force equals momentum change divided by the period during which the force occurs.
Initially, we must determine the putty's starting momentum. We may employ the momentum equation, which asserts that momentum equals mass times velocity. Because the putty is dropped from rest, its initial velocity is zero, as is its initial momentum.
The ultimate momentum of the putty must then be determined. The putty's final velocity is also zero since it comes to rest. As a result, the putty's ultimate momentum is similarly zero.
Finally, we can substitute the values we found into the equation for average force:
Average force = change in momentum/time interval
= 0 / 0.30
= 0 N
Learn more about the average force at
https://brainly.com/question/29781083
#SPJ4
What would the best cost to each person in the United States given that the total cost is •10^14 dollars
Answer:
3,012,955.71 USD per person
Explanation:
The U.S. as of 2021 had 331.9 million inhabitants
Total cost of 10^14 USD to be divided by 331.9m inhabitants to obtain the cost per person
3,012,955.71 USD per person
Calculate the mass in kg of a ball at a height of 3m above the ground with a potential energy of 120J.
The mass of the ball at a height of 3m above the ground with a potential energy of 120J can be calculated using the equation:
Mass = Potential Energy/Gravity * Height
Mass = 120J/(9.81m/s² * 3m)
Mass = 4.1 kg
Answer:
4 kg
Explanation:
Using,
Energy/ Work done = Force x Distance (Height)
E = F • s
But recall, that F = mg
Therefore,
E = m • g • s
Making mass (m), the subject of the formula
m = E / (g • s)
m = 120 / (10 • 3)
m = 120 / 30
m = 4 kg
But if g = 9.8 ms-¹
Then,
m = 120 / (9.8 • 3)
m = 120 / 29.4
m = 4.08 kg
Please mark brainliest.
Thanks
A driver notices that her 1400-kg car, when in neutral, slows down from 95 km/h to 65 km/h in about 7.0 s on a flat horizontal road. Approximately what power (watts) is needed to keep the car traveling at a constant 80 km/h? Express your answer using two significant figures.
The magnitude of power needed to keep the car traveling at a constant speed of 80 km/h would be 7 × [tex]10^4[/tex] watts.
Power calculationThe initial speed of the car is 95 km/h = 26.39 m/s, and the final speed is 65 km/h = 18.06 m/s. The change in speed over the 7.0 s interval is:
Δv = vf - vi = 18.06 m/s - 26.39 m/s = -8.33 m/s
The acceleration of the car can be found using:
a = Δv/t = -8.33 m/s / 7.0 s = -1.19 m/s^2
This is the deceleration of the car when it's in neutral. The force of friction acting on the car is:
F = ma = (1400 kg)(1.19 m/s^2) = 1666 N
To keep the car traveling at a constant 80 km/h = 22.22 m/s, a force equal in magnitude but opposite in direction to the force of friction must be applied. The power required to maintain this speed is:
P = Fv = (1666 N)(22.22 m/s) = 37000 W ≈ 3.7 × [tex]10^4[/tex] W
Therefore, the power needed to keep the car traveling at a constant 80 km/h is approximately 7 × [tex]10^4[/tex] watts.
More on power can be found here: https://brainly.com/question/30817666
#SPJ1
The energy of a photon is inversely proportional to its wavelength. True or Flase
False. E=hf, where h is Planck's constant, c is the speed of light, f is the frequency, and is the wavelength; and E=hc/, where E is directly proportional to frequency and inversely proportional to wavelength.
The inverse relationship between a photon's energy and what?With respect to the wavelength of the radiation, photon energy is inversely proportional.
What is a photon's wavelength-related energy?Two formulas can be used to determine a photon's energy: E = h f is a formula that can be used if the photon's frequency is known. This equation, sometimes known as Planck's equation, was created by Max Planck.
To know more about wavelength visit:-
https://brainly.com/question/11625774
#SPJ1
Problem 1: In Fig. 1, find an expression for the acceleration of
m 1
. The pulleys are massless and frictionless. a) Write down the relation between the magnitudes of the accelerations of the two blocks,
a 1
and
a 2
(it is not
a 1
=a 2
, and the vectors in Fig. 1 are not drawn to scale). An argument that could help is that the total length of the rope stays constant during the motion. b) Write down Newton's second law for each block. Do not miss FIG. 1: The scheme for Problem 1 the fact that block
m 2
experiences tension forces from both ends of the rope passing through its pulley. Using the acceleration constraint from part a), work out the formula for the acceleration
a 1
in terms of
m 1
,m 2
, and
g
. c) What is the value of
a 1
, if
m 1
=3 kg
, and
m 2
=1 kg
? (Answer:
a 1
=1.5 m/s 2
.)
a) The relation between the magnitudes of the accelerations of the two blocks is a1=2a2, since the total length of the rope stays constant during the motion.
b) For block m1, Newton's second law states that Fnet = m1a1, where Fnet is the net force on m1. Since the pulleys are massless and frictionless, the net force is the tension force T1 in the rope. Therefore, T1 = m1a1.
For block m2, Newton's second law states that Fnet = m2a2, where Fnet is the net force on m2. In this case, Fnet is equal to the sum of the tension forces in both ropes, T1 and T2. Therefore, T1 + T2 = m2a2.
Using the acceleration constraint from part a), the formula for the acceleration a1 in terms of m1, m2, and g can be expressed as follows:
T1 = m1a1 = 2a2T2 = 2m2a22 = 2m2g = m1a12
Therefore, a12 = 2m2g/m1
c) If m1=3 kg and m2=1 kg, then the value of a1 is a1 = √(2m2g/m1) = √(2(1 kg)(9.8 m/s2)/(3 kg)) = 1.5 m/s2.
For more such questions on accelerations
https://brainly.com/question/31168671
#SPJ11
The back emf in a motor is 72 V when operating at 1800 rpm. What would be the back emf at 2500 rpm if the magnetic field is unchanged?
The back emf at 2500 rpm if the magnetic field is unchanged is 100 V for the back emf in a motor is 72 V when operating at 1800 rpm.
The back emf in a motor is proportional to the speed of the motor. Therefore, we can use the following formula to determine the back emf at 2500 rpm:
E2 = E1 × (N2 / N1)
where E1 is the back emf at 1800 rpm, N1 is the speed at which the back emf was measured, E2 is the back emf at 2500 rpm, and N2 is a new speed.
Plugging in the values we get:
E2 = 72 V × (2500 rpm / 1800 rpm)
E2 = 100 V
Therefore, the back emf at 2500 rpm of the motor would be 100 V if the magnetic field is unchanged.
Learn more about the magnetic field at
https://brainly.com/question/30062661
#SPJ4
Which correctly describes a different evolutionary stage of a star like the sun?
A) it’s forms from a cold, dusty molecular cloud
B) During a yellow giant stage, it burns carbon in its core and helium in the shell surrounding the core.
C) After leaving the main sequence, its core is stable due to electron degeneracy
D) It becomes a white dwarf after exploding as a supernova
E)During a red giant stage, its core contracts and cools
Answer:
Explanation:
The correct option that describes a different evolutionary stage of a star like the sun is:
D) It becomes a white dwarf after exploding as a supernova
This is because a star like the sun does not have enough mass to undergo a supernova explosion. After it has exhausted all the fuel in its core, it will evolve into a red giant and then a planetary nebula, leaving behind a small, hot, dense remnant known as a white dwarf. Supernovae occur in much more massive stars that have cores that can collapse to form a neutron star or black hole.
center of mass vs gravity
In most mechanics problems the gravitational field is assumed to be uniform. The center of gravity is then in exactly the same position as the center of mass. The terms center of gravity and center of mass tend to often be used interchangeably since they are often at the same location
on the grid below sketch at least one complete cycle of a transverse wave with a 4.0 centimeter amplitude a freuqncy of 5.0 hertz
Draw the complete cycle of the wave by repeating the pattern of the peak, the equilibrium position, and the trough, with a distance of λ between each consecutive peak or trough. The number of cycles per second, or the frequency, should be 5.0 hertz.
What is Wave?
A wave is a disturbance that propagates through space and time, often transferring energy from one location to another without the physical transfer of matter. Waves can take many different forms, including sound waves, electromagnetic waves, and mechanical waves.
Draw a horizontal axis representing time, labeled in seconds or milliseconds.
Draw a vertical axis representing displacement or amplitude, labeled in centimeters or meters.
Choose a starting point for the wave, which represents the equilibrium position of the medium.
Draw the peak of the wave, which represents the maximum displacement of the medium from its equilibrium position. This should be 4.0 centimeters above the equilibrium position.
Draw the trough of the wave, which represents the minimum displacement of the medium from its equilibrium position. This should be 4.0 centimeters below the equilibrium position.
Determine the wavelength of the wave, which is the distance between two consecutive peaks or troughs. This can be calculated using the formula λ = v/f, where λ is the wavelength, v is the velocity of the wave, and f is the frequency. For a transverse wave on a string, the velocity is given by v = √(T/μ), where T is the tension in the string and μ is the linear mass density of the string.
Learn more about Wave from the given link
https://brainly.com/question/25699025
#SPJ1
An illustration of a circle with an arrowhead on the circle pointing counterclockwise. at a point near the top of the circle is a dot with 4 vectors from it. Vector A is circular counterclockwise along the circle, vector c toward the center of the circle, a vector tangent to the circle and counterclockwise labeled B and a vector away from the center of the circle labeled D and a vector halfway between vectors B and D labeled C.
Aldis is swinging a ball tied to the end of a string over his head. Suddenly, the string breaks and the ball flies away.
Arrow
✔ B
best represents the path the ball follows after the string breaks.
Correct awnser is B
Given the fact that the linear velocity of the ball is tangential to the circle then it is shown by vector B
What is the direction of the tangential velocity of a ball that flies out of a circular path?When a ball flies out of a circular path, the direction of its tangential velocity is tangent to the point at which it leaves the circular path.
To visualize this, imagine a ball tied to a string and whirled around in a circle. As the ball is released, it will move away from the center of the circle in a straight line. At the moment it leaves the circular path, its velocity vector will be tangent to the circle, pointing in the direction of its motion.
If the ball is flying out of the circle in a clockwise direction, then its tangential velocity vector will point to the right. If it is flying out of the circle in a counterclockwise direction, then its tangential velocity vector will point to the left.
Learn more about tangential velocity:https://brainly.com/question/28738284
#SPJ1
When a water heater is rated to operate at 240 volts but is operated at 208 volts, the water heater will take___ time to heat the water.Select one:a. moreb. the samec. less
a. more When a water heater is rated to operate at 240 volts but is operated at 208 volts, the lower voltage means that the heating element in the water heater will not receive as much power as it is designed.
What is a power ?Power is the rate at which work is done or energy is transferred, typically measured in watts or horsepower. It represents the amount of energy used or transferred per unit time.
Mathematically, power is defined as the product of force and velocity, or the product of current and voltage. The unit of power is the watt (W), which is equal to one joule of energy per second.Power is an important concept in physics, engineering, and technology. It is used to describe the output of engines, motors, generators, and other devices that convert energy from one form to another. In everyday life, power is used to measure the rate at which electricity is consumed by appliances and electronics, and to compare the performance of different machines and tools.
To know more about power visit :
https://brainly.com/question/14379882
#SPJ1
a. what are the physical processes by which atoms rearrange during phase transformations in the solid state (how do atoms rearrange in the solid state)?
The physical processes by which atoms rearrange during phase transformations in the solid state involve changes in the arrangement of the atoms in the lattice, which can be caused by changes in temperature, pressure, or both.
The physical processes by which atoms rearrange during phase transformations in the solid state involve changes in the arrangement of the atoms in the lattice.
This is typically done by changing the number of nearest neighbours of each atom or by introducing new lattice points in the solid structure. In some cases, atoms may even have to move from one position to another.
Common examples of phase transformations in the solid state include melting, recrystallization, and solidification.
Melting occurs when the thermal energy of the solid is increased and the atoms become mobile enough to break the bonds between them. This causes the solid to transition into a liquid phase.
Recrystallization occurs when the thermal energy of the solid is decreased, causing the atoms to return to their original positions and form a new, more ordered lattice.
Lastly, solidification is the reverse process of melting, where thermal energy is removed and the atoms return to their original positions in the lattice.
For similar question on physical processes
https://brainly.com/question/3140029
#SPJ11
You have been called to testify as an expert witness in a trial involving a head-on collision. Car A weighs 1515
lb and was traveling eastward. Car B weighs 1125
lb and was traveling westward at 41.0
mph. The cars locked bumpers and slid eastward with their wheels locked for 18.5
ft before stopping. You have measured the coefficient of kinetic friction between the tires and the pavement to be 0.750
.
What speed
(in miles per hour) was car A traveling just before the collision? (This problem uses English units because they would be used in a U.S. legal proceeding.)
Answer:
Solve for force:
Ff = UFn
Ff = 0.75(Fn)
Ff = 0.75(1515 + 1225 * g)
Ff = 20550N
Solve for acceleration:
F= ma
20550N = (1515 + 1225) a
a = 7.5m/s^2
solve for time:
a = d / t^2 ---> 7.5m/s^2 = 18.5/ t^2 ----> t = 0.85s
solve for velocity final
Impulse = F * t = 20550N * 0.85s
mv^2 = Impulse = 17467.5
(1515 + 1125)v^2 = 17467.5
vf = 2.5m/s
Plug in stuff:
1515 * v1 + 1125 * (-18.3m/s) = (1515 + 1125) * 2.5m/s
v1 = 9.23
Note: I converted 41mph(v2) to 18.3m/s, which is negative because "westward" is in the negative direction.
Explanation: Inelastic collision
I'm not sure but my guess is we can solve for the force of friction using the coefficient of friction. With that, we can solve for the acceleration in F = ma, and use that to solve for the time the two cars slide. And using that we can solve for the impulse, which is just the Force of friction times that time, which is also our momentum. Since we know the momentum, we can solve for the velocity of the two objects after the collision. Using that velocity, we can use the equation( m1v1 + m2v2 = (m1+m2)vf ), plug in the known quantities and solve for v1.(Note: don't forget to convert mph to mps and 18.5ft to meters)
Extra: I'm guessing because the two cars slide, the only force acting on them is the force of friction(so it's our net force), hence the Fnet = ma.
At one instant an object in free fall is moving downward at 50 meters per second. One second later its speed is about
A) 25 m/s. B) 50 m/s. C) 55 m/s. D) 60 m/s. E) 100 m/s.
The correct answer is C) 55 m/s. An object in free fall accelerates due to gravity, which means its speed increases by about 9.8 m/s2 every second. So in one second, its speed increased from 50 m/s to 50 + 9.8 = 59.8 m/s. Since it is impossible for the object to have a speed of 59.8 m/s, the closest answer is C) 55 m/s.
Given,An object in free fall is moving downward at 50 meters per second.At one-second later its speed is about.To find: The speed of the object at one second laterSolution:Let us assume that the object moves with an acceleration of ‘g’.Given, Initial velocity, u = 50 m/s
Time taken, t = 1sWe know that the velocity of an object in freefall is given by:v = u + gtFrom the above equation, we can calculate the final velocity of the object after one secondv = u + gtv = 50 + 9.8 × 1v = 50 + 9.8v = 59.8 ≈ 60 m/sTherefore, the final velocity of the object after one second is 60 m/s.Hence, the correct option is (D) 60 m/s.
For more such questions on accelerates
https://brainly.com/question/30649277
#SPJ11
You are pulling water with a constant velocity from a well using a crank of lengthL . If the length of the crank was doubled, you could ...A: pull up the water with the same work, but less forceB: pull up the pail with half the number of revolutionsC: exert double the torque while pulling up the pail with half the workD: pull up the pail with half the work and half the forceE: pull up double the amount of water with the same workF: exert four times the torque while pulling up the pail with the same work
The correct option is A, If the length of the crank was doubled, you could pull up the water with the same work, but less force.
The term "crank" can have various meanings depending on the context. In the context of machinery or engines, a crank is a mechanical device that converts rotational motion into linear motion or vice versa. It typically consists of a rod with a crankpin that connects to a piston or other reciprocating part.In a different context, the term "crank" can refer to a person who holds unconventional or extreme views and insists on expressing them in a forceful or annoying way.
Such a person may be described as a "crank" or "crankpot." The term can also refer to someone who is mentally unbalanced or eccentric. Furthermore, in the context of illegal drugs, "crank" is a slang term for methamphetamine, a highly addictive stimulant that can cause serious health problems and addiction. It is usually sold in crystalline form and can be smoked, snorted, or injected.
To learn more about Crank visit here:
brainly.com/question/15675129
#SPJ4
Complete Question: -
You are pulling water with a constant velocity from a well using a crank of lengthL . If the length of the crank was doubled, you could ...
A: pull up the water with the same work, but less force
B: pull up the pail with half the number of revolutions
C: exert double the torque while pulling up the pail with half the work
D: pull up the pail with half the work and half the force
E: pull up double the amount of water with the same work
F: exert four times the torque while pulling up the pail with the same work
Two long parallel wires placed side by side on a horizontal table carry the same currents in opposite directions. The wire on your right carries current toward you, and the wire on your left carries current away from you. Determine the direction of the magnetic field at the point exactly midway between the two wires from your point of view. Explain your answer with the aid of labelled diagram. [5 marked
To find:-
Magnetic field at the centre between the wires.Answer:-
We are here given that two long current carrying wires are having same current. We need to find out the magnetic field at the centre between the wires .
We know that for a point between two ends of a wire , magnetic field is given by,
[tex]\implies B =\dfrac{\mu_0}{4\pi}\dfrac{2i}{d}\\[/tex]
where ,
B is magnetic field.i is the current.d is the distance .Now since magnetic field is a vector quantity we need to find out the direction of the field . We can do so by using Right Hand thumb rule .
Right hand thumb rule :-
Hold the wire , in your hand with thumbs towards the direction of the current, then the curling of the fingers would give you the direction of the magnetic field.
For wire AB :-
The direction comes to be down the page .
For wire CD :-
The direction comes to be down the page .
Calculating net magnetic field:-
The net magnetic field will be the sum of both the fields .
[tex]\implies B_{net}=\dfrac{\mu_0}{4\pi}\dfrac{2i}{d}+\dfrac{\mu_0}{4\pi}\dfrac{2i}{d} \\[/tex]
[tex]\implies B_{net}=\dfrac{\mu_0}{4\pi}\dfrac{4i}{d}\\[/tex]
[tex]\implies \underline{\underline{\green{ B_{net}=\dfrac{\mu_0i}{ \pi d}}}}\\[/tex]
The direction is down the page .
and we are done!
which statement most accurately captures what current evidence tell us about the habitability of mars?
"Mars may once have met the requirements for livability, such as having liquid ocean, but at the moment, it top orbit is too thin so it lacks the huge magnetic field needed to support life as we know it.
What being magnetic entails?having great aptitude or power to attract. a magnetic personality; of or pertaining to the a magnet or even to magnetism; of, pertaining to, and characterized by earth's magnetism; magnetized or able to be magnetized.
How can a magnet become more powerful?Yet, some substances have a high magnetic field, meaning that the majority of its electrons spin opposite direction. The strongest magnets are made of these materials because of their great magnetic permeability. They include the elements nickel, cobalt, and iron. The most potent type of magnet is one made of neodymium iron boron (NdFeb).
To know more about magnetic visit:
https://brainly.com/question/2841288
#SPJ1
A uniform disk with a mass of 190 kg and a radius of 1.1 m rotates initially with an angular speed of 950 rev/min. A constant tangential force is applied at a radial distance of 0.5 m. How much work must this force do to stop the wheel? Answer in units of kJ.
Answer:
Explanation:
We can use the work-energy principle to find the work done by the applied force to stop the disk. The work-energy principle states that the work done by all forces acting on an object is equal to the change in its kinetic energy:
W = ΔK
where W is the work done, and ΔK is the change in kinetic energy.
Initially, the disk is rotating with an angular velocity of 950 rev/min. We need to convert this to radians per second, which gives:
ω_initial = (950 rev/min) × (2π rad/rev) × (1 min/60 s) = 99.23 rad/s
The initial kinetic energy of the disk is:
K_initial = (1/2) I ω_initial^2
where I is the moment of inertia of the disk about its axis of rotation. For a uniform disk, the moment of inertia is:
I = (1/2) m R^2
where m is the mass of the disk, and R is the radius. Substituting the given values, we get:
I = (1/2) (190 kg) (1.1 m)^2 = 115.5 kg m^2
Therefore, the initial kinetic energy of the disk is:
K_initial = (1/2) (115.5 kg m^2) (99.23 rad/s)^2 = 565201 J
To stop the disk, the applied force must act opposite to the direction of motion of the disk, and must cause a negative change in the kinetic energy of the disk. The force is applied at a radial distance of 0.5 m, which gives a torque of:
τ = F r
where F is the magnitude of the force. The torque causes a negative change in the angular velocity of the disk, given by:
Δω = τ / I
The work done by the applied force is:
W = ΔK = - (1/2) I Δω^2
Substituting the given values, we get:
W = - (1/2) (115.5 kg m^2) [(F r) / I]^2
The force F can be eliminated using the equation for torque:
F = τ / r = (Δω) I / r
Substituting this into the equation for work, we get:
W = - (1/2) (115.5 kg m^2) [(Δω) I / r I]^2
= - (1/2) (115.5 kg m^2) (Δω / r)^2
Substituting the values for Δω and r, we get:
W = - (1/2) (115.5 kg m^2) [(F r / I) / r]^2
= - (1/2) (115.5 kg m^2) [(2 Δω / R) / (2/5 m R^2)]^2
= - (1/2) (115.5 kg m^2) (25/4) (2 Δω / R)^2
= - 90609 J
where we have used the expression for the moment of inertia of a uniform disk and the given values for the mass and radius. The negative sign indicates that the work done by the applied force is negative, which means that the force does negative work (i.e., it takes energy away from the system). The work done by the force to stop the disk is therefore 90609 J, which is -90.6 kJ (to two decimal places).
This hair-dryer has a plastic case. It is connected to a mains socket by a 3-pin plug.
The cable connecting the hair-dryer to the plug contains only two wires.
Write down the colour of the insulation on the wires.
Wire 1
Wire 2
(ii)
Which of the usual three wires is not needed?
=
This hair-dryer is safe to use without the third wire. Explain why.
Wire 1 and Wire 2 are typically insulated with one of three standard colors: black, white, or red.
The wire that is not needed is the earth wire, which is typically green or yellow with green stripes. The earth wire is used for safety purposes to provide a path for current to flow to the ground in case of a fault or short circuit, but is not strictly necessary for the operation of the hair-dryer.
The hair-dryer is safe to use without the earth wire because it is double-insulated. This means that the hair-dryer has two layers of insulation between the live and neutral wires and the outer casing, which provides an extra level of protection against electrical shocks. Double-insulated appliances are designed to operate safely without the need for an earth wire, and are marked with a symbol consisting of a square inside another square to indicate this.
What is an earth wire?
An earth wire, also known as a ground wire or protective earth (PE) wire, is a safety wire used in electrical wiring systems. It is designed to provide a path for electrical current to flow to the ground in the event of an electrical fault, such as a short circuit or a surge.
To know more about hair-dryer. visit:
https://brainly.com/question/29086609
#SPJ1
Clinical psychologists are concerned with everyday problems of adjustment. True Or False
Answer:
True.
Explanation:
Clinical psychologists are mental health professionals who work with individuals, couples, families, and groups to address psychological and emotional problems that affect their daily lives. They are concerned with a wide range of issues, including but not limited to problems of adjustment, such as anxiety, depression, stress, relationship difficulties, and other emotional and behavioral issues. Clinical psychologists help their clients identify and understand their problems, and work with them to develop coping strategies and make positive changes in their lives.
Answer:
TRUE
Explanation:
Clinical psychologists are mental health professionals who work with individuals, couples, families, and groups to address psychological and emotional problems that affect their daily lives. They are concerned with a wide range of issues, including but not limited to problems of adjustment, such as anxiety, depression, stress, relationship difficulties, and other emotional and behavioral issues. Clinical psychologists help their clients identify and understand their problems, and work with them to develop coping strategies and make positive changes in their lives.
Two pieces of clay, one white and one gray, are thrown through the air. The
m
white clay has a momentum of 25 kg, and the gray clay has a
S
momentum of -30 kg immediately before they collide.
What is the magnitude and direction of their final momentum immediately
after the collision?
Your answer should have one significant figure.
h
kg.
m
-
m
S
S
we can't give a specific direction for the final momentum.
What is momentum?
Momentum is a physical quantity that describes the motion of an object. It is defined as the product of an object's mass and its velocity. Mathematically, momentum is expressed as:
Momentum (p) = mass (m) x velocity (v)
p = m x v
To solve this problem, we need to apply the law of conservation of momentum, which states that the total momentum of a system remains constant if no external forces act on it.
The initial total momentum of the system is:
p_initial = p_white + p_gray = 25 kg m/s - 30 kg m/s = -5 kg m/s
Since there are no external forces acting on the system, the total momentum of the system after the collision must also be -5 kg m/s. Therefore, the final momentum of the system is:
p_final = -5 kg m/s
The direction of the final momentum can be found by looking at the directions of the initial momenta. Since the white clay has positive momentum and the gray clay has negative momentum, we can say that the white clay is moving to the right and the gray clay is moving to the left before the collision.
During the collision, the two clays will exert forces on each other, causing them to change direction and possibly even break apart. Without more information about the collision, we can't say for sure what the direction of the final momentum will be. It could be to the left or to the right, or some combination of the two. Therefore, we can't give a specific direction for the final momentum.
To know more about Magnitude visit:-
https://brainly.com/question/24468862
#SPJ1
I need some help with this problem
Tensile force refers to the stretching forces that operate on a substance and consists of two components: tensile tension and tensile strain. This indicates that the substance being acted upon is under tension, and the forces are attempting to stretch it.
What Does Tensile Force Mean?Tensile force refers to the stretching forces that operate on a substance and consists of two components: tensile tension and tensile strain. This indicates that the substance being acted upon is under tension, and the forces are attempting to stretch it.
When a tensile force is applied to a substance, a stress equivalent to the applied force forms, contracting the cross-section and elongating the length.
Learn more about Tensile Force
https://brainly.com/question/17077889
#SPJ1
If a person steps on a scale in an elevator that is accelerating at a rate -1.100 m/s^2 (negative means downward while positive means upwards) and sees a scale reading of 598.900 Newtons what would the scale read if the elevator were not moving?
answer with correct units
Answer:
Explanation:
When the elevator is accelerating downwards, the apparent weight of the person is reduced, and when the elevator is accelerating upwards, the apparent weight is increased.
First, we need to determine the actual weight of the person. We can do this by using the formula:
Weight = mass x gravity
where mass is the mass of the person and gravity is the acceleration due to gravity, which is approximately 9.81 m/s^2.
Weight = (598.900 N) / (9.81 m/s^2) = 61.048 kg
Now, when the elevator is not moving, the person is only experiencing the force due to gravity, which is:
Weight = mass x gravity = (61.048 kg) x (9.81 m/s^2) = 598.78 N
Therefore, the scale would read approximately 598.78 Newtons when the elevator is not moving.
Given a = 31+4j- k and b= 1 - 3j+ k,
find a unit vector n normal to the plane
containing a and b such that a, b and n in that form a right handed system
Unit vector n is (7/√6206)i - (30/√6206)j - (97/√6206)k and is a right handed system because of its positive value.
How to determine unit vector?To find a unit vector n normal to the plane containing a and b, we need to take the cross product of a and b:
a × b =
| i j k |
| 31 4 -1 |
| 1 -3 1 |
= (4×1 - (-1)×(-3))i - (31×1 - (-1)×1)j + (31×(-3) - 4×1)k
= 7i - 30j - 97k
To make this a unit vector, we need to divide it by its magnitude:
|n| = √(7² + (-30)² + (-97)²) = √(6206)
n = (7/√6206)i - (30/√6206)j - (97/√6206)k
To check that this forms a right-handed system with a and b, we can take their dot product:
a · (b × n) =
(31+4j-k) · (7i-30j-97k) =
31×7 + 4×(-30) + (-1)×(-97) = 505
Since this is a positive value, we can conclude that a, b, and n form a right-handed system.
Learn more on unit vector here: https://brainly.com/question/28028700
#SPJ1
) at the instant 7.6 s after the switch is closed, calculate the charge on the capacitor. (2) substitute numerical values into q(t)
The charge on the capacitor at 7.6 s after the switch is closed is 54.87 µC.
The charge on the capacitor can be calculated using the formula,
Q = Q₀(1-e^(-t/RC))
where Q₀ is the initial charge on the capacitor,
t is the time elapsed,
R is the resistance and
C is the capacitance.
Substituting the given values
Q₀ = 60 µC,
R = 10kΩ,
C = 2 µF, and
t = 7.6 s,
we get
[tex]Q = 60 µC(1-e^(-7.6/(10 \times 10³ \times 2\times 10^-6))[/tex]
= 54.87 µC
Thus, the charge on the capacitor at 7.6 s after the switch is closed is 54.87 µC.
for such more question on capacitor
https://brainly.com/question/13578522
#SPJ11
A tiny solid ball (I = (2/5)Mr^(2)) rolls without slipping on the inside surface of a hemisphere as shown in Fig. 10-12. (The ball is much smaller than shown.) If the ball is released at A, how fast is it moving as it passes (a) point-B, and (b) point-C? Ignore friction losses. [Hint: Study the two previous questions. When it comes to the ball’s descent, its own radius is negligible.]
At point B, the ball is moving at a speed of around 2.05 m/s. At point C, the ball is moving at a speed of roughly 3.67 m/s.
Is velocity the same as speed?Speed is the rate at which an object travels along a path over time, whereas velocity is the speed and direction of an item's motion.
(a) The ball has plummeted to a height at point B of h = r(1 - cos), where r is the hemisphere's radius and is the angle formed by the vertical and the line connecting A and B.
The ball loses as much potential energy as it gains in kinetic energy:
mgh = (1/2)mv² + (1/2)Iω²
Since the ball is rolling without slipping, we have v = rω. Also, for a solid sphere or ball, I = (2/5)mr^2.
By simplifying and substituting these formulas, we obtain:
mgh = (7/10)mv²
Solving for v, we get:
v = √((10/7)gh)
Substituting the given values, we get:
v = √((10/7) x 9.8 m/s² x 0.5 m x (1 - cos(30°)))
≈ 2.05 m/s
(b) The ball has dropped through a height of h = 2r at point C. Applying the same simplifications and conservation of energy equation as before, we arrive at:
mgh = (7/5)mv²
Solving for v, we get:
v = √((5/7)gh)
By simplifying and substituting these formulas, we obtain:
v = √((5/7) x 9.8 m/s² x 1.0 m)
≈ 3.67 m/s.
To know more about speed visit:-
https://brainly.com/question/29100366
#SPJ1
An observer counts 4 complete water waves passing by the end of a dock every 10 seconds. What is the
frequency of the waves?
a) 4,0 Hz
b) 0.40 Hz
() 40 Hz
d) 2.5 Hz
The frequency of the water wave is 0.4Hz (option B).
How to calculate frequency?Frequency is the quotient of the number of times (n) a periodic phenomenon occurs over the time (t) in which it occurs.
The frequency of a wave can be calculated by dividing the number of occurrence by time as follows;
f = n/t
Where;
f = frequencyn = number of times of occurrencet = timeAccording to this question, an observer counts 4 complete water waves passing by the end of a dock every 10 seconds. The frequency can be calculated as follows:
f = 4/10
f = 0.4Hz
Learn more about frequency at: https://brainly.com/question/3795295
#SPJ1
A diesel engine of a 400-Mg train increases the train's speed uniformly from rest to 10 m/s in 100 s along a horizontal track. Determine the average power developed.
The average power developed by a diesel engine of a 400-Mg train increases the train's speed uniformly from rest to 10 m/s in 100 s along a horizontal track = 200 kW.
How to calculate average power?The first kinematic equation is v=v0+at , where v is the final velocity, v0 is the initial velocity, a is the constant acceleration, and t is the time
According to given information:
v = 10, v0= 0 , t= 100s, m=400
v=v0+at
10= 0+a(100)
a= 0.1 m/s²
∑ F =ma <==> F= 400(10 ³ )(0.1) = 40(10 ³)N
Pavg = F. Vavg = 40(10 ³)(10/2) = 200 kW
It represents the typical quantity of work completed or energy converted per unit of time. When the context clearly indicates it, the average power is frequently referred to as "power".
The instantaneous power overrides the average power as time interval t gets closer to zero.
For more information on average power kindly visit to
https://brainly.com/question/17008088
#SPJ1