A boy is playing with a water hose, which has an exit area of
10 cm2 and has water flowing at a rate of 2 m/s. If he covers
the opening of the hose with his thumb so that it now has an
open area of 2 cm2, what will be the new exit velocity of the
water?

Answers

Answer 1

Answer:

The exit velocity of water is  B. 15 m/s.

Explanation:

According to equation of continuity, for a steady flow of water, the volume of liquid entering a pipe in 1 second is equal to the volume that leaves per second.

If the initial exit area of the pipe is A₁ and the speed of exit is v₁ and the final exit area is A₂ and its corresponding exit velocity  is v₂, then,

Rewrite the expression for v₂.

Substitute 10 cm² for A₁, 2 cm² for A₂ and 3 m/s for v₁.

The exit speed of water from the hose is 15 m/s.


Related Questions

A system gains 1500J of heat and 2200J of work is done by the system on its surroundings. Determine the change in internal energy of the system

Answers

Answer:

-700

formula is heat gained - work done

The change in internal energy if A system gains 1500J of heat and 2200J of work is done by the system on its surroundings, is 700 joules.

What is Energy?

Energy is the ability to perform work in physics. It could exist in several different forms, such as potential, kinetic, thermal, electrical, chemical, radioactive, etc.

Additionally, there is heat and work, which is energy being transferred from one body to another. Energy is always assigned based on its nature once it has been transmitted. Thus, heat transmitted may manifest as thermal energy while work performed may result in mechanical energy.

Given:

A system gains 1500J of heat and 2200J of work is done by the system on its surroundings,

Calculate the change in internal energy as shown below,

The change in internal energy = heat gained - work done

The change in internal energy = 1500 - 2200

The change in internal energy = -700 J

Thus, the change in internal energy is 700 joules.

To know more about Energy:

https://brainly.com/question/8630757

#SPJ5

When an apple falls towards the earth,the earth moves up to meet the apple. Is this true?If yes, why is the earth's motion not noticeable?

Answers

Answer:

because the mass of the apple is very less compared to the mass of earth. Due to less mass the apple cannot produce noticable acceleration in the earth but the earth which has more mass produces noticable acceleration in the apple. thus we can see apple falling on towards the earth but we cannot see earth moving towards the apple.

A grade 12 Physics student shoots a basketball
from the ground at a hoop which is 2.0 m above
her release. The shot was at a velocity of 10 m/s
and at an angle of 80° to the ground.
a. Determine the vertical velocity of the ball
when it is at the level of the net. You
should get two answers.
Please show ALL steps

Answers

Answer:

7.84 m/s

Explanation:

Height, h = 2 m

Initial velocity, u = 10 m/s

Angle, A = 80°

(a) Let the time taken to go to the net is t.

Use second equation of motion

[tex]h = u t + 0.5 at^2\\\\- 2 = - 10 sin 80 t - 4.9 t^2\\\\4.9 t^2 + 9.8 t - 2 = 0 \\\\t= \frac{- 9.8\pm\sqrt{9.8^2 + 4\times 4.9\times 2}}{9.8}\\\\t = \frac{- 9.8 \pm 11.6}{9.8}\\\\t = - 2.2 s , 0.2 s[/tex]

Time cannot be negative.

So, t = 0.2 s

The vertical velocity at t = 0.2 s is

v = u + at

v = 10 sin 80 - 9.8 x0.2

v = 9.8 - 1.96 = 7.84 m/s

The cannon on a battleship can fire a shell a maximum distance of 33.0 km.
(a) Calculate the initial velocity of the shell.

Answers

Answer:

v = 804.23 m/s

Explanation:

Given that,

The maximum distance covered by a cannon, d = 33 km = 33000 m

We need to find the initial velocity of the shell. Let it is v. It can be calculated using the conservation of energy such that,

[tex]v=\sqrt{2gh} \\\\v=\sqrt{2\times 9.8\times 33000} \\\\v=804.23\ m/s[/tex]

So, the initial velocity of the shell is 804.23 m/s.

How many loops are in this circuit?

Answers

I think there a 4 but I am not sure

I see six (6) loops.

I attached a drawing to show where I get six loops from.

What has a wind speed of 240 kph or greater?​

Answers

Answer:

SUPER TYPHOON (STY), a tropical cyclone with maximum wind speed exceeding 220 kph or more than 120 knots.

You need to calculate the volume of berm that has a starting cross-sectional area of 118 SF, and an ending cross-sectional area of 245 SF. The berm is 300 ft long and is assumed to taper evenly between the two cross-sectional areas, what is the calculated volume of the berm in cubic feet

Answers

6 cubic feet I’m pretty sure that’s the answer

Question 9 of 10
According to the law of conservation of momentum, the total initial
momentum equals the total final momentum in a(n)
A. Interacting system
B. System interacting with one other system
C. Isolated system
D. System of balanced forces

Answers

Answer:

The answer is C. Isolated System

Answer:

C. Isolated system

Explanation :

∵According to law of  conservation of momentum ,In an isolated system ,the total momentum remains conserved.

A beam of light has a wavelength of 549nm in a material of refractive index 1.50. In a different material of refractive index 1.07, its wavelength will be:_________.

Answers

Explanation:

someone to check if the answer is correct

What is the energy equivalent of an object with a mass of 2.5 kg? 5.5 × 108 J 7.5 × 108 J 3.6 × 1016 J 2.25 × 1017 J

Answers

Answer:

E = m c^2 = 2.5 * (3 * 10E8)^2 = 2.25 * 10E17 Joules

Answer:

The answer is D. 2.25 × 1017 J

Explanation:

got it right on edge 2021

During a practice shot put throw, the 7.9-kg shot left world champion C. J. Hunter's hand at speed 16 m/s. While making the throw, his hand pushed the shot a distance of 1.4 m. Assume the acceleration was constant during the throw.

Required:
a. Determine the acceleration of the shot.
b. Determine the time it takes to accelerate the shot.
c, Determine the horizontal component of the force exerted on the shot by hand.

Answers

Answer:

a)   a = 91.4 m / s²,  b)    t = 0.175 s, c)  

Explanation:

a) This is a kinematics exercise

           v² = vox ² + 2a (x-xo)

           a = v² - 0/2 (x-0)

           

let's calculate

          a = 16² / 2 1.4

          a = 91.4 m / s²

b) the shooting time

          v = vox + a t

          t = v-vox / a

          t = 16 / 91.4

          t = 0.175 s

c) let's use Newton's second law

          F = ma

          F = 7.9 91.4

          F = 733 N

A 1,200kg roller coaster car starts rolling up a slope at a speed of 15m/s. What is the highest point it could reach

Answers

Answer: 11.36 m

Explanation:

Given

Mass of roller coaster is m=1200 kg

Initial speed of roller coaster is v=15 m/s

Energy at bottom and at the top is same i.e.

[tex]\Rightarrow \dfrac{1}{2}mv^2=mgh\\\\\Rightarrow \dfrac{1}{2}\times 1200\times 15^2=1200\times 9.8\times h\\\\\Rightarrow h=\dfrac{15^2}{2\times 9.8}\\\\\Rightarrow h=11.36\ m[/tex]

Thus, the highest point reach by the roller coaster is 11.36 m

Answer:

11.36m

Explanation:

The working substance of a certain Carnot engine is 1.50 mol of an ideal monatomic gas. During the isothermal expansion portion of this engine's cycle, the volume of the gas doubles, while during the adiabatic expansion the volume increases by a factor of 5.7. The work output of the engine is 940 J in each cycle. Compute the temperatures of the two reservoirs between which this engine
operates.

Answers

Answer:

The hot temperature is 157.5 K

The cold temperature is 48.8 K

Explanation:

Step 1: Data given

The working substance of a certain Carnot engine is 1.50 mol of an ideal monatomic gas.

The volume increases by a factor of 5.7

The work output of the engine is 940 J in each cycle.

During the isothermal expansion portion of this engine's cycle, the volume of the gas doubles. This means V2 = 2*V1 (and V4 = 2*V3)

Step 2:For a carnot engine:

V2/V1 = V4/V3

Work = nR((T1)ln(V2/V1) - (T2)ln(V4/V3))

⇒with Work = the work done in the cycle = 940J

⇒with n = the number of moles = 1.50 moles

⇒with R = the gas constant = 8.314 J/mol*K

⇒with T1 = the hot temperature

⇒With T2⇒ the cold temperature

where R = 8.31 J/mol K Gas Constant

940J = 1.5moles * 8.314 J/mol*K * (T1*ln(2) - T2*ln(2)))

940 = 1.5 * 8.314 ln(2) * (T1-T2)

(T1-T2) = 940 / (1.5*8.314*ln(2))

(T1-T2) = 108.7K

For the reversible adiabatic expansion: T2 = T1*(V1/V2)^(R/Cv). Where V2/V1 = 5.7 (Because during the adiabatic expansion the volume increases by a factor of 5.7)

For a monatomic ideal gas, Cv = 3/2R

When we combine both, we'll have:

T2 = T1*(1/5.7)^(R/3/2R)

T2 = T1*(1/5.7)^(2/3)

T2= T1 * 0.31

Since we know that (T1-T2) = 108.7K

we have:

T1 - 0.31T1= 108.7K

0.69T1 = 108.7K

T1 = 157.5K

T2 = 157.5*0.31 = 48.8K

prove mathematically :
1. v = u + at
2. s = ut+1*2 at ​

Answers

Answer:

a.v=u+v/2

a.v=s/t

combining two equation we get,

u+v/2=s/t

(u+v)t/2=s

(u+v)t/2=s

{u+(u+at)}t/2=s

(u+u+at)t/2=s

(2u+at)t/2=s

2ut+at^2/2=s

2ut/2+at^2/2=s

UT +1/2at^2=s

proved

a=v-u/t

at=v-u

u+at=v

helppp!!! what's the answer to this??

when an ideal capacitor is connected across an ac voltage supply of variable frequency, the current flowing

a) is in phase with voltage at all frequencies
b) leads the voltage with a phase independent of frequency
c) leads the voltage with a phase which depends on frequency
d) lags the voltage with a phase independent of frequency

what would be the correct option? ​

Answers

Answer:

(b)

Explanation:

The voltage always lags the current by 90°, regardless of the frequency.

A child is outside his home playing with a metal hoop and stick. He uses the stick to keep the hoop of radius 45.0 cm rotating along the road surface. At one point the hoop coasts downhill and picks up speed. (a) If the hoop starts from rest at the top of the hill and reaches a linear speed of 6.35 m/s in 11.0 s, what is the angular acceleration, in rad/s2, of the hoop? rad/s2 (b) If the radius of the hoop were smaller, how would this affect the angular acceleration of the hoop? i. The angular acceleration would decrease. ii. The angular acceleration would increase. iii. There would be no change to the angular acceleration.

Answers

Answer:

a) [tex] \alpha = 1.28 rad/s^{2} [/tex]  

b) Option ii. The angular acceleration would increase

Explanation:

a) The angular acceleration is given by:

[tex] \omega_{f} = \omega_{0} + \alpha t [/tex]

Where:

[tex] \omega_{f} [/tex]: is the final angular speed = v/r

v: is the tangential speed = 6.35 m/s

r: is the radius = 45.0 cm = 0.45 m

[tex]\omega_{0}[/tex]: is the initial angular speed = 0 (the hoop starts from rest)

t: is the time = 11.0 s

α: is the angular acceleration

Hence, the angular acceleration is:

[tex] \alpha = \frac{\omega}{t} = \frac{v}{r*t} = \frac{6.35 m/s}{0.45 m*11.0 s} = 1.28 rad/s^{2} [/tex]  

b) If the radius were smaller, the angular acceleration would increase since we can see in the equation that the radius is in the denominator ([tex] \alpha = \frac{v}{r*t} [/tex]).

Therefore, the correct option is ii. The angular acceleration would increase.

I hope it helps you!  

1. A message signal m(t) has a bandwidth of 5kHz and a peak magnitude of 2V. Estimate the bandwidth of the signal u(t) obtained when m(t) frequency modulates a carrier with a) kf = 10 Hz/V, b) kf = 100 Hz/V, and c) kf = 1000 Hz/V.

Answers

Answer:

3v at 5.3 herts

Explanation:

a vessel with mass 10kg intially moving withthe velocicity 12m s along the x axis explodes into three exactly identical pieces Just after the explosion one piece moves with speed 10 m s along the x axis and asecond piece moves with speed 10 m s along the y axis What iis the magnitude of the component of velocity of the third piece along the y axiss

Answers

Answer:

Explanation:

Apply law of conservation of momentum along y-axis.

Initially there was no momentum along y-axis. So there will be nil momentum along y-axis again finally.

Let the mass of each piece after breaking be m .

Momentum of piece moving along positive y-axis

= m x 10 = 10m .

Let the component of velocity of third piece along y-axis be v .

Its momentum along the same direction = m v .

Total momentum along y -axis = 10 m + m v

According to law of conservation of momentum

10 m + mv = 0

v = - 10 m/s .

Component of velocity of the third piece along y-axis will be - 10 m/s .

In other words it will be along negative y-axis with speed of 10 m/s.

The relation of mass m, angular velocity o and radius of the circular path r of an object with the centripetal force is-
a. F = m²wr
b. F = mwr²
c. F = mw²r
d. F = mwr. ​

Answers

Answer:

Correct option not indicated

Explanation:

There are few mistakes in the question. The angular velocity ought to have been denoted with "ω" and not "o" (as also suggested in the options).

The formula to calculate a centripetal force (F) is

F = mv²/r

Where m is mass, v is velocity and r is radius

where

While the formula to calculate a centrifugal force (F) is

F = mω²r

where m is mass, ω is angular velocity and r is radius of the circular path.

From the above, it can be denoted that the relationship been referred to in the question is that of a centrifugal force and not centripetal force, thus the correct option should be C.

NOTE: Centripetal force is the force required to keep an object moving in a circular path/motion and acts inward towards the centre of rotation while centrifugal force is the force felt by an object in circular motion which acts outward away from the centre of rotation.

In the figure, particle A moves along the line y = 31 m with a constant velocity v with arrow of magnitude 2.8 m/s and parallel to the x axis. At the instant particle A passes the y axis, particle B leaves the origin with zero initial speed and constant acceleration a with arrow of magnitude 0.35 m/s2. What angle between a with arrow and the positive direction of the y axis would result in a collision?

Answers

Answer:

59.26°

Explanation:

Since a is the acceleration of the particle B, the horizontal component of acceleration is a" = asinθ and the vertical component is a' = acosθ where θ angle between a with arrow and the positive direction of the y axis.

Now, for particle B to collide with particle A, it must move vertically the distance between A and B which is y = 31 m in time, t.

Using y = ut + 1/2a't² where u = initial velocity of particle B = 0 m/s, t = time taken for collision, a' = vertical component of particle B's acceleration =  acosθ.

So, y = ut + 1/2a't²

y = 0 × t + 1/2(acosθ)t²

y = 0 + 1/2(acosθ)t²

y = 1/2(acosθ)t²   (1)

Also, both particles must move the same horizontal distance to collide in time, t.

Let x be the horizontal distance,

x = vt (2)where v = velocity of particle A = 2.8 m/s and t = time for collision

Also,  using x = ut + 1/2a"t² where u = initial velocity of particle B = 0 m/s, t = time taken for collision, a" = horizontal component of particle B's acceleration =  asinθ.

So, x = ut + 1/2a"t²

x = 0 × t + 1/2(ainsθ)t²

x = 0 + 1/2(asinθ)t²

x = 1/2(asinθ)t²  (3)

Equating (2) and (3), we have

vt = 1/2(asinθ)t²   (4)

From (1) t = √[2y/(acosθ)]

Substituting t into (4), we have

v√[2y/(acosθ)] = 1/2(asinθ)(√[2y/(acosθ)])²  

v√[2y/(acosθ)] = 1/2(asinθ)(2y/(acosθ)  

v√[2y/(acosθ)] = ytanθ

√[2y/(acosθ)] = ytanθ/v

squaring both sides, we have

(√[2y/(acosθ)])² = (ytanθ/v)²

2y/acosθ = (ytanθ/v)²

2y/acosθ = y²tan²θ/v²

2/acosθ = ytan²θ/v²

1/cosθ = aytan²θ/2v²

Since 1/cosθ = secθ = √(1 + tan²θ) ⇒ sec²θ = 1 + tan²θ ⇒ tan²θ = sec²θ - 1

secθ = ay(sec²θ - 1)/2v²

2v²secθ = aysec²θ - ay

aysec²θ - 2v²secθ - ay = 0

Let secθ = p

ayp² - 2v²p - ay = 0

Substituting the values of a = 0.35 m/s, y = 31 m and v = 2.8 m/s into the equation, we have

ayp² - 2v²p - ay = 0

0.35 × 31p² - 2 × 2.8²p - 0.35 × 31 = 0

10.85p² - 15.68p - 10.85 = 0

dividing through by 10.85, we have

p² - 1.445p - 1 = 0

Using the quadratic formula to find p,

[tex]p = \frac{-(-1.445) +/- \sqrt{(-1.445)^{2} - 4 X 1 X (-1)}}{2 X 1} \\p = \frac{1.445 +/- \sqrt{2.088 + 4}}{2} \\p = \frac{1.445 +/- \sqrt{6.088}}{2} \\p = \frac{1.445 +/- 2.4675}{2} \\p = \frac{1.445 + 2.4675}{2} or p = \frac{1.445 - 2.4675}{2} \\p = \frac{3.9125}{2} or p = \frac{-1.0225}{2} \\p = 1.95625 or -0.51125[/tex]

Since p = secθ

secθ = 1.95625 or secθ = -0.51125

cosθ = 1/1.95625 or cosθ = 1/-0.51125

cosθ = 0.5112 or cosθ = -1.9956

Since -1 ≤ cosθ ≤ 1 we ignore the second value since it is less than -1.

So, cosθ = 0.5112

θ = cos⁻¹(0.5112)

θ = 59.26°

So, the angle between a with arrow and the positive direction of the y axis would result in a collision is 59.26°.

A 31 kg block is initially at rest on a horizontal surface. A horizontal force of 83 N is required to set the block in motion. After it is in motion, a horizontal force of 55 N i required to keep it moving with constant speed. From this information, find the coefficients of static and kinetic friction

Answers

Answer:

The static and kinetic coefficients of friction are 0.273 and 0.181, respectively.

Explanation:

By Newton's Laws of Motion and definition of maximum friction force, we derive the following two formulas for the static and kinetic coefficients of friction:

[tex]\mu_{s} = \frac{f_{s}}{m\cdot g}[/tex] (1)

[tex]\mu_{k} = \frac{f_{k}}{m\cdot g}[/tex] (2)

Where:

[tex]\mu_{s}[/tex] - Static coefficient of friction, no unit.

[tex]\mu_{k}[/tex] - Kinetic coefficient of friction, no unit.

[tex]f_{s}[/tex] - Static friction force, in newtons.

[tex]f_{k}[/tex] - Kinetic friction force, in newtons.

[tex]m[/tex] - Mass, in kilograms.

[tex]g[/tex] - Gravitational constant, in meters per square second.

If we know that [tex]f_{s} = 83\,N[/tex], [tex]f_{k} = 55\,N[/tex], [tex]m = 31\,kg[/tex] and [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], then the coefficients of friction are, respectively:

[tex]\mu_{s} = \frac{83\,N}{(31\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)}[/tex]

[tex]\mu_{s} = 0.273[/tex]

[tex]\mu_{k} = \frac{55\,N}{(31\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)}[/tex]

[tex]\mu_{k} = 0.181[/tex]

The static and kinetic coefficients of friction are 0.273 and 0.181, respectively.

Find the volume of cuboid of side 4cm. Convert it in SI form​

Answers

Answer:

0.000064 cubic meters.

Explanation:

Given the following data;

Length of side = 4 centimeters

Conversion:

100 centimeters = 1 meters

4 cm = 4/100 = 0.04 meters

To find the volume of cuboid;

Mathematically, the volume of a cuboid is given by the formula;

Volume of cuboid = length * width * height

However, when all the sides are equal the formula is;

Volume of cuboid = L³

Volume of cuboid = 0.04³

Volume of cuboid = 0.000064 cubic meters.

A mass is attached to the end of a spring and set into oscillation on a horizontal frictionless surface by releasing it from a compressed position. The record of time is started when the oscillating mass first passes through the equilibrium position, and the position of the mass at any time is described by

Answers

The question is incomplete. The complete question is :

A mass is attached to the end of a spring and set into oscillation on a horizontal frictionless surface by releasing it from a compressed position. The record of time is started when the oscillating mass first passes through the equilibrium position, and the position of the mass at any time is described by x = (4.7 cm)sin[(7.9 rad/s)πt].

Determine the following:

(a) frequency of the motion

(b) period of the motion

(c) amplitude of the motion

(d) first time after t = 0  that the object reaches the position x = 2.6 cm

Solution :

Given equation : x = (4.7 cm)sin[(7.9 rad/s)πt].

Comparing it with the general equation of simple harmonic motion,

 x = A sin (ωt + Φ)

  A = 4.7 cm

  ω = 7.9 π

a). Therefore, frequency, [tex]$f=\frac{\omega}{2 \pi}$[/tex]

                                             [tex]$=\frac{7.9 \pi}{2 \pi}$[/tex]

                                             = 3.95 Hz

b). The period, [tex]$T=\frac{1}{f}$[/tex]

                        [tex]$T=\frac{1}{3.95}[/tex]

                            = 0.253 seconds

c). Amplitude is A = 4.7 cm

d). We have,

    x = A sin (ωt + Φ)

    [tex]$x_t=4.7 \sin (7.9 \pi t)$[/tex]

    [tex]$2.6 = 4.7 \sin (7.9 \pi t)$[/tex]

     [tex]$\sin (7.9 \pi t) = \frac{26}{47}$[/tex]

     [tex]$7.9 \pi t = \sin^{-1}\left(\frac{26}{47}\right)$[/tex]

          Hence, t = 0.0236 seconds.

If you and a friend are standing side-by-side watching a soccer game, would you both view the motion from the same reference frame?

a. Yes, we would both view the motion from the same reference point because both of us are at rest in Earth’s frame of reference.
b. Yes, we would both view the motion from the same reference point because both of us are observing the motion from two points on the same straight line.
c. No, we would both view the motion from different reference points because motion is viewed from two different points; the reference frames are similar but not the same.
d. No, we would both view the motion from different reference points because response times may be different; so, the motion observed by both of us would be different.

Answers

Answer:

the correct is C

Explanation:

The concept of a frame of reference is of crucial importance in physics, because it is the system from which measurements are made. Therefore, the relationships between the different reference frames must be clear so that the measurements made can be compared correctly.

In this case, the first observed sees the movement of the ball, suppose it moves a distance r, the second observed is next to me, separated by a distance x, therefore a frame of reference located in the movement of the ball. ball r '.

Consequently, the measurement carried out is related by

             r = r’ + x

where the bold letters indicate wind blowers.

With these explanations we review the different answers, the correct one is C

The force an ideal spring exerts on an object is given by , where measures the displacement of the object from its equilibrium position. If , how much work is done by this force as the object moves from to

Answers

Answer:

The correct answer is "1.2 J".

Explanation:

Seems that the given question is incomplete. Find the attachment of the complete query.

According to the question,

x₁ = -0.20 mx₂ = 0 mk = 60 N/m

Now,

⇒ [tex]W=\int_{x_1}^{x_2}F \ dx[/tex]

⇒      [tex]=\int_{x_1}^{x_2}-kx \ dx[/tex]

⇒      [tex]=-k \int_{-0.20}^{0}x \ dx[/tex]

By putting the values, we get

⇒      [tex]=-(60)[\frac{x^2}{2} ]^0_{-0.20}[/tex]

⇒      [tex]=-60[\frac{0}{2}-\frac{0.04}{2} ][/tex]

⇒      [tex]=1.2 \ J[/tex]

The block in the drawing has dimensions L0×2L0×3L0,where L0 =0.2 m. The block has a thermal conductivity of 150 J/(s·m·C˚). In drawings A, B, and C, heat is conducted through the block in three different directions; in each case the temperature of the warmer surface is 35 ˚C and that of the cooler surface is 16 ˚C Determine the heat that flows in 6 s for each case.

Answers

Answer:

1140 J, 6840 J, 10260 J

Explanation:

Lo x 2 Lo x 3 Lo, Lo = 0.2 m,  K = 150 J/(s · m · C˚) , T = 35 ˚C, T' = 16 ˚C,

time, t = 6 s

The heat conducted is

[tex]H = \frac{K A (T - T') t}{d}\\\\H = \frac{150\times 3\times 0.2\times 0.2\times (35-16) \times 6}{3\times 0.2}\\\\H = 1140 J[/tex]

The heat conducted is

[tex]H = \frac{K A (T - T') t}{d}\\\\H = \frac{150\times 3\times 0.2\times 2\times0.2\times (35-16) \times 6}{3\times 0.2}\\\\H = 6840 J[/tex]

The heat conducted is

[tex]H = \frac{K A (T - T') t}{d}\\\\H = \frac{150\times 3\times 0.2\times 2\times0.2\times (35-16) \times 6}{2\times 0.2}\\\\H = 10260 J[/tex]

A cylindrical tank with radius 7 m is being filled with water at a rate of 2 m3/min. How fast is the height of the water increasing (in m/min)?

Answers

Answer:

0.013 m/min

Explanation:

Applying,

dV/dt = (dh/dt)(dV/dh)............. Equation 1

Where

V = πr²h................ Equation 2

Where V = volume of the tank, r = radius, h = height.

dV/dh = πr²............ Equation 3

Substitute equation 3 into equation 1

dV/dt = πr²(dh/dt)

From the question,

Given: dV/dt = 2 m³/min, r = 7 m, π = 3.14

Substitute these values into equation 3

2 = (3.14)(7²)(dh/dt)

dh/dt = 2/(3.14×7²)

dh/dt = 0.013 m/min

1.- Que distancia recorrió una carga de 2,5x10-6 coul, generando así un campo eléctrico de 55new/coul.​

Answers

Answer:

r = 20.22 m

Explanation:

Given that,

Charge,[tex]q=2.5\times 10^{-6}\ C[/tex]

Electric field, [tex]E=55\ N/C[/tex]

We need to find the distance. We know that, the electric field a distance r is as follows :

[tex]E=\dfrac{kq}{r^2}\\\\r=\sqrt{\dfrac{kq}{E}}\\\\r=\sqrt{\dfrac{9\times 10^9\times 2.5\times 10^{-6}}{55}}\\\\r=20.22\ m[/tex]

So, the required distance is 20.22 m.

A rigid tank contains 10 lbm of air at 30 psia and 60 F. Find the volume of the tank in ft3. The tank is now heated until the pressure doubles. Find the heat transfer in Btu.

Answers

Answer:

Hence the amount of heat transfer is 918.75 Btu.

Explanation:

Now,

A ball has a mass of 4.65kg and approximates a ping pong ball of mass 0.060kg that is at rest by striking it in an elastic collision. The initial velocity of the bowling ball is 5.00m/s, determine the final velocities of both masses after the collision.

Answers

Answer:

Look at work

Explanation:

Elastic Collision: Ki=Kf

M1=4.65kg

M2: 0.060kg

v1=5m/s

v2=0m/s

4.65*5+0.060*0=4.65*v1'+0.060*v2'

23.25+0=4.65v1'+0.060v2'

Also since it is an elastic collision we can use

v1+v1'=v2+v2'

4.65+v1'=v2'

4.65+v1'=v2'

Substitute into the earlier equation

23.25=4.65v1'+0.060(4.65+v1')

Expand

23.25=4.65v1'+0.279+0.06v1'

Solve for v1'

22.971=4.71v1'

v1'=4.88m/s

v2'=4.65+4.88=9.53m/s

Other Questions
What is the value of the constant in the equation that relates the height andwidth of this rectangle? For the given triangle find the exact value for sin(A). Assume angle C is a right angle. Help ASAP!! A triangle has side lengths of 11in, 15in, and 20in. Find the angle measures of the triangle. Round decimal answers to the nearest tenth. Someone help pls. Two different businesses model their profits over 15 years, where x is the year, f(x) is the profits of a garden shop, and g(x) is the profits of a construction materials business. Use the data to determine which function is exponential, and use the table to justify your answer. 1. f(x) is exponential; an exponential function increases more slowly than a linear function.2. f(x) is exponential; f(x) increased more overall than g(x).3. g(x) is exponential; g(x) has a higher starting value and higher ending value.4. g(x) is exponential; an exponential function increases faster than a linear function. F(x) =-2x-4 find x if f(x)=14 The weight of a newborn is 7.5 pounds. The baby gained one-half pound a month constantly for its first year.a) Find the linear function that models the babys weight, W, as a function of the age of the baby, inmonths, t.b) Find a reasonable domain and range for the function W.c) If the function W is graphed, find and interpret the x- and y-intercepts.d) If the function W is graphed, find and interpret the slope of the function.e) When did the baby weight 10.4 pounds?f) What is the output when the input is 6.2? Interpret your answer. I need help with this, please. what is 3/2 divided by 1/8helppp The Perfect Rose Co. has earnings of $2.30 per share. The benchmark PE for the company is 16. a. What stock price would you consider appropriate Ed decided to build a storage box. At first, he was planning to build a cubical box with edges of length ninches. To increase the amount of storage, he decided to make the box 1 inch taller and 2 inches longer,while keeping its depth at n inches. The volume of the box Ed built has a volume how many cubic inchesgreater than the box he originally planned to build?O 3n2 + 2n312 + 3n+3O 6n2 + 3nO 6n2 + 3n+3 Help me and I'll make u Brainly eat and follow u What do we call basic rules of the food service space that create clear guidelines relating to sanitation, safety, staff scheduling, codes of conduct, and professional expectations for the team? A. laws and litigations B. informational handbook C. policies and procedures D. implied insights The Baroque style is characterized byfrivolous subject matterrevival of Antiquitylight, pastel colorsfluid, aspects of sculpture Describe the five factors that may limit how fast a project can be completed. Give an example of each. Understanding how and why the South differs from New England culturally, economically, and politically is an example of regional analysis. Suzi is 1.7 meters tall. At 2:00 pm, Suzi measures her shadow to be 0.3 meters long. At the same time, a near by tree casts a shadow that is 2.4 meters long. How tall is the tree? (Give your answer in tenths.) The blurring of lines between the state and a special interest group in which a close alliance develops is called 4. A bullet of mass 30 g is fired from a rifle of mass 5kg at a speed of 259m/s.a) What is the momentum of the rifle just after the bullet is fired?b) What is the recoil velocity of the rifle? Romantic artists emphasized a. logic and order. b. intense emotional expression. c. All possible answers. d. pomp and splendor. Today's most successful companies are including _____ directly in the product and service development process.