A calorie is the commonly used unit of chemical energy. it is also the unit of energy used to measure the energy content of food.
More on Calorie and EnergyCalorie (or kilocalorie) is a unit of measurement used to measure the energy content of food. It is the amount of energy required to raise the temperature of one kilogram of water by one degree Celsius.
One calorie is equal to the amount of energy required to raise the temperature of one gram of water by one degree Celsius.
Energy is a fundamental property of matter that can take many forms, such as electrical, thermal, chemical, nuclear, and mechanical energy.
Learn more about Calorie here:
https://brainly.com/question/1178789
#SPJ1
g the half life of 2n-71 is 2.4 minutes. if we started with 50g at the beginning, how many grams would be left after 12 minutes?
After 12 minutes, the amount of 2N-71 remaining would be 25 grams. This is because the half-life of 2N-71 is 2.4 minutes, meaning that after 2.4 minutes, half of the initial amount (50 grams) will remain. After 12 minutes, half of the remaining 25 grams will have decayed, leaving 25 grams.
The initial amount of 2n-71 is 50 g, and the half-life of 2n-71 is 2.4 minutes. We need to determine how many grams of 2n-71 would be left after 12 minutes. During radioactive decay, the amount of a radioactive substance decreases exponentially over time. The formula for determining the amount remaining of a radioactive substance after time t is:A = A₀(1/2)^(t/h)Where, A₀ = the initial amount of the substance,A = the amount of the substance after time t,h = the half-life of the substance, and t = time elapsedPlugging the given values in the formula, we get:A = 50(1/2)^(12/2.4)A = 50(1/2)^5A = 50(1/32)A = 1.5625Therefore, the amount of 2n-71 left after 12 minutes is 1.5625 g.
For more details follow this link: https://brainly.com/question/31108721
#SPJ11
The bent rod is supported at A, B, and C by smooth journal bearings. Determine the magnitude of F2 which will cause the reaction Cy at the bearing C to beequal to zero. The bearings are in proper alignment and exert only force reactions on the rod. Set F1 = 300 lb.
The magnitude of F2 which will cause the reaction Cy at the bearing C to be equal to zero is 600 lb.
Let's assume the direction of F2 is x-axis and direction of Cy is y-axis. Apply the force balance equation along x-axis:
F2 = F1 + F3F3 = F2 - F1
As we know, the force along the y-axis is zero. So, there is no force balance equation along y-axis. Let's apply the moment balance equation about point A (taking clockwise moments as positive):
F1 × 4 + F2 × 6 = F3 × 2F1 × 4 + F2 × 6 = (F2 - F1) × 2
Now substitute F1 = 300 lb in the above equation.
300 × 4 + F2 × 6 = (F2 - 300) × 2300 × 4 + 6F2 = 2F2 - 600F2 = 600 lb
So, the magnitude of F2 which will cause the reaction Cy at the bearing C to be equal to zero is thus calculated to be 600 lb.
More on force: https://brainly.com/question/18596795
#SPJ11
The Chernobyl nuclear disaster led to the release of massive radiation, specifically iodine-131 and cesium-137, which has been connected to a variety of environmental problems in the 30 years following the disaster. A meltdown in which of the following structures at a nuclear power plant, such as Chernobyl, would most likely lead to the accidental release of radiation?
Cooling tower
Turbine
Generator
Reactor core
Reactor core
Answer:
The meltdown in which of the following structures at a nuclear power plant, such as Chernobyl, would most likely lead to the accidental release of radiation is reactor core. Answer:e
Explanation:
What is the Chernobyl nuclear disaster?
The Chernobyl nuclear disaster was a catastrophic nuclear accident that occurred on April 26, 1986, at the No. 4 reactor in the Chernobyl Nuclear Power Plant, located in the northern Ukrainian Soviet Socialist Republic.
The explosion and subsequent fires resulted in the release of significant amounts of radioactive material into the atmosphere, as well as widespread contamination of the environment.
What was the cause of the Chernobyl nuclear disaster?
During a reactor systems test, an unforeseen combination of factors caused the core of one of Chernobyl's reactors to overheat and explode, releasing radioactive material into the surrounding area. The resulting steam explosion and fires killed two plant workers at the time of the accident and injured hundreds of others.
The explosion also resulted in the deaths of dozens of firefighters and other emergency workers in the aftermath of the disaster.
What was the impact of the Chernobyl nuclear disaster on the environment?
The Chernobyl nuclear disaster resulted in the release of significant quantities of radioactive material, including iodine-131 and cesium-137, which have been linked to a variety of environmental issues. These substances are still present in the environment, and their long-term effects on humans and wildlife are still being investigated.
However, the disaster has had a significant impact on the environment in the years following the accident, including the contamination of water and soil, the displacement of wildlife, and the potential long-term health effects on local populations.
To know more about Chernobyl nuclear disaster refer here:https://brainly.com/question/10116000#
#SPJ11
20pcm3 og a gas has a pressure of 510mmhg what will be the volume of the pressure is increased to 780mmhg, assuming there is no change in temperature
The volume of the gas will decrease from 20 cm³ to 13.08 cm³.
What is Boyle's law?Boyle's law is a gas law that states that the product of the pressure and volume of a gas is constant at constant temperature.
What is the significance of assuming no change in temperature in this problem?Assuming no change in temperature is significant because it allows us to apply Boyle's law to solve the problem. If the temperature were to change, we would need to use a different gas law, such as Charles's law or the combined gas law, to account for the change in temperature.
We can use Boyle's law to solve this problem, which states that the product of the pressure and volume of a gas is constant at constant temperature. Mathematically, we can express this as P₁V₁ = P₂V₂, where P₁ and V₁ are the initial pressure and volume, respectively, and P₂ and V₂ are the final pressure and volume, respectively.
Using this equation, we can solve for V₂:
P₁V₁ = P₂V₂
V₂ = (P₁V₁)/P₂
Substituting the given values, we get:
V₂ = (510 mmHg x 20 cm³) / 780 mmHg
V₂ = 13.08 cm³
Therefore, if the pressure is increased from 510 mmHg to 780 mmHg at constant temperature, the volume of the gas will decrease from 20 cm³ to 13.08 cm³.
Learn more about Boyle's law here:
https://brainly.com/question/30367133
#SPJ1
Carbon dioxide gas is collected in a laboratory experiment to determine the molar mass of the compound. At 294 Kand 1.01 atm, 1.008 grams of co2 was collected when a 500 mL flask was filled with the evolved co2. What is the experimental molar mass of co2? a. 41.5 g/molb., 44.0 g/mol c. 46.9 g/mol d 48.2 g/mol
The experimental molar mass of CO2 collected in a laboratory experiment is 44.0 g/mol.
When carrying out laboratory experiments, carbon dioxide gas is collected to determine the molar mass of the compound. When a 500 mL flask was filled with the evolved CO2 at 294 K and 1.01 atm, 1.008 grams of CO2 was collected. It is required to determine the experimental molar mass of CO2. To solve the problem, we will make use of the ideal gas law formula:
P.V = n.R.T Where,P = 1.01 atmV = 500 mL = 0.500 Ln = number of moles of CO2R = 0.0821 L.atm.K-1.mol-1T = 294 K Substituting the values in the formula, we get;1.01 atm × 0.500 L = n × 0.0821 L.atm.K-1.mol-1 × 294 K1.01 × 0.500 = n × 24.79n = (1.01 × 0.500) / 24.79n = 0.02039 moles of CO2. We know that the mass of CO2 that was collected is 1.008 grams.Therefore, the molar mass of CO2 = mass / number of moles = 1.008 g / 0.02039 mol = 49.38 g/mol
But, we know that CO2 has a molar mass of 44.01 g/mol. Hence, the value of 49.38 g/mol is not the experimental molar mass of CO2 and so, we have to calculate the experimental molar mass of CO2 as follows:Experimental molar mass of CO2 = mass / number of moles = 1.008 g / 0.02039 mol = 49.38 g/mol. Actual molar mass of CO2 = 44.01 g/mol.
Experimental error = | experimental value - actual value | / actual value × 100%.Substituting the values in the formula, we get;
Experimental error = | 49.38 - 44.01 | / 44.01 × 100%
Experimental error = 12.2% ≈ 12%.
Therefore, the experimental molar mass of CO2 is 44.0 g/mol (Option b).
More on molar mass: https://brainly.com/question/18879890
#SPJ11
Which of the compounds listed below, when added to water, is/are likely to increase the solubility of AgCl? A. Ammonia, B. NH3 Sodium cyanide, C. NaCN Potassium chloride,
D. KCl
AgCl is more likely to dissolve in water when ammonia (NH3) is present. This is due to the fact that ammonia and AgCl may combine to create the water-soluble complex ion, Ag(NH3)2+.
How well does AgCl dissolve in NH3 H2O?At 25°C, the solubility of AgCl in water is 0.0020 g of AgCl per litre of H2OS.
AgCl dissolves in NH3 at a rate of 14.00 g per kilogramme of NH3 when the temperature is 25°C. Due to the production of the soluble stable complex [AgNH32]+, AgCl is more soluble in NH3. Since oxygen is more electronegative than nitrogen, ammonia is less polar than water.
In water or acid, is AgCl soluble?AgCl is well known to be insoluble in water whereas NaCl and KCl are soluble in the pedagogical literature: implementations of Elementary studies of both qualitative and quantitative analysis make this distinction.
To know more about ammonia visit:-
https://brainly.com/question/20524322
#SPJ1
Which of the following molecules would have the highest boiling point?
a) hexane
b) octane
c) 2-propylpentane
d) 2-methylhexane
The molecule which would have the highest boiling point is 2-methylhexane. Thus, the correct option will be D.
What is boiling point?The boiling point is the temperature at which the vapor pressure of a liquid is equal to the external pressure. The boiling point of a liquid is a measure of its vapor pressure. The higher the boiling point, the higher the vapor pressure of the liquid, and the more heat is required to vaporize it.
The boiling point of a substance is affected by the strength and types of intermolecular forces. The stronger the intermolecular forces, the higher the boiling point. 2-methylhexane has highest boiling point because it has the highest number of carbons and branches, which contribute to its strong intermolecular forces that lead to a higher boiling point.
Therefore, the correct option is D.
Learn more about Boiling point here:
https://brainly.com/question/25777663
#SPJ11
What is the hybridization of the carbon that is attached to the oxygens in CH;COOH (acetic acid)? 4) Which molecule has the greatest dipole moment? A. CCl B. CH,Clz C. CFa D. BrzCClz CH,Fz
The carbon that is attached to the oxygens in CH₃COOH (acetic acid) is sp2 hybridized. This is because it is attached to three atoms (one oxygen and two hydrogens) and has a trigonal planar geometry.
The molecule with the greatest dipole moment is CH₂Cl₂(dichloromethane) because it has a tetrahedral geometry and the two C-Cl bonds are oriented in opposite directions, creating a net dipole moment. The other molecules (CCl₄, CF₄, and Br₂CCl₂) are all symmetric and have zero dipole moment.
A chemical concept known as hybridization describes the bonding and geometry of molecules. It entails combining atomic orbitals to create hybrid orbitals, which can more accurately capture the bonding in a molecule. The number of hybrid orbitals formed is equal to the number of atomic orbitals combined. Atomic orbitals with similar energy levels are merged to create the hybrid orbitals. An atom's geometry, bond angles, and polarity can all be impacted by hybridization, which can then have an impact on the molecule's reactivity and physical characteristics. Foreseeing the forms and characteristics of molecules as well as explaining their chemical behaviour requires an understanding of atom hybridization.
Learn more about hybridization here:
https://brainly.com/question/30010106
#SPJ4
Predict the product(s) obtained when benzoquinone is treated with excess butadiene:
When benzoquinone is treated with excess butadiene, the products obtained are 2,5-dimethylcyclohexadiene-1,4-dione and cyclohexene.
What is benzoquinone?Benzoquinone is also known as 1,4-benzoquinone or cyclohexa-2,5-diene-1,4-dione, is a colorless organic compound. The presence of two carbonyl groups in its structure provides it its characteristic quinone chemistry.
Butadiene, also known as 1,3-butadiene, is a conjugated diene. The reaction between benzoquinone and butadiene is called a Diels-Alder reaction.
The Diels-Alder reaction is a conjugate addition reaction that joins a diene and a dienophile to create a new six-membered ring. The most important characteristic of the Diels-Alder reaction is its stereospecificity. This reaction occurs between a cyclic diene and an alkene or alkyne dienophile.
The products obtained when benzoquinone is treated with excess butadiene are:2,5-dimethylcyclohexadiene-1,4-dioneCyclohexeneThe reaction proceeds with the dienophile (benzoquinone) being attacked by the diene (butadiene) in the Diels-Alder reaction to produce a cyclic adduct. The product is 2,5-dimethylcyclohexadiene-1,4-dione. Cyclohexene is formed as a byproduct of the reaction.
Learn more about Benzoquinone here:
https://brainly.com/question/15014857
#SPJ11
2. write the mechanism for the nitration of toluene showing explicitly why ortho and para products are favored over meta.
Nitration of toluene takes place in four steps which include formation of nitronium ion, formation of electrophile, deprotonation, and elimination of HNO₃.
What is the mechanism of nitration?The mechanism for the nitration of toluene showing explicitly why ortho and para products are favored over meta is as follows:
Step 1: Formation of the Nitronium Ion
NO₂⁺ is formed by nitric acid's reaction with sulfuric acid.
2HNO₃ + H₂SO₄ → 2 NO₂⁺ + 2HSO₄⁻ + H₃O⁺
The following is the formation of a nitronium ion:
Step 2: Formation of the electrophile
A nitronium ion is created, which is the electrophile. Because of the strong electron-releasing effect of the methyl group, the nitronium ion is drawn to the ring.
Due to the stability of the resulting carbocation, ortho and para products are favored over meta. In this, the bond on the methyl carbon is broken and the electrophile is added to it:
Step 3: Deprotonation: After the nitration reaction, an intermediate is formed in which a proton has been extracted from the methyl group. The formation of this intermediate indicates that the electrophile has been added to the ring's ortho or para positions.
Step 4: Elimination of HNO₃: An acid base reaction occurs to complete the nitration process, yielding nitrotoluene, HNO₃, and sulfuric acid. Here the intermediate is used to illustrate that the reaction has occurred with the ortho product. This reaction may also result in a para product in a similar manner.
Learn more about Nitration here:
https://brainly.com/question/26927899
#SPJ11
Does electronegativity increase as atomic radius increases?
Actually, when atomic radius grows, electronegativity often decreases.
The capacity of an atom to draw electrons into a chemical connection is known as electronegativity. The separation between the nucleus and the farthest electrons grows with increasing atomic radius. As a result, the nucleus's attraction to the electrons is reduced, making it more challenging for the atom to draw electrons to itself. The electronegativity values of bigger atoms are therefore often lower than those of smaller ones. Despite this general tendency, there are certain outliers since electronegativity also depends on other elements including nuclear charge and electron configuration. For instance, the rising nuclear charge in halogens causes the electronegativity to rise as the atomic radius falls.
learn more about electronegativity here:
https://brainly.com/question/17762711
#SPJ4
which example is an exothermic reaction? responses dissolving sugar in water dissolving sugar in water melting ice melting ice dissolving ammonium nitrate in water to cool the water dissolving ammonium nitrate in water to cool the water condensation
The correct option is dissolving ammonium nitrate in water to cool the water.
Among the given options, the example of an exothermic reaction is dissolving ammonium nitrate in water to cool the water.
Exothermic reactions are chemical reactions that release heat energy into the surroundings. As a result, the products have less energy than the reactants. Dissolving ammonium nitrate in water to cool the water is a good example of an exothermic reaction because it releases heat energy and cools down the surrounding water.
When ammonium nitrate dissolves in water, it releases heat, causing the temperature of the water to decrease. The reaction is exothermic because it releases heat to the surroundings. Dissolving sugar in water and melting ice are examples of endothermic reactions because they absorb heat energy from the surroundings.
Therefore, the correct answer is the option of dissolving ammonium nitrate in water to cool the water.
To learn more about exothermic reactions refer - https://brainly.com/question/10373907
#SPJ11
A 250.0-mL flask contains 0.2500 g of a volatile oxide of nitrogen. The pressure in the flask is 760.0 mmHg at 17.00°C.
As the molar mass calculated is 24.90 g/mol, hence the gas is most likely to be NO.
What is molar mass?The ratio between mass and the amount of substance of any sample is called molar mass.
To determine whether the gas is NO, NO2, or N2O5, we need to calculate the molar mass of the gas and compare it to the molar masses of these three possible gases.
n = PV/RT
Given, P = 760.0 mmHg, V = 250.0 mL = 0.2500 L, T = 17.00°C + 273.15 = 290.15 K, and R = 0.08206 L atm/mol K.
So, n = (760.0 mmHg)(0.2500 L)/(0.08206 L atm/mol K)(290.15 K) = 0.01003 mol
M = m/n
Given m = 0.2500 g.
M = 0.2500 g/0.01003 mol = 24.90 g/mol
Comparing this molar mass to the molar masses of NO (30.01 g/mol), NO2 (46.01 g/mol), and N2O5 (108.01 g/mol), we see that the gas is most likely NO.
To know more about molar mass, refer
https://brainly.com/question/837939
#SPJ1
Note: The question given on the portal is incomplete. Here is the complete question.
Question: A 250.0-mL flask contains 0.2500 g of a volatile oxide of nitrogen. The pressure in the flask is 760.0 mmHg at 17.00°C. Is the gas NO, NO2, or N2O5?
What is the wavelength (in nm) of the photon absorbed for a transition of an electron from n_initial=1 that results in the least energetic spectral line in the ultraviolet series of the H atom?
be sure your answer has the correct number of significant figures. note: reference the fundamental constants and si prefixes tables for additional infor
The wavelength (in nm) of the photon absorbed for a transition of an electron that results in the least energetic spectral line in ultraviolet series of the H atom is 121.6 nm.
This is derived from the Rydberg formula, which relates the energy levels of an electron in an atom to the wavelength of light emitted or absorbed in the process of an electron transitioning from one level to another. Using the equation E_n = -13.6 eV/n^2, we can find the energy level of the n_initial=1 electron state to be -13.6 eV.
Subtracting this value from the energy level of the n=2 state, which is -3.4 eV, we obtain the energy difference between the two states as 10.2 eV. Using E = hf = hc/λ, where h is Planck's constant (6.626 x 10^-34 Js), c is the speed of light (2.998 x 10^8 m/s), and f is the frequency of the absorbed photon, we can calculate the wavelength of the photon as 121.6 nm.
Know more about Rydberg formula here:
https://brainly.com/question/13185515
#SPJ11
57.0 ml of 0.90 m solution of hcl was diluted by water. the ph of this diluted solution is 0.90. how much water was added to the original solution insert your answer rounded to 3 significant figure.
57.0 ml of 0.90 m solution of Hcl was diluted by water. the pH of this diluted solution is 0.90. 50.5 mL water was added to the original solution .
There are a few steps to solve this.
Here they are: First, calculate the initial concentration of HCl in the solution.
Molarity = moles of solute / volume of solution in liters.
The volume of the solution is 57.0 mL, which is 0.0570 L.
The molarity is 0.90 M. So,0.90 M = moles of HCl / 0.0570 L
Now we can solve for moles of HCl:
moles of HCl = 0.90 M x 0.0570 L = 0.0513 mol
Next, we need to use the pH to find the concentration of H+ ions.
pH = -log[H+]0.90 = -log[H+]
Solving for [H+],
we get:[H+] = 7.94 x 10^-1 M
Finally, we can use the concentration of H+ ions to find the new volume of the solution after dilution using the equation:[H+] x V = moles of HCl7.94 x 10^-1 M x V = 0.0513 mol
Solving for V,
we get: V = 6.47 x 10^-2 L
To find how much water was added,
we subtract the final volume from the initial volume:
Volume of water added = 57.0 mL - 6.47 mL = 50.5 mL (rounded to 3 significant figures)
Therefore, 50.5 mL of water was added to the original solution.
For more such questions on pH , Visit:
https://brainly.com/question/172153
#SPJ11
how should you write the volume dispensed by a 5 ml volumetric pipet?
When writing the volume dispensed by a 5 ml volumetric pipet, it should be written as 5.00 mL.
A volumetric pipet is a laboratory instrument utilized to dispense very accurate and precise volumes of liquid. It is commonly used in analytical chemistry to make up solutions or to dilute stock solutions. Volumetric pipettes, also known as transfer pipettes or bulb pipettes, are single-volume liquid measuring instruments. They are meant to deliver a precise volume of liquid at a fixed temperature when the tip is slightly below the liquid surface.
It is important to write the volume with two decimal places to indicate the precision of the pipette.
Volumetric pipettes are utilized to prepare and dilute solutions. They are made of glass, with a round or conical end. They are intended to provide a precise volume of liquid, such as a certain number of milliliters or milligrams of a substance. Because of its accuracy, a volumetric pipet is used to create a standard solution.
For more such questions on volumetric pipet, click on:
https://brainly.com/question/28945018
#SPJ11
The molecular formula of aspartame, the artificial sweetener marketed as NutraSweet, is C14H18N2O5. A. What is the molar mass of aspartame? b. How many moles of aspartame are present in 1. 00 mg of aspartame? c. How many molecules of aspartame are present in 1. 00 mg of aspartame? d. How many hydrogen atoms are present in 1. 00 mg of aspartame?
For the molecular formula of aspartame, the artificial sweetener marketed as NutraSweet, is [tex]C_{14}H_{18}N_2O_5[/tex],
a. the molar mass of aspartame is 294.30 g/mol.
b. there are 3.40 x [tex]10^{-6}[/tex] moles of aspartame in 1.00 mg of aspartame.
c. there are 2.05 x [tex]10^{18}[/tex] molecules of aspartame in 1.00 mg of aspartame.
d. the total number of hydrogen atoms in 1.00 mg of aspartame is 34 hydrogen atoms.
a. The molar mass of aspartame can be calculated by adding up the atomic masses of all its atoms:
Molar mass of aspartame = (14 x 12.01 g/mol) + (18 x 1.01 g/mol) + (2 x 14.01 g/mol) + (5 x 16.00 g/mol) = 294.30 g/mol
Therefore, the molar mass of aspartame is 294.30 g/mol.
b. The number of moles of aspartame present in 1.00 mg of aspartame can be calculated using the formula:
moles = mass/molar mass
moles = 1.00 mg / 294.30 g/mol = 3.40 x 10^-6 mol
Therefore, there are 3.40 x 10^-6 moles of aspartame in 1.00 mg of aspartame.
c. The number of molecules of aspartame present in 1.00 mg of aspartame can be calculated using Avogadro's number:
number of molecules = moles x Avogadro's number
number of molecules = 3.40 x [tex]10^{-6}[/tex] mol x 6.02 x [tex]10^{23}[/tex] molecules/mol = 2.05 x [tex]10^{18}[/tex] molecules
Therefore, there are 2.05 x 10^18 molecules of aspartame in 1.00 mg of aspartame.
d. The number of hydrogen atoms present in 1.00 mg of aspartame can be calculated as follows:
There are 14 carbon atoms in 1.00 mg of aspartame, and each carbon atom is bonded to two hydrogen atoms. Therefore, there are 28 hydrogen atoms bonded to carbon atoms.
There are 2 nitrogen atoms in 1.00 mg of aspartame, and each nitrogen atom is bonded to three hydrogen atoms. Therefore, there are 6 hydrogen atoms bonded to nitrogen atoms.
There are 5 oxygen atoms in 1.00 mg of aspartame, and each oxygen atom is not bonded to any hydrogen atoms.
Therefore, the total number of hydrogen atoms in 1.00 mg of aspartame is 28 + 6 + 0 = 34 hydrogen atoms.
Learn more about the molecular formula of aspartame at
https://brainly.com/question/26876807
#SPJ4
A student is designing a new insulated drink cup using unconventional materials. They will have an inside and an outside cup with a material from the table in between the cups as insulation.Which material should they use to prevent heat loss?
The best material for insulation in this case would be Styrofoam. Styrofoam is lightweight, strong, and an excellent thermal insulator. It is composed of tiny bubbles of air that are suspended in a matrix of plastic. The air trapped inside the bubbles acts as a thermal barrier, keeping heat out or in, depending on the application.
Its lightweight nature makes it easier to manipulate, while its strength gives it the durability needed to keep a drink hot or cold. Its insulation properties also make it the perfect material for the student's insulated drink cup.
Styrofoam can be cut and shaped easily, making it a great material for use in drink cups. The material is also easy to clean and resistant to water and other liquids, which makes it ideal for frequent use. Additionally, Styrofoam is both affordable and widely available, making it an ideal choice for the student's project.
Know more about thermal insulator here:
https://brainly.com/question/23134662
#SPJ11
A 0.598 g sample of a green metal carbonate, containing unknown metal M, was heated to give the metal oxide and 0.222 g of CO2 (g) according to the reaction below. MCO3(s) + MO(s) + CO2(g) What is the metal M? Prove your answer with appropriate calculations for the number of moles of metal carbonate MCO3, the molar mass of MCO3, and finally the molar mass of the metal M.
The green metal carbonate is decomposed according to the given equation: MCO₃(s) → MO(s) + CO₂(g)
What is molar mass of MCO₃?
The number of moles of CO₂(g) produced can be used to determine the number of moles of the green metal carbonate (MCO₃) that decomposed.0.222 g of CO₂ (g) represents 1 mol of CO₂ (g), since its molar mass is 44 g/mol.
Therefore,1 mol of MCO₃ will produce 1 mol of CO₂ (g) in the reaction. So, 0.222 g of CO₂ (g) corresponds to 1 mol of MCO₃.
Hence, the number of moles of MCO₃ is:
moles of MCO₃= mass/Molar
mass= 0.598 g/Molar mass of MCO₃
The molar mass of MCO₃ can be calculated using the following:
mass percent of MCO₃ = [(mass of M)/(molar mass of M)] × 100%molar mass of MCO₃ = mass of MCO₃/moles of MCO₃
By substituting the value of moles of MCO₃ and the mass of MCO₃ into the equation above, the molar mass of MCO₃ can be calculated.
molar mass of MCO₃= (mass of MCO₃) / (moles of MCO₃)
Finally, to determine the molar mass of metal M, subtract the molar mass of CO3 from the molar mass of MCO₃.
MCO₃ = 12.011 + 3(15.999) + M(55.845)
= 181.76 + 55.845MM
= 55.845 - 60.01MM
= -4.165
The molar mass of the metal M is 4.165 g/mol.
To summarize, the metal M is sodium (Na) and its molar mass is 4.165 g/mol.
To know more about molar mass:
brainly.com/question/23058220
#SPJ11
knowing that solid sodium acetate is soluble and that acetic acid dissociates into hydrogen ions and acetate ions, why will sodium acetate influence the equilibrium of acetic acid dissociation?
As sodium acetate is added to the solution, the sodium ions (Na+) will replace the hydrogen ions (H+) in the equation. This causes a shift in the equilibrium as the number of hydrogen ions (H+) decreases, while the number of acetate ions (CH3COO-) increases.
Sodium acetate is an ionic compound composed of Na⁺ and CH₃COO⁻ ions.
It dissociates in water to create these ions, which are then available to affect the dissociation of acetic acid.
The equilibrium of acetic acid dissociation is influenced by the addition of sodium acetate.
Acid dissociation equilibria are influenced by salt addition (usually sodium salts), particularly when the acid is weak.
This is due to the fact that the anion of the salt reacts with hydrogen ions from the acid's dissociation.
This decreases the concentration of hydrogen ions in the solution, causing the reaction to shift towards more dissociation.
Learn more about acid dissociation constant here:
https://brainly.com/question/3006391
#SPJ11
) Predict the product for the following reaction. Assume you have an excess of potassium tert-butoxide. (CH3),COK Br
The potassium tert-butoxide is final product of the reaction is (CH3)3COH.
Why potassium tert-butoxide is (CH3)3COH?
The product for the given reaction is (CH3)3COH.
Reaction: (CH3)3CBr + KOtBu →(CH3)3COH + KBr
Potassium tert-butoxide (KOtBu) is a strong base that can deprotonate hydrogen from (CH3)3COH to form (CH3)3CO-.On the other hand,
(CH3)3CBr is a tertiary halide that can undergo an E2 reaction.
E2 is the abbreviation for bimolecular elimination reactions,
which involve the abstraction of a proton from the adjacent carbon and the removal of the halide anion.
The hydrogen that is abstracted by KOtBu can only come from the carbon that is adjacent to the bromine in (CH3)3CBr, according to Saytzeff's rule, because this is the carbon with the least number of hydrogens.
As a result, an alkene intermediate will be formed.
The KBr salt will be the by-product.
The alkene intermediate, however, is not present in the end product because it is a reactive molecule and quickly reacts with any available hydrogen.
The hydrogen is provided by the KOtBu base.
As a result, the final product of the reaction is (CH3)3COH.
Learn more about potassium tert-butoxide
brainly.com/question/29484874
#SPJ11
which solution has the highest boiling point at standard pressure? (1) 0.10 m mgcl2(aq) (2) 0.10 m mgso4(aq)
The solution with the highest boiling point at standard pressure is the one with the highest concentration of solutes, which increases the boiling point of the solution. In this instance, the answer is 0.10 M MgCl2(aq).
What is boiling point and standard pressure?
Boiling point: The boiling point of a solution is the temperature at which the vapour pressure of the solution equals the external pressure, allowing the solution to boil.
Standard pressure: One atmosphere of pressure is defined as the standard pressure.
A solution has the highest boiling point at standard pressure (1 atm) when it has the greatest concentration of solutes (molarity).
Which solution has the highest boiling point at standard pressure?
MgCl2 will have the greatest boiling point at a normal pressure since it has the most solute concentration.
The boiling point of a liquid is raised when solutes are added to it because the vapour pressure of the solution is lowered, thus more energy is required to break the intermolecular forces between the solvent and solute particles.
The boiling point of the solution rises as more solute is dissolved in the solvent, and the solvent-solute intermolecular forces become stronger, thus increasing the boiling point.
As a result, the 0.10 M MgCl2(aq) solution has the greatest boiling point among the options given.
for more information about boiling point at standard pressure refer here:
https://brainly.com/question/238983?
#SPJ11
what is the function of the electron transport chain in cellular respiration ?
The electron transport chain (ETC) is an essential part of cellular respiration, which is a series of molecules that transfer electrons from one molecule to another used by cells to convert nutrients into energy.
This starts with the oxidation of molecules such as glucose, which releases electrons that are then transferred to a series of electron carriers in the ETC. The electron carriers are molecules that hold the electrons and can transfer them to other molecules which is known as redox reactions. As the electrons move through the ETC, they release energy which is used to form a proton gradient that is then used to drive the synthesis of ATP, the energy currency of the cell. The ETC is an essential part of cellular respiration as it is the process responsible for generating the energy necessary for cells to function.
To learn more about electron click here https://brainly.com/question/28977387
#SPJ4
The idea of __________ asserts that some evolutionary changes may not even involve intermediate forms.
punctuated equilibrium
The idea of punctuated equilibrium asserts that some evolutionary changes may not even involve intermediate forms.
What is punctuated equilibrium?The idea of punctuated equilibrium is a theory in evolutionary biology that proposes that most evolutionary changes occur relatively rapidly, with long periods of stability punctuated by rare instances of rapid evolutionary change.
The theory was first introduced by Niles Eldredge and Stephen Jay Gould in 1972 as a challenge to the traditional Darwinian theory of gradualism, which posits that evolution proceeds slowly and steadily over long periods of time.
According to punctuated equilibrium, some evolutionary changes may not even involve intermediate forms.
There are several examples of punctuated equilibrium in the fossil record, including the Cambrian explosion, which saw the sudden appearance of most major animal phyla in a relatively short period of time, and the rapid diversification of mammals following the extinction of the dinosaurs at the end of the Cretaceous period.
Learn more about Punctuated equilibrium here:
brainly.com/question/4430933
#SPJ11
The phenomenon in which electrons that are closer to the nucleus slightly repel those that are farther out, is known as: select the correct answer below: - shielding - deflecting - building up - converging
The phenomenon in which electrons that are closer to the nucleus slightly repel those that are farther out is known as Shielding.
Electrons in an atom are negatively charged particles, and they are attracted to the positively charged nucleus. However, the outer electrons of an atom are also repelled by the inner electrons that are closer to the nucleus. This repulsion is due to the negative charges of the electrons, and it partially cancels out the attraction of the nucleus for the outer electrons.
Shielding is the phenomenon in which electrons that are closer to the nucleus slightly repel those that are farther out. This makes it possible for electrons in higher energy levels to be farther from the nucleus, so they are less strongly attracted and easier to remove.
Learn more about Shielding here: https://brainly.com/question/27985711
#SPJ11
What procedures can be performed on trials 2 and 3 so that the rate of dissolving is the same as trial 1? A student wants to determine how different factors affect the rate of dissolving solid in water: Trial Size of Particles Rate_of_Dissolving small 10 sec medium 20 sec large 30 sec 2 3 What procedures can be performed on trials 2 and 3 so that the rate of dissolving is the same as trial 1? A_ the student can increase the pressure B. the student can decrease the pressure C the student can decrease the temperature D. the student can increase the temperature'
The size of particles has an effect on the rate of dissolving, but temperature is also a significant factor that affects how quickly a solid will dissolve in water. Lowering the temperature slows down the movement.
What is the temperature ?Temperature is a measure of the average kinetic energy of the particles in a substance or system. In simpler terms, it is a measure of how hot or cold something is. The temperature of a substance or system is commonly measured in degrees Celsius (°C) or degrees Fahrenheit (°F), and it can be influenced by various factors such as heat transfer, pressure, and the presence of other substances. Temperature is an important physical property that affects many aspects of daily life, including weather patterns, cooking, and the functioning of electronic devices. It is also a critical factor in many scientific processes, such as chemical reactions, phase transitions, and the behavior of materials at the atomic and molecular level.
To know more about temperature visit:
https://brainly.com/question/11464844
#SPJ1
If a substance is removed from a reaction in equilibrium, the equilibrium will shift toward
the side where the concentration was ________.
If a substance is removed from a reaction in equilibrium, the equilibrium will shift towards the side where the concentration was higher.
What is substance?A substance is a category of stuff with certain physical and chemical qualities as well as a set or definite composition. A substance might be an element or a compound. A substance made up of atoms with the same atomic number, or the same number of protons in their atomic nuclei, is referred to as an element.
This is known as the Le Chatelier's principle, which holds that a system in equilibrium would react to any stress by trying to counteract the stress and return to equilibrium. When a drug is removed from the reaction mixture, the system is put under stress due to the substance's lower concentration. The balance will change in a way that increases the production of the substance that was eliminated in order to counteract this drop.
To know more about substance, visit:
https://brainly.com/question/24372098
#SPJ1
The chemical formula Al2SiO5 can form any of these three minerals, given different combinations of temperature and pressure conditions: a. marble, quartzite, and hornfels b. quartz, feldspar, and mica c. hematite, magnetite, and goethite d. andalusite, kyanite, and sillimanite e. granite, sandstone, and marble
The chemical formula [tex]Al_2SiO_5[/tex] can form the three minerals, andalusite, kyanite, and sillimanite under different combinations of temperature and pressure conditions. Option D is correct.
What are minerals? Minerals are solid inorganic materials with a specific chemical formula and crystalline structure. Most minerals are naturally occurring substances. Some minerals are silicates, while others are carbonates, oxides, sulfides, or halides, among other groups.What is the chemical formula? The chemical formula refers to the formula that represents the atoms in a compound's molecule. The chemical formula of a mineral is a shorthand description of the relative proportions of a mineral's primary chemical constituents. [tex]Al_2SiO_5[/tex] is a chemical formula. It means that for every two aluminum atoms, there is one silicon atom, and five oxygen atoms in a mineral.What is the significance of temperature and pressure in mineral formation? Temperature and pressure are essential factors in mineral formation. A mineral can only form under certain temperature and pressure conditions. Because the temperature and pressure conditions vary depending on the type of mineral, each mineral has unique characteristics. The pressure and temperature requirements for the formation of some minerals are so unique that they can only form under extreme conditions.The chemical formula [tex]Al_2SiO_5[/tex] can form andalusite, kyanite, and sillimanite under different combinations of temperature and pressure conditions. Hence, option D is correct.Learn more about the chemical formula: https://brainly.com/question/11574373
#SPJ11
How much potassium chloride will dissolve in 50 grams of water at 50°C?
The amount of potassium chloride that will dissolve in 50 grams of water at 50°C depends on the solubility of the salt at that temperature. The solubility of potassium chloride in water at 50°C is approximately 42 grams per 100 grams of water. Therefore, about 21 grams of potassium chloride will dissolve in 50 grams of water at 50°C.
Give the complete ionic equation for the reaction (if any) that occurs when aqueous solutions of lithium sulfide and copper (II) nitrate are mixed.a. 2 Li+(aq) + S2-(aq) + Cu2+(aq) + 2 NO3-(aq) → CuS(s) + 2 Li+(aq) + 2 NO3-(aq)B) Li+(aq) + SO42-(aq) + Cu+(aq) + NO3-(aq) → CuS(s) + Li+(aq) + NO3-(aq)C) Li+(aq) + S-(aq) + Cu+(aq) + NO3-(aq) → CuS(s) + LiNO3(aq)d) 2 Li+(aq) + S2-(aq) + Cu2+(aq) + 2 NO3-(aq) → Cu2+(aq) + S2-(aq) + 2 LiNO3(s)E) No reaction
The complete ionic equation for the reaction that occurs when aqueous solutions of lithium sulfide and copper (II) nitrate are mixed is as follows: 2 Li+(aq) + S2-(aq) + Cu2+(aq) + 2 NO3-(aq) → CuS(s) + 2 Li+(aq) + 2 NO3-(aq)
It is important to write the complete ionic equation when aqueous solutions of lithium sulfide and copper (II) nitrate are mixed. The reaction of lithium sulfide with copper (II) nitrate is a double displacement reaction. Lithium sulfide reacts with copper (II) nitrate to form copper sulfide and lithium nitrate.
The balanced chemical equation for the reaction is given as follows:Li2S(aq) + Cu(NO3)2(aq) → CuS(s) + 2 LiNO3(aq)The complete ionic equation can be written by representing all the ions in the aqueous solutions as dissociated ions.
Thus, the complete ionic equation for the reaction that occurs when aqueous solutions of lithium sulfide and copper (II) nitrate are mixed is as follows:2 Li+(aq) + S2-(aq) + Cu2+(aq) + 2 NO3-(aq) → CuS(s) + 2 Li+(aq) + 2 NO3-(aq.
)In the above equation, the lithium and nitrate ions do not take part in the reaction and are present in the same form in the reactant and product side. Hence, they are called spectator ions.
To know more about ionic equation, refer here:
https://brainly.com/question/15138610#
#SPJ11