A child is outside his home playing with a metal hoop and stick. He uses the stick to keep the hoop of radius 45.0 cm rotating along the road surface. At one point the hoop coasts downhill and picks up speed. (a) If the hoop starts from rest at the top of the hill and reaches a linear speed of 6.35 m/s in 11.0 s, what is the angular acceleration, in rad/s2, of the hoop? rad/s2 (b) If the radius of the hoop were smaller, how would this affect the angular acceleration of the hoop? i. The angular acceleration would decrease. ii. The angular acceleration would increase. iii. There would be no change to the angular acceleration.

Answers

Answer 1

Answer:

a) [tex] \alpha = 1.28 rad/s^{2} [/tex]  

b) Option ii. The angular acceleration would increase

Explanation:

a) The angular acceleration is given by:

[tex] \omega_{f} = \omega_{0} + \alpha t [/tex]

Where:

[tex] \omega_{f} [/tex]: is the final angular speed = v/r

v: is the tangential speed = 6.35 m/s

r: is the radius = 45.0 cm = 0.45 m

[tex]\omega_{0}[/tex]: is the initial angular speed = 0 (the hoop starts from rest)

t: is the time = 11.0 s

α: is the angular acceleration

Hence, the angular acceleration is:

[tex] \alpha = \frac{\omega}{t} = \frac{v}{r*t} = \frac{6.35 m/s}{0.45 m*11.0 s} = 1.28 rad/s^{2} [/tex]  

b) If the radius were smaller, the angular acceleration would increase since we can see in the equation that the radius is in the denominator ([tex] \alpha = \frac{v}{r*t} [/tex]).

Therefore, the correct option is ii. The angular acceleration would increase.

I hope it helps you!  


Related Questions

what is time taken by radio wave to go and return back from communication satellite to earth??​

Answers

Answer:

Radio waves are used to carry satellite signals. These waves travel at 300,000 km/s (the speed of light). This means that a signal sent to a satellite 38,000 km away takes 0.13 s to reach the satellite and another 0.13 s for the return signal to be received back on Earth.

Explanation:

hope it help

What happens to the acceleration if you triple the force that you apply to the painting with your hand? (Use the values from the example given in the previous part of the lecture.) Submit All Answers Answer: Not yet correct, tries 1/5 3. A driver slams on the car brakes, and the car skids to a halt. Which of the free body diagrams below best matches the braking force on the car. (Note: The car is moving in the forward direction to the right.] (A) (B) (C) (D) No more tries. Hint: (Explanation) The answer is A. The car is moving to the right and slowing down, so the acceleration points to the left. The only significant force acting on the car is the braking force, so this must be pointing left because the net force always shares the same direction as the object's acceleration. 4. Suppose that the car comes to a stop from a speed of 40 mi/hr in 24 seconds. What was the car's acceleration rate (assuming it is constant). Answer: Submit Al Answers Last Answer: 55 N Only a number required, Computer reads units of N, tries 0/5. 5. What is the magnitude (or strength) of the braking force acting on the car? [The car's mass is 1200 kg.) Answer: Submit Al Answers Last Answer: 55N Not yet correct, tries 0/5

Answers

Answer:

2) when acceleration triples force triples,  3) a diagram with dynamic friction force in the opposite direction of movement of the car

4)  a = 2.44 ft / s², 5)  fr = 894.3 N

Explanation:

In this exercise you are asked to answer some short questions

2)  Newton's second law is

         F = m a

when acceleration triples force triples

3) Unfortunately, the diagrams are not shown, but the correct one is one where the axis of movement has a friction force in the opposite direction of movement, as well as indicating that the car slips, the friction coefficient of dynamic.

The correct answer is: a diagram with dynamic friction force in the opposite direction of movement of the car

4) let's use the scientific expressions

          v = v₀ - a t

as the car stops v = 0

          a = v₀ / t

let's reduce the magnitudes

          v₀ = 40 mile / h ([tex]\frac{5280 ft}{1 mile}[/tex]) ([tex]\frac{1 h}{3600 s}[/tex]) = 58.667 ft / s

          a = 58.667 / 24

          a = 2.44 ft / s²

5) let's use Newton's second law

           fr = m a

We must be careful not to mix the units, we will reduce the acceleration to the system Yes

           a = 2.44 ft / s² (1 m / 3.28 ft) = 0.745 m / s²

           fr = 1200  0.745

           fr = 894.3 N

Three 15-Ω and two 25-Ω light bulbs and a 24 V battery are connected in a series circuit. What is the current that passes through each bulb?
1) 0.18 A
2) 0.25 A
3) 0.51 A
4) 0.74 A
5) The current will be 1.6 A in the 15-Ω bulbs and 0.96 A in the 25-Ω bulbs.

Answers

Answer:

I = 0.25 A

Explanation:

Given that,

Three 15 ohms and two 25 ohms light bulbs and a 24 V battery are connected in a series circuit.

In series combination, the equivalent resistance is given by :

[tex]R=R_1+R_2+R_3+....[/tex]

So,

[tex]R=15+15+15+25+25\\\\=95\ \Omega[/tex]

The current each resistor remains the same in series combination. It can be calculated using Ohm's law i.e.

V = IR

[tex]I=\dfrac{V}{R}\\\\I=\dfrac{24}{95}\\\\I=0.25\ A[/tex]

So, the current of 0.25 A passes through each bulb.

Which phase of matter makes up stars?
O liquid
O gas
O plasma

Answers

Answer:

The answer to this question is plasma

Answer:

Plasma

Explanation:

A body starts from rest and accelerates uniformly at 5m/s. Calculate the time taken by the body to cover a distance of 1km

Answers

Answer:

20 seconds

Explanation:

We are given 2 givens in the first statement

v0=0 and a=5

And we are trying to find time needed to cover 1km or 1000m.

So we use

x-x0=v0t+1/2at²

Plug in givens

1000=0+2.5t²

solve for t

t²=400

t=20s

Why don’t you see tides ( like those of the ocean ) in your swimming pool ?

Answers

In smaller bodies, like your backyard swimming pool, or your own body, the differences of the earth's gravitational force over such small volumes are so slight as to have negligible affect. ... Therefore the tidal bulges move north and south with respect to earth's geography over the course of a year.

Two cars are facing each other. Car A is at rest while car B is moving toward car A with a constant velocity of 20 m/s. When car B is 100 from car A, car A begins to accelerate toward car B with a constant acceleration of 5 m/s/s. Let right be positive.
1) How much time elapses before the two cars meet? 2) How far does car A travel before the two cars meet? 3) What is the velocity of car B when the two cars meet?
4) What is the velocity of car A when the two cars meet?

Answers

Answer:

Let's define t = 0s (the initial time) as the moment when Car A starts moving.

Let's find the movement equations of each car.

A:

We know that Car A accelerations with a constant acceleration of 5m/s^2

Then the acceleration equation is:

[tex]A_a(t) = 5m/s^2[/tex]

To get the velocity, we integrate over time:

[tex]V_a(t) = (5m/s^2)*t + V_0[/tex]

Where V₀ is the initial velocity of Car A, we know that it starts at rest, so V₀ = 0m/s, the velocity equation is then:

[tex]V_a(t) = (5m/s^2)*t[/tex]

To get the position equation we integrate again over time:

[tex]P_a(t) = 0.5*(5m/s^2)*t^2 + P_0[/tex]

Where P₀ is the initial position of the Car A, we can define P₀ = 0m, then the position equation is:

[tex]P_a(t) = 0.5*(5m/s^2)*t^2[/tex]

Now let's find the equations for car B.

We know that Car B does not accelerate, then it has a constant velocity given by:

[tex]V_b(t) =20m/s[/tex]

To get the position equation, we can integrate:

[tex]P_b(t) = (20m/s)*t + P_0[/tex]

This time P₀ is the initial position of Car B, we know that it starts 100m ahead from car A, then P₀ = 100m, the position equation is:

[tex]P_b(t) = (20m/s)*t + 100m[/tex]

Now we can answer this:

1) The two cars will meet when their position equations are equal, so we must have:

[tex]P_a(t) = P_b(t)[/tex]

We can solve this for t.

[tex]0.5*(5m/s^2)*t^2 = (20m/s)*t + 100m\\(2.5 m/s^2)*t^2 - (20m/s)*t - 100m = 0[/tex]

This is a quadratic equation, the solutions are given by the Bhaskara's formula:

[tex]t = \frac{-(-20m/s) \pm \sqrt{(-20m/s)^2 - 4*(2.5m/s^2)*(-100m)} }{2*2.5m/s^2} = \frac{20m/s \pm 37.42 m/s}{5m/s^2}[/tex]

We only care for the positive solution, which is:

[tex]t = \frac{20m/s + 37.42 m/s}{5m/s^2} = 11.48 s[/tex]

Car A reaches Car B after 11.48 seconds.

2) How far does car A travel before the two cars meet?

Here we only need to evaluate the position equation for Car A in t = 11.48s:

[tex]P_a(11.48s) = 0.5*(5m/s^2)*(11.48s)^2 = 329.48 m[/tex]

3) What is the velocity of car B when the two cars meet?

Car B is not accelerating, so its velocity does not change, then the velocity of Car B when the two cars meet is 20m/s

4)  What is the velocity of car A when the two cars meet?

Here we need to evaluate the velocity equation for Car A at t = 11.48s

[tex]V_a(t) = (5m/s^2)*11.48s = 57.4 m/s[/tex]

Drawing a shows a displacement vector (450.0 m along the y axis). In this x, y coordinate system the scalar components are Ax 0 m and Ay 450.0 m. Suppose that the coordinate system is rotated counterclockwise by 35.0, but the magnitude (450.0 m) and direction of vector remain unchanged, as in drawing b. What are the scalar components, Ax and Ay, of the vector in the rotated x, y coordinate system

Answers

Answer:

x ’= 368.61 m,  y ’= 258.11 m

Explanation:

To solve this problem we must find the projections of the point on the new vectors of the rotated system  θ = 35º

            x’= R cos 35

            y’= R sin 35

           

The modulus vector can be found using the Pythagorean theorem

            R² = x² + y²

            R = 450 m

we calculate

            x ’= 450 cos 35

            x ’= 368.61 m

            y ’= 450 sin 35

            y ’= 258.11 m

Click Stop Using the slider set the following: coeff of restitution to 1.00 A velocity (m/s) to 6.0 A mass (kg) to 6.0 B velocity (m/s) to 0.0 Calculate what range can the mass of B be to cause mass A to bounce off after the collision. Calculate what range can the mass of B be to cause mass A to continue forward after the collision. Check your calculations with the simulation. What are the ranges of B mass (kg)

Answers

Answer:

[tex]M_b=6kg[/tex]

Explanation:

From the question we are told that:

Coefficient of restitution [tex]\mu=1.00[/tex]

Mass A [tex]M_a=6kg[/tex]

Initial Velocity of A [tex]U_a=6m/s[/tex]

Initial Velocity of B [tex]U_b=0m/s[/tex]

Generally the equation for Coefficient of restitution is mathematically given by

 [tex]\mu=\frac{V_b-V_a}{U_a-U_b}[/tex]

 [tex]1=\frac{v_B}{6}[/tex]

 [tex]V_b=6*1[/tex]

 [tex]V_b=6m/s[/tex]

Generally the equation for conservation of linear momentum  is mathematically given by

 [tex]M_aU_a+M_bU_b=M_aV_a+M_bV_b[/tex]

 [tex]6*6+=M_b*6[/tex]

 [tex]M_b=6kg[/tex]

The pressure exerted at the bottom of a column of liquid is 30 kPa. The height of the
column is 3,875 m. What type of liquid is used?

Answers

Answer:

For example, the pressure acting on a dam at the bottom of a reservoir is ... pressure = height of column × density of the liquid × gravitational field ... The density of water is 1,000 kg/m 3.

A body of mass 2kg is released from from a point 100m above the ground level. calculate kinetic energy 80m from the point of released.​

Answers

Answer:

1568J

Explanation:

Since the problem states 80 m from the point of drop, the height relative to the ground will be 100-80=20m.

Use conservation of Energy

ΔUg+ΔKE=0

ΔUg= mgΔh=2*9.8*(20-100)=-1568J

ΔKE-1568J=0

ΔKE=1568J

since KEi= 0 since the object is at rest 100m up, the kinetic energy 20meters above the ground is 1568J

190 students sit in an auditorium listening to a physics lecture. Because they are thinking hard, each is using 125 W of metabolic power, slightly more than they would use at rest. An air conditioner with a COP of 5.0 is being used to keep the room at a constant temperature. What minimum electric power must be used to operate the air conditioner?

Answers

Answer:

W = 4.75 KW

Explanation:

First, we will calculate the heat to be removed:

Q = (No. of students)(Metabolic Power of Each Student)

Q = (190)(125 W)

Q = 23750 W = 23.75 KW

Now the formula of COP is:

[tex]COP = \frac{Q}{W}\\\\W = \frac{Q}{COP}\\\\W = \frac{23.75\ KW}{5}\\\\[/tex]

W = 4.75 KW

Paauto A: Isulat sa papel ang alpabetong Ingles at bilang I hanggang 10 sa istilong
Roman ng pagleletra.​

Answers

Answer:

Explanation:

English alphabets numbered fro 1 to 26

and the numbers 1 to10 so they are written in roman numbers as

1 - I

2 - II

3 - III

4 - IV

5 -V

6 - VI

7 -VII

8 - VIII

9 - IX

10 -X

11 - XI

12 - XII

13 - XIII

14 - XIV

15 - XV

16 - XVI

17 - XVII

18 - XVIII

19 - XIX

20- XX

21 - XXI

22 - XXII

23 - XXIII

24 - XXIV

25 - XXV

26 - XXVI  

How do you find the product of gamma decay?

Answers

Answer:

The mass and atomic numbers don't change

Explanation:

An excited atom relaxes to the ground state emitting a photon...called a gamma ray.

The answer is that the mass and atomic numbers don't change.

In gamma decay, the product refers to the nucleus resulting from the emission of a gamma ray. Gamma decay occurs when an excited atomic nucleus releases excess energy in the form of a high-energy photon called a gamma ray.

To find the product of gamma decay, you need to identify the nucleus before and after the decay process. The product nucleus is determined by the parent nucleus that undergoes gamma decay.

During gamma decay, the number of protons and neutrons in the nucleus remains unchanged. Therefore, the identity of the element remains the same, but the energy state of the nucleus is altered.

The product nucleus is typically represented by the same chemical symbol as the parent nucleus, followed by a superscript indicating the mass number (total number of protons and neutrons) and a subscript indicating the atomic number (number of protons).

For example, if a parent nucleus with an atomic number of Z and a mass number of A undergoes gamma decay, the product nucleus will have the same atomic number Z and mass number A.

It's important to note that gamma decay does not involve the emission or absorption of any particles, only the release of electromagnetic radiation (gamma ray).

Thus, the product nucleus remains unchanged in terms of atomic number and mass number.

Know more about gamma decay:

https://brainly.com/question/16039775

#SPJ4

water contracts on freezing is it incorrect or conrrect

Answers

Answer:

hope it helps

much as you can

It takes the elevator in a skyscraper 4.0 s to reach its cruising speed of 10 m/s. A 60 kg passenger gets aboard on the ground floor.
1. What is the passenger's apparent weight before the elevator starts moving?
2. What is the passenger's apparent weight whilethe elevator is speeding up?
3. What is the passenger's apparent weight afterthe elevator reaches its cruising speed?

Answers

Answer:

1. 588 N

2. 738 N

3. 588 N

Explanation:

time, t = 4 s

initial velocity, u = 0

final velocity, v = 10 m/s

mass, m= 60 kg

1.

Weight of passenger before starts

W =m g = 60 x 9.8 = 588 N

2.

When the elevator is speeding up

v = u + a t

10 = 0 + a x 4

a = 2.5 m/s2

Now the weight is

W' = m (a + g) = 60 (9.8 + 2.5) = 738 N

3.

When he reaches the cruising speed, the weight is

W = 588 N

what is conservation energy?

Answers

Explanation:

Conservation of energy, principle of physics according to which the energy of interacting bodies or particles in a closed system remains constant

hope it is helpful to you

A point charge of -3.0 x 10-C is placed at the origin of coordinates. Find the clectric field at the point 13. X= 5.0 m on the x-axis.​

Answers

Answer:

-1.0778×10⁻¹⁰ N/C

Explanation:

Applying,

E = kq/r²................ equation 1

Where E = elctric field, q = charge, r = distance, k = coulomb's law

From the question,

Given: q = -3.0×10 C, r = 5.0 m

Constant: k = 8.98×10⁹ Nm²/C²

Substitute these values in equation 1

E = (-3.0×10)(8.98×10⁹)/5²

E = -1.0778×10⁻¹⁰ N/C

Hence the electric field on the x-axis is -1.0778×10⁻¹⁰ N/C

The following two waves are sent in opposite directions on a horizontal string so as to create a standing wave in a vertical plane: y1(x, t) = (8.20 mm) sin(4.00πx - 430πt) y2(x, t) = (8.20 mm) sin(4.00πx + 430πt), with x in meters and t in seconds. An antinode is located at point A. In the time interval that point takes to move from maximum upward displacement to maximum downward displacement, how far does each wave move along the string?

Answers

Answer:

Explanation:

From the information given:

The angular frequency ω = 430 π rad/s

The wavenumber k = 4.00π which can be expressed by the equation:

k = ω/v

4.00 =  430 /v

v = 430/4.00

v = 107.5 m/s

Similarly: k  = ω/v = 2πf/fλ

We can say that:

k = 2π/λ

4.00 π = 2π/λ

wavelength λ = 2π/4.00 π

wavelength λ = 0.5 m

frequency of the wave can now be calculated by using the formula:

f = v/λ

f = 107.5/0.5

f = 215 Hz

Also, the Period(T) = 1/215 secs

The time at which particle proceeds from point A  to its maximum upward displacement  and to its maximum downward displacement  can be computed as t = T/2;

Thus, the distance(x) covered by each wave during this time interval(T/2) will be:

x = v * t

x = v * T/2

x = λ/2

x = 0.5/2

x =  0.25 m

A uniform ladder of length 24 m and weight w is supported by horizontal floor at A and by a vertical wall at B. It makes an angle 45 degree with the horizontal. The coefficient of friction between ground and ladder is 1/2 and coefficient of friction between ladder and wall is 1/3. If a man whose weight is one-half than the ladder, ascends the ladder, how much length x of the ladder he shall climb before the ladder slips

Answers

Answer:

I could not find the answer or do it myself if I did find it I would defenetly share

What would the radius (in mm) of the Earth have to be in order for the escape speed of the Earth to equal (1/21) times the speed of light (300000000 m/s)? You may ignore all other gravitational interactions for the rocket and assume that the Earth-rocket system is isolated. Hint: the mass of the Earth is 5.94 x 1024kg and G=6.67×10−11Jmkg2G=6.67\times10^{-11}\frac{Jm}{kg^2}G=6.67×10−11kg2Jm​

Answers

Answer:

The expected radius of the Earth is 3.883 meters.

Explanation:

The formula for the escape speed is derived from Principle of Energy Conservation and knowing that rocket is initially at rest on the surface of the Earth and final energy is entirely translational kinetic, that is:

[tex]U = K[/tex] (1)

Where:

[tex]U[/tex] - Gravitational potential energy, in joules.

[tex]K[/tex] - Translational kinetic energy, in joules.

Then, we expand the formula by definitions of potential and kinetic energy:

[tex]\frac{G\cdot M\cdot m}{r} = \frac{1}{2}\cdot m \cdot v^{2}[/tex] (2)

Where:

[tex]G[/tex] - Gravitational constant, in cubic meters per kilogram-square second.

[tex]M[/tex] - Mass of the Earth. in kilograms.

[tex]m[/tex] - Mass of the rocket, in kilograms.

[tex]r[/tex] - Radius of the Earth, in meters.

[tex]v[/tex] - Escape velocity, in meters per second.

Then, we derive an expression for the escape velocity by clearing it within (2):

[tex]\frac{GM}{r} = \frac{1}{2}\cdot v^{2}[/tex]

[tex]v = \sqrt{\frac{2\cdot G \cdot M}{r} }[/tex] (3)

If we know that [tex]v = \frac{1}{21}\cdot c[/tex], [tex]c = 3\times 10^{8}\,\frac{m}{s}[/tex], [tex]M = 5.94\times 10^{24}\,kg[/tex], [tex]G = 6.67\times 10^{-11}\,\frac{m^{3}}{kg\cdot s^{2}}[/tex] and [tex]M = 5.94\times 10^{24}\,kg[/tex], then the expected radius of the Earth is:

[tex]\frac{GM}{r} = \frac{1}{2}\cdot v^{2}[/tex]

[tex]r = \frac{2\cdot G \cdot M}{v^{2}}[/tex]

[tex]r = \frac{2\cdot \left(6.67\times 10^{-11}\,\frac{m^{3}}{kg\cdot s^{2}} \right)\cdot (5.94\times 10^{24}\,kg)}{\left[\frac{1}{21}\cdot \left(3\times 10^{8}\,\frac{m}{s} \right) \right]^{2}}[/tex]

[tex]r = 3.883\,m[/tex]

The expected radius of the Earth is 3.883 meters.

Astronauts in space move a toolbox from its initial position ????????→=<15,14,−8>m to its final position ????????→=<17,14,−1>m. The two astronauts each push on the box with a constant force. Astronaut 1 exerts a force ????1→=<18,7,−12>???? and astronaut 2 exerts a force ????2→=<16,−10,16>????.

Required:
What is the total work performed on the toolbox?

Answers

If both forces are measured in Newtons, then the net force is

F = (18, 7, -12) N + (16, -10, 16) N = (34, -3, 4) N

The toolbox undergoes a displacement (i.e. change in position) in the direction of the vector

d = (17, 14, -1) m - (15, 14, -8) m = (2, 0, -9) m

The total work done by the astronauts on the toolbox is then

F • d = (34, -3, 4) N • (2, 0, -9) m = (68 + 0 - 36) N•m = 32 J

The work done by the two astronauts is equal to 96 J.

What is work done?

work done?Work done is defined as the product of force applied and the distance moved by the force.

Work done = Force × Distance

The forces applied = 18+16 N, 7+ -10 N, and -12 + 16N

Forces = 34 N, -3 N, and 4N

Distances = (17 - 15, 14 - 14, -1 - - 8) m

Distances = 2, 0, 7

Work done = 34 × 2 + -3 × 0 + 4 × 7

Work done = 96 J

Therefore, the work done by the two astronauts is equal to 96 J.

Learn more about work done at: https://brainly.com/question/25573309

#SPJ6

vector A has a magnitude of 8 unit make an angle of 45° with posetive x axis vector B also has the same magnitude of 8 unit along negative x axis find the magnitude of A+B?​

Answers

Answer:

45 × 8 units = A + B as formular

Which level of government relies the most on income tax?
OA.
federal
state
OC.
local

Answers

Answer:

Its the Federal government

Federal government tax

Based on the information in the table, what
is the acceleration of this object?

t(s) v(m/s)
0.0
9.0
1.0
4.0
2.0
-1.0
3.0
-6.0
A. -5.0 m/s2
B. -2.0 m/s2
C. 4.0 m/s2
D. 0.0 m/s2

Answers

Answer:

Option A. –5 m/s²

Explanation:

From the question given above, the following data were obtained:

Initial velocity (v₁) = 9 m/s

Initial time (t₁) = 0 s

Final velocity (v₂) = –6 m/s

Final time (t₂) = 3 s

Acceleration (a) =?

Next, we shall determine the change in the velocity and time. This can be obtained as follow:

For velocity:

Initial velocity (v₁) = 9 m/s

Final velocity (v₂) = –6 m/s

Change in velocity (Δv) =?

ΔV = v₂ – v₁

ΔV = –6 – 9

ΔV = –15 m/s

For time:

Initial time (t₁) = 0 s

Final time (t₂) = 3 s

Change in time (Δt) =?

Δt = t₂ – t₁

Δt = 3 – 0

Δt = 3 s

Finally, we shall determine the acceleration of the object. This can be obtained as follow:

Change in velocity (Δv) = –15 m/s

Change in time (Δt) = 3 s

Acceleration (a) =?

a = Δv / Δt

a = –15 / 3

a = –5 m/s²

Thus, the acceleration of the object is

–5 m/s².

Which indicates the first law of thermodynamics ​

Answers

Answer:

(d)

Explanation:

because dU = Q -W so ,that the option d(D) is correct

Which physical phenomenon is illustrated by the fact that the prism has different refractive indices for different colors

Answers

Answer:

The incoming white light is composed of light of different colors,

Since these different colors have different refractive indices they are refracted at different angles from one another.

The output light is then separated by color creating a color spectrum.

Since n is greater for shorter wavelengths  (violet colors) these wavelengths are refracted thru the larger angles.

Which of the following is a noncontact force?
O A. Friction between your hands
O B. A man pushing on a wall
O C. Air resistance on a car
D. Gravity between you and the Sun

Answers

Answer:

Gravity between you and the sun

* A ball is projected horizontally from the top of
a building 19.6m high.
a, How long when the ball take to hit the ground?
b, If the line joining the point of projection to
the point where it hits the ground is 45
with the horizontal. What must be the
initial velocity of the ball?
c,with what vertical verocity does the ball strike
the grounds? (9= 9.8 M152)​

Answers

Explanation:

Given

Ball is projected horizontally from a building of height [tex]h=19.6\ m[/tex]

time taken to reach ground is given by

[tex]\text{Cosidering vertical motion}\\\Rightarrow h=ut+0.5at^2\\\Rightarrow 19.6=0+0.5\times 9.8t^2\\\Rightarrow t^2=4\\\Rightarrow t=2\ s[/tex]

(b) Line joining the point of projection and the point where it hits the ground makes an angle of [tex]45^{\circ}[/tex]

From the figure, it can be written

[tex]\Rightarrow \tan 45^{\circ}=\dfrac{h}{x}\\\\\Rightarrow x=h\cdot 1\\\Rightarrow x=19.6[/tex]

Considering horizontal motion

[tex]\Rightarrow x=u_xt\\\Rightarrow 19.6=u_x\times 4\\\Rightarrow u_x=4.9\ m/s[/tex]

(c) The vertical velocity with which it strikes the ground is given by

[tex]\Rightarrow v^2-u_y^2=2as\\\Rightarrow v^2-0=2\times 9.8\times 19.6\\\Rightarrow v=\sqrt{384.16}\\\Rightarrow v=19.6\ m/s[/tex]

Thus, the ball strikes with a vertical velocity of [tex]19.6\ m/s[/tex]

Explanation:

Given

Ball is projected horizontally from a building of height  

time taken to reach ground is given by

(b) Line joining the point of projection and the point where it hits the ground makes an angle of  

From the figure, it can be written

Considering horizontal motion

(c) The vertical velocity with which it strikes the ground is given by

Thus, the ball strikes with a vertical velocity of

Suppose the pucks start spinning after the collision, whereas they were not before. Will this affect your momentum conservation results

Answers

Answer:

No, it will not affect the results.

Explanation:

For elastic collisions in an isolated system, when a collision occurs, it means that the systems objects total momentum will be conserved under the condition that there will be no net external forces that act upon the objects.

What that means is that if the pucks start spinning after the collision, we are not told that there was any net external force acting on the puck and thus momentum will be conserved because momentum before collision will be equal to the momentum after the collision.

Other Questions
Gloria received a 4 percent raise and is now making $24,960 a year, what was her salary before the raise? There are 92 students enrolled in an French course and 248 students enrolled in a Spanish course. Construct a ratio comparing students enrolled in a French course to students enrolled in a Spanish course. Write your answer as a decimal, rounded to the thousandths place. Dave and Ellen are newly married and living in their first house. The yearly premium on their homeowner's insurance policy is $450 for the coverage they need. Their insurance company offers a 5 percent discount if they install dead-bolt locks on all exterior doors. The couple can also receive a 2 percent discount if they install smoke detectors on each floor. They have contacted a locksmith, who will provide and install dead-bolt locks on the two exterior doors for $50 each. At the local hardware store, smoke detectors cost $7 each, and the new house has two floors. Dave and Ellen can install them themselves. Help please.. What is dummy variable? Explain interaction effects using dummy variables? Explain Autoregressive Conditional Heteroskedasticity (ARCH) and Generalized Autoregressive Conditional Heteroskedasticity (GARH) models. What to do when find problem of Autocorrelation? The Morris family is selecting a furniture set. A furniture set has a bed, a desk and a dresser. There are 4 beds, 2 desks, and 1 dresser to select from. How many different furniture sets could they select? Leisure Enterprises total cost of producing speedboats is given by TC = 10 Q 3 4 Q 2 + 25 Q + 500. On the basis of this information, the marginal cost of producing the 25th speedboat is: A television screen measures 35 cm wide and 26 cm high. What is the diagonal measure of the screen? Help this is timed please The table represents a functionWhich value is an output of the function?46f(x)-2-68077341-53-2-512 Select all the correct answers. Which two examples may be converted into fossil fuel after being buried under pressure for a long period of time? To determine the net cash provided (used) by operating activities, it is necessary to analyze Group of answer choices the current year's income statement. a comparative balance sheet. additional information. all of these. The length of a covalent bond depends upon the size of the atoms and the bond order.a. Trueb. False Simplify :[tex] \large{ \bf{ \frac{x - 1}{ {x}^{2} - 3x + 2} + \frac{x - 2}{ {x}^{2} - 5x + 6 } + \frac{x - 5}{ {x}^{2} - 8x + 15 } }}[/tex][tex] \large{ \tt{ans : \bf{ \frac{3x - 7}{(x - 2)(x - 3)} }}}[/tex]- Show your workings *- Irrelevant / Random answers will be reported! Find the Taylor series for f(x) centered at the given value of a. (Assume that f has a power series expansion. Do not show that Rn(x)0 . f(x)=lnx, a= Name the process by which sugar moves into cell A.Name the process by which sugar moves into cell B. Amanda's parents frequently argue. A month ago, Amanda's dad left the hcluse in anger. He did return aweek later. Now, Amanda gets nervous every time her dad leaves for work.What is the condition described here?O post-traumatic stress disorderdenialO depressionO anxiety Find the perimeter of quadrilateral ABCD with vertices A(0, 4), B(4, 1), C(1, -3), and D(-3, 0). Charles Corporation produces and sells a single product. Data concerning that product appear below: Per Unit Percent of SalesSelling Price $190 100%Variable Expenses 38 20%Contribution Margin 152 80%Fixed expenses are $87,000 per month. The company is currently selling 1,000 units per month. Management is considering using a new component that would increase the unit variable cost by $28. Since the new component would increase the features of the company's product, the marketing manager predicts that monthly sales would increase by 500 units. What should be the overall effect on the company's monthly net operating income of this change? When Kimberly finds out that members of her team are using unethical practices to make sales and obtain information, her solution is to hold a Code of Ethics workshop. Is this an appropriate response for her to have?a. Yes; as the manager of these two employees, she is responsible for making sue they know what the expectations of behavior are. b. Yes; she is not allowed to take any disciplinary actions. c. No; she should fire both of them immediately. d. No; it is not her responsibility to educate these employees. They should be in charge of deciding their own ethical behavior.