Answer:
a) [tex] \alpha = 1.28 rad/s^{2} [/tex]
b) Option ii. The angular acceleration would increase
Explanation:
a) The angular acceleration is given by:
[tex] \omega_{f} = \omega_{0} + \alpha t [/tex]
Where:
[tex] \omega_{f} [/tex]: is the final angular speed = v/r
v: is the tangential speed = 6.35 m/s
r: is the radius = 45.0 cm = 0.45 m
[tex]\omega_{0}[/tex]: is the initial angular speed = 0 (the hoop starts from rest)
t: is the time = 11.0 s
α: is the angular acceleration
Hence, the angular acceleration is:
[tex] \alpha = \frac{\omega}{t} = \frac{v}{r*t} = \frac{6.35 m/s}{0.45 m*11.0 s} = 1.28 rad/s^{2} [/tex]
b) If the radius were smaller, the angular acceleration would increase since we can see in the equation that the radius is in the denominator ([tex] \alpha = \frac{v}{r*t} [/tex]).
Therefore, the correct option is ii. The angular acceleration would increase.
I hope it helps you!
Three 15-Ω and two 25-Ω light bulbs and a 24 V battery are connected in a series circuit. What is the current that passes through each bulb?
1) 0.18 A
2) 0.25 A
3) 0.51 A
4) 0.74 A
5) The current will be 1.6 A in the 15-Ω bulbs and 0.96 A in the 25-Ω bulbs.
Answer:
I = 0.25 A
Explanation:
Given that,
Three 15 ohms and two 25 ohms light bulbs and a 24 V battery are connected in a series circuit.
In series combination, the equivalent resistance is given by :
[tex]R=R_1+R_2+R_3+....[/tex]
So,
[tex]R=15+15+15+25+25\\\\=95\ \Omega[/tex]
The current each resistor remains the same in series combination. It can be calculated using Ohm's law i.e.
V = IR
[tex]I=\dfrac{V}{R}\\\\I=\dfrac{24}{95}\\\\I=0.25\ A[/tex]
So, the current of 0.25 A passes through each bulb.
A body starts from rest and accelerates uniformly at 5m/s. Calculate the time taken by the body to cover a distance of 1km
Answer:
20 seconds
Explanation:
We are given 2 givens in the first statement
v0=0 and a=5
And we are trying to find time needed to cover 1km or 1000m.
So we use
x-x0=v0t+1/2at²
Plug in givens
1000=0+2.5t²
solve for t
t²=400
t=20s
Which of the following is a noncontact force?
O A. Friction between your hands
O B. A man pushing on a wall
O C. Air resistance on a car
D. Gravity between you and the Sun
Answer:
Gravity between you and the sun
It takes the elevator in a skyscraper 4.0 s to reach its cruising speed of 10 m/s. A 60 kg passenger gets aboard on the ground floor.
1. What is the passenger's apparent weight before the elevator starts moving?
2. What is the passenger's apparent weight whilethe elevator is speeding up?
3. What is the passenger's apparent weight afterthe elevator reaches its cruising speed?
Answer:
1. 588 N
2. 738 N
3. 588 N
Explanation:
time, t = 4 s
initial velocity, u = 0
final velocity, v = 10 m/s
mass, m= 60 kg
1.
Weight of passenger before starts
W =m g = 60 x 9.8 = 588 N
2.
When the elevator is speeding up
v = u + a t
10 = 0 + a x 4
a = 2.5 m/s2
Now the weight is
W' = m (a + g) = 60 (9.8 + 2.5) = 738 N
3.
When he reaches the cruising speed, the weight is
W = 588 N
Paauto A: Isulat sa papel ang alpabetong Ingles at bilang I hanggang 10 sa istilong
Roman ng pagleletra.
Answer:
Explanation:
English alphabets numbered fro 1 to 26
and the numbers 1 to10 so they are written in roman numbers as
1 - I
2 - II
3 - III
4 - IV
5 -V
6 - VI
7 -VII
8 - VIII
9 - IX
10 -X
11 - XI
12 - XII
13 - XIII
14 - XIV
15 - XV
16 - XVI
17 - XVII
18 - XVIII
19 - XIX
20- XX
21 - XXI
22 - XXII
23 - XXIII
24 - XXIV
25 - XXV
26 - XXVI
what is time taken by radio wave to go and return back from communication satellite to earth??
Answer:
Radio waves are used to carry satellite signals. These waves travel at 300,000 km/s (the speed of light). This means that a signal sent to a satellite 38,000 km away takes 0.13 s to reach the satellite and another 0.13 s for the return signal to be received back on Earth.
Explanation:
hope it help
what is conservation energy?
Explanation:
Conservation of energy, principle of physics according to which the energy of interacting bodies or particles in a closed system remains constant
hope it is helpful to you
The following two waves are sent in opposite directions on a horizontal string so as to create a standing wave in a vertical plane: y1(x, t) = (8.20 mm) sin(4.00πx - 430πt) y2(x, t) = (8.20 mm) sin(4.00πx + 430πt), with x in meters and t in seconds. An antinode is located at point A. In the time interval that point takes to move from maximum upward displacement to maximum downward displacement, how far does each wave move along the string?
Answer:
Explanation:
From the information given:
The angular frequency ω = 430 π rad/s
The wavenumber k = 4.00π which can be expressed by the equation:
k = ω/v
∴
4.00 = 430 /v
v = 430/4.00
v = 107.5 m/s
Similarly: k = ω/v = 2πf/fλ
We can say that:
k = 2π/λ
4.00 π = 2π/λ
wavelength λ = 2π/4.00 π
wavelength λ = 0.5 m
frequency of the wave can now be calculated by using the formula:
f = v/λ
f = 107.5/0.5
f = 215 Hz
Also, the Period(T) = 1/215 secs
The time at which particle proceeds from point A to its maximum upward displacement and to its maximum downward displacement can be computed as t = T/2;
Thus, the distance(x) covered by each wave during this time interval(T/2) will be:
x = v * t
x = v * T/2
x = λ/2
x = 0.5/2
x = 0.25 m
Which phase of matter makes up stars?
O liquid
O gas
O plasma
Answer:
The answer to this question is plasma
Answer:
Plasma
Explanation:
Which physical phenomenon is illustrated by the fact that the prism has different refractive indices for different colors
Answer:
The incoming white light is composed of light of different colors,
Since these different colors have different refractive indices they are refracted at different angles from one another.
The output light is then separated by color creating a color spectrum.
Since n is greater for shorter wavelengths (violet colors) these wavelengths are refracted thru the larger angles.
Two cars are facing each other. Car A is at rest while car B is moving toward car A with a constant velocity of 20 m/s. When car B is 100 from car A, car A begins to accelerate toward car B with a constant acceleration of 5 m/s/s. Let right be positive.
1) How much time elapses before the two cars meet? 2) How far does car A travel before the two cars meet? 3) What is the velocity of car B when the two cars meet?
4) What is the velocity of car A when the two cars meet?
Answer:
Let's define t = 0s (the initial time) as the moment when Car A starts moving.
Let's find the movement equations of each car.
A:
We know that Car A accelerations with a constant acceleration of 5m/s^2
Then the acceleration equation is:
[tex]A_a(t) = 5m/s^2[/tex]
To get the velocity, we integrate over time:
[tex]V_a(t) = (5m/s^2)*t + V_0[/tex]
Where V₀ is the initial velocity of Car A, we know that it starts at rest, so V₀ = 0m/s, the velocity equation is then:
[tex]V_a(t) = (5m/s^2)*t[/tex]
To get the position equation we integrate again over time:
[tex]P_a(t) = 0.5*(5m/s^2)*t^2 + P_0[/tex]
Where P₀ is the initial position of the Car A, we can define P₀ = 0m, then the position equation is:
[tex]P_a(t) = 0.5*(5m/s^2)*t^2[/tex]
Now let's find the equations for car B.
We know that Car B does not accelerate, then it has a constant velocity given by:
[tex]V_b(t) =20m/s[/tex]
To get the position equation, we can integrate:
[tex]P_b(t) = (20m/s)*t + P_0[/tex]
This time P₀ is the initial position of Car B, we know that it starts 100m ahead from car A, then P₀ = 100m, the position equation is:
[tex]P_b(t) = (20m/s)*t + 100m[/tex]
Now we can answer this:
1) The two cars will meet when their position equations are equal, so we must have:
[tex]P_a(t) = P_b(t)[/tex]
We can solve this for t.
[tex]0.5*(5m/s^2)*t^2 = (20m/s)*t + 100m\\(2.5 m/s^2)*t^2 - (20m/s)*t - 100m = 0[/tex]
This is a quadratic equation, the solutions are given by the Bhaskara's formula:
[tex]t = \frac{-(-20m/s) \pm \sqrt{(-20m/s)^2 - 4*(2.5m/s^2)*(-100m)} }{2*2.5m/s^2} = \frac{20m/s \pm 37.42 m/s}{5m/s^2}[/tex]
We only care for the positive solution, which is:
[tex]t = \frac{20m/s + 37.42 m/s}{5m/s^2} = 11.48 s[/tex]
Car A reaches Car B after 11.48 seconds.
2) How far does car A travel before the two cars meet?
Here we only need to evaluate the position equation for Car A in t = 11.48s:
[tex]P_a(11.48s) = 0.5*(5m/s^2)*(11.48s)^2 = 329.48 m[/tex]
3) What is the velocity of car B when the two cars meet?
Car B is not accelerating, so its velocity does not change, then the velocity of Car B when the two cars meet is 20m/s
4) What is the velocity of car A when the two cars meet?
Here we need to evaluate the velocity equation for Car A at t = 11.48s
[tex]V_a(t) = (5m/s^2)*11.48s = 57.4 m/s[/tex]
Which indicates the first law of thermodynamics
Answer:
(d)
Explanation:
because dU = Q -W so ,that the option d(D) is correct
The pressure exerted at the bottom of a column of liquid is 30 kPa. The height of the
column is 3,875 m. What type of liquid is used?
Answer:
For example, the pressure acting on a dam at the bottom of a reservoir is ... pressure = height of column × density of the liquid × gravitational field ... The density of water is 1,000 kg/m 3.
What happens to the acceleration if you triple the force that you apply to the painting with your hand? (Use the values from the example given in the previous part of the lecture.) Submit All Answers Answer: Not yet correct, tries 1/5 3. A driver slams on the car brakes, and the car skids to a halt. Which of the free body diagrams below best matches the braking force on the car. (Note: The car is moving in the forward direction to the right.] (A) (B) (C) (D) No more tries. Hint: (Explanation) The answer is A. The car is moving to the right and slowing down, so the acceleration points to the left. The only significant force acting on the car is the braking force, so this must be pointing left because the net force always shares the same direction as the object's acceleration. 4. Suppose that the car comes to a stop from a speed of 40 mi/hr in 24 seconds. What was the car's acceleration rate (assuming it is constant). Answer: Submit Al Answers Last Answer: 55 N Only a number required, Computer reads units of N, tries 0/5. 5. What is the magnitude (or strength) of the braking force acting on the car? [The car's mass is 1200 kg.) Answer: Submit Al Answers Last Answer: 55N Not yet correct, tries 0/5
Answer:
2) when acceleration triples force triples, 3) a diagram with dynamic friction force in the opposite direction of movement of the car
4) a = 2.44 ft / s², 5) fr = 894.3 N
Explanation:
In this exercise you are asked to answer some short questions
2) Newton's second law is
F = m a
when acceleration triples force triples
3) Unfortunately, the diagrams are not shown, but the correct one is one where the axis of movement has a friction force in the opposite direction of movement, as well as indicating that the car slips, the friction coefficient of dynamic.
The correct answer is: a diagram with dynamic friction force in the opposite direction of movement of the car
4) let's use the scientific expressions
v = v₀ - a t
as the car stops v = 0
a = v₀ / t
let's reduce the magnitudes
v₀ = 40 mile / h ([tex]\frac{5280 ft}{1 mile}[/tex]) ([tex]\frac{1 h}{3600 s}[/tex]) = 58.667 ft / s
a = 58.667 / 24
a = 2.44 ft / s²
5) let's use Newton's second law
fr = m a
We must be careful not to mix the units, we will reduce the acceleration to the system Yes
a = 2.44 ft / s² (1 m / 3.28 ft) = 0.745 m / s²
fr = 1200 0.745
fr = 894.3 N
Based on the information in the table, what
is the acceleration of this object?
t(s) v(m/s)
0.0
9.0
1.0
4.0
2.0
-1.0
3.0
-6.0
A. -5.0 m/s2
B. -2.0 m/s2
C. 4.0 m/s2
D. 0.0 m/s2
Answer:
Option A. –5 m/s²
Explanation:
From the question given above, the following data were obtained:
Initial velocity (v₁) = 9 m/s
Initial time (t₁) = 0 s
Final velocity (v₂) = –6 m/s
Final time (t₂) = 3 s
Acceleration (a) =?
Next, we shall determine the change in the velocity and time. This can be obtained as follow:
For velocity:
Initial velocity (v₁) = 9 m/s
Final velocity (v₂) = –6 m/s
Change in velocity (Δv) =?
ΔV = v₂ – v₁
ΔV = –6 – 9
ΔV = –15 m/s
For time:
Initial time (t₁) = 0 s
Final time (t₂) = 3 s
Change in time (Δt) =?
Δt = t₂ – t₁
Δt = 3 – 0
Δt = 3 s
Finally, we shall determine the acceleration of the object. This can be obtained as follow:
Change in velocity (Δv) = –15 m/s
Change in time (Δt) = 3 s
Acceleration (a) =?
a = Δv / Δt
a = –15 / 3
a = –5 m/s²
Thus, the acceleration of the object is
–5 m/s².
What would the radius (in mm) of the Earth have to be in order for the escape speed of the Earth to equal (1/21) times the speed of light (300000000 m/s)? You may ignore all other gravitational interactions for the rocket and assume that the Earth-rocket system is isolated. Hint: the mass of the Earth is 5.94 x 1024kg and G=6.67×10−11Jmkg2G=6.67\times10^{-11}\frac{Jm}{kg^2}G=6.67×10−11kg2Jm
Answer:
The expected radius of the Earth is 3.883 meters.
Explanation:
The formula for the escape speed is derived from Principle of Energy Conservation and knowing that rocket is initially at rest on the surface of the Earth and final energy is entirely translational kinetic, that is:
[tex]U = K[/tex] (1)
Where:
[tex]U[/tex] - Gravitational potential energy, in joules.
[tex]K[/tex] - Translational kinetic energy, in joules.
Then, we expand the formula by definitions of potential and kinetic energy:
[tex]\frac{G\cdot M\cdot m}{r} = \frac{1}{2}\cdot m \cdot v^{2}[/tex] (2)
Where:
[tex]G[/tex] - Gravitational constant, in cubic meters per kilogram-square second.
[tex]M[/tex] - Mass of the Earth. in kilograms.
[tex]m[/tex] - Mass of the rocket, in kilograms.
[tex]r[/tex] - Radius of the Earth, in meters.
[tex]v[/tex] - Escape velocity, in meters per second.
Then, we derive an expression for the escape velocity by clearing it within (2):
[tex]\frac{GM}{r} = \frac{1}{2}\cdot v^{2}[/tex]
[tex]v = \sqrt{\frac{2\cdot G \cdot M}{r} }[/tex] (3)
If we know that [tex]v = \frac{1}{21}\cdot c[/tex], [tex]c = 3\times 10^{8}\,\frac{m}{s}[/tex], [tex]M = 5.94\times 10^{24}\,kg[/tex], [tex]G = 6.67\times 10^{-11}\,\frac{m^{3}}{kg\cdot s^{2}}[/tex] and [tex]M = 5.94\times 10^{24}\,kg[/tex], then the expected radius of the Earth is:
[tex]\frac{GM}{r} = \frac{1}{2}\cdot v^{2}[/tex]
[tex]r = \frac{2\cdot G \cdot M}{v^{2}}[/tex]
[tex]r = \frac{2\cdot \left(6.67\times 10^{-11}\,\frac{m^{3}}{kg\cdot s^{2}} \right)\cdot (5.94\times 10^{24}\,kg)}{\left[\frac{1}{21}\cdot \left(3\times 10^{8}\,\frac{m}{s} \right) \right]^{2}}[/tex]
[tex]r = 3.883\,m[/tex]
The expected radius of the Earth is 3.883 meters.
How do you find the product of gamma decay?
Answer:
The mass and atomic numbers don't change
Explanation:
An excited atom relaxes to the ground state emitting a photon...called a gamma ray.
The answer is that the mass and atomic numbers don't change.
In gamma decay, the product refers to the nucleus resulting from the emission of a gamma ray. Gamma decay occurs when an excited atomic nucleus releases excess energy in the form of a high-energy photon called a gamma ray.
To find the product of gamma decay, you need to identify the nucleus before and after the decay process. The product nucleus is determined by the parent nucleus that undergoes gamma decay.
During gamma decay, the number of protons and neutrons in the nucleus remains unchanged. Therefore, the identity of the element remains the same, but the energy state of the nucleus is altered.
The product nucleus is typically represented by the same chemical symbol as the parent nucleus, followed by a superscript indicating the mass number (total number of protons and neutrons) and a subscript indicating the atomic number (number of protons).
For example, if a parent nucleus with an atomic number of Z and a mass number of A undergoes gamma decay, the product nucleus will have the same atomic number Z and mass number A.
It's important to note that gamma decay does not involve the emission or absorption of any particles, only the release of electromagnetic radiation (gamma ray).
Thus, the product nucleus remains unchanged in terms of atomic number and mass number.
Know more about gamma decay:
https://brainly.com/question/16039775
#SPJ4
Suppose the pucks start spinning after the collision, whereas they were not before. Will this affect your momentum conservation results
Answer:
No, it will not affect the results.
Explanation:
For elastic collisions in an isolated system, when a collision occurs, it means that the systems objects total momentum will be conserved under the condition that there will be no net external forces that act upon the objects.
What that means is that if the pucks start spinning after the collision, we are not told that there was any net external force acting on the puck and thus momentum will be conserved because momentum before collision will be equal to the momentum after the collision.
* A ball is projected horizontally from the top of
a building 19.6m high.
a, How long when the ball take to hit the ground?
b, If the line joining the point of projection to
the point where it hits the ground is 45
with the horizontal. What must be the
initial velocity of the ball?
c,with what vertical verocity does the ball strike
the grounds? (9= 9.8 M152)
Explanation:
Given
Ball is projected horizontally from a building of height [tex]h=19.6\ m[/tex]
time taken to reach ground is given by
[tex]\text{Cosidering vertical motion}\\\Rightarrow h=ut+0.5at^2\\\Rightarrow 19.6=0+0.5\times 9.8t^2\\\Rightarrow t^2=4\\\Rightarrow t=2\ s[/tex]
(b) Line joining the point of projection and the point where it hits the ground makes an angle of [tex]45^{\circ}[/tex]
From the figure, it can be written
[tex]\Rightarrow \tan 45^{\circ}=\dfrac{h}{x}\\\\\Rightarrow x=h\cdot 1\\\Rightarrow x=19.6[/tex]
Considering horizontal motion
[tex]\Rightarrow x=u_xt\\\Rightarrow 19.6=u_x\times 4\\\Rightarrow u_x=4.9\ m/s[/tex]
(c) The vertical velocity with which it strikes the ground is given by
[tex]\Rightarrow v^2-u_y^2=2as\\\Rightarrow v^2-0=2\times 9.8\times 19.6\\\Rightarrow v=\sqrt{384.16}\\\Rightarrow v=19.6\ m/s[/tex]
Thus, the ball strikes with a vertical velocity of [tex]19.6\ m/s[/tex]
Explanation:
Given
Ball is projected horizontally from a building of height
time taken to reach ground is given by
(b) Line joining the point of projection and the point where it hits the ground makes an angle of
From the figure, it can be written
Considering horizontal motion
(c) The vertical velocity with which it strikes the ground is given by
Thus, the ball strikes with a vertical velocity of
Astronauts in space move a toolbox from its initial position ????????→=<15,14,−8>m to its final position ????????→=<17,14,−1>m. The two astronauts each push on the box with a constant force. Astronaut 1 exerts a force ????1→=<18,7,−12>???? and astronaut 2 exerts a force ????2→=<16,−10,16>????.
Required:
What is the total work performed on the toolbox?
If both forces are measured in Newtons, then the net force is
F = (18, 7, -12) N + (16, -10, 16) N = (34, -3, 4) N
The toolbox undergoes a displacement (i.e. change in position) in the direction of the vector
d = (17, 14, -1) m - (15, 14, -8) m = (2, 0, -9) m
The total work done by the astronauts on the toolbox is then
F • d = (34, -3, 4) N • (2, 0, -9) m = (68 + 0 - 36) N•m = 32 J
The work done by the two astronauts is equal to 96 J.
What is work done?work done?Work done is defined as the product of force applied and the distance moved by the force.
Work done = Force × DistanceThe forces applied = 18+16 N, 7+ -10 N, and -12 + 16N
Forces = 34 N, -3 N, and 4N
Distances = (17 - 15, 14 - 14, -1 - - 8) m
Distances = 2, 0, 7
Work done = 34 × 2 + -3 × 0 + 4 × 7
Work done = 96 J
Therefore, the work done by the two astronauts is equal to 96 J.
Learn more about work done at: https://brainly.com/question/25573309
#SPJ6
Drawing a shows a displacement vector (450.0 m along the y axis). In this x, y coordinate system the scalar components are Ax 0 m and Ay 450.0 m. Suppose that the coordinate system is rotated counterclockwise by 35.0, but the magnitude (450.0 m) and direction of vector remain unchanged, as in drawing b. What are the scalar components, Ax and Ay, of the vector in the rotated x, y coordinate system
Answer:
x ’= 368.61 m, y ’= 258.11 m
Explanation:
To solve this problem we must find the projections of the point on the new vectors of the rotated system θ = 35º
x’= R cos 35
y’= R sin 35
The modulus vector can be found using the Pythagorean theorem
R² = x² + y²
R = 450 m
we calculate
x ’= 450 cos 35
x ’= 368.61 m
y ’= 450 sin 35
y ’= 258.11 m
Why don’t you see tides ( like those of the ocean ) in your swimming pool ?
Which level of government relies the most on income tax?
OA.
federal
state
OC.
local
Answer:
Its the Federal government
A body of mass 2kg is released from from a point 100m above the ground level. calculate kinetic energy 80m from the point of released.
Answer:
1568J
Explanation:
Since the problem states 80 m from the point of drop, the height relative to the ground will be 100-80=20m.
Use conservation of Energy
ΔUg+ΔKE=0
ΔUg= mgΔh=2*9.8*(20-100)=-1568J
ΔKE-1568J=0
ΔKE=1568J
since KEi= 0 since the object is at rest 100m up, the kinetic energy 20meters above the ground is 1568J
Click Stop Using the slider set the following: coeff of restitution to 1.00 A velocity (m/s) to 6.0 A mass (kg) to 6.0 B velocity (m/s) to 0.0 Calculate what range can the mass of B be to cause mass A to bounce off after the collision. Calculate what range can the mass of B be to cause mass A to continue forward after the collision. Check your calculations with the simulation. What are the ranges of B mass (kg)
Answer:
[tex]M_b=6kg[/tex]
Explanation:
From the question we are told that:
Coefficient of restitution [tex]\mu=1.00[/tex]
Mass A [tex]M_a=6kg[/tex]
Initial Velocity of A [tex]U_a=6m/s[/tex]
Initial Velocity of B [tex]U_b=0m/s[/tex]
Generally the equation for Coefficient of restitution is mathematically given by
[tex]\mu=\frac{V_b-V_a}{U_a-U_b}[/tex]
[tex]1=\frac{v_B}{6}[/tex]
[tex]V_b=6*1[/tex]
[tex]V_b=6m/s[/tex]
Generally the equation for conservation of linear momentum is mathematically given by
[tex]M_aU_a+M_bU_b=M_aV_a+M_bV_b[/tex]
[tex]6*6+=M_b*6[/tex]
[tex]M_b=6kg[/tex]
vector A has a magnitude of 8 unit make an angle of 45° with posetive x axis vector B also has the same magnitude of 8 unit along negative x axis find the magnitude of A+B?
Answer:
45 × 8 units = A + B as formular
A uniform ladder of length 24 m and weight w is supported by horizontal floor at A and by a vertical wall at B. It makes an angle 45 degree with the horizontal. The coefficient of friction between ground and ladder is 1/2 and coefficient of friction between ladder and wall is 1/3. If a man whose weight is one-half than the ladder, ascends the ladder, how much length x of the ladder he shall climb before the ladder slips
Answer:
I could not find the answer or do it myself if I did find it I would defenetly share
water contracts on freezing is it incorrect or conrrect
Answer:
hope it helps
much as you can
190 students sit in an auditorium listening to a physics lecture. Because they are thinking hard, each is using 125 W of metabolic power, slightly more than they would use at rest. An air conditioner with a COP of 5.0 is being used to keep the room at a constant temperature. What minimum electric power must be used to operate the air conditioner?
Answer:
W = 4.75 KW
Explanation:
First, we will calculate the heat to be removed:
Q = (No. of students)(Metabolic Power of Each Student)
Q = (190)(125 W)
Q = 23750 W = 23.75 KW
Now the formula of COP is:
[tex]COP = \frac{Q}{W}\\\\W = \frac{Q}{COP}\\\\W = \frac{23.75\ KW}{5}\\\\[/tex]
W = 4.75 KW
A point charge of -3.0 x 10-C is placed at the origin of coordinates. Find the clectric field at the point 13. X= 5.0 m on the x-axis.
Answer:
-1.0778×10⁻¹⁰ N/C
Explanation:
Applying,
E = kq/r²................ equation 1
Where E = elctric field, q = charge, r = distance, k = coulomb's law
From the question,
Given: q = -3.0×10 C, r = 5.0 m
Constant: k = 8.98×10⁹ Nm²/C²
Substitute these values in equation 1
E = (-3.0×10)(8.98×10⁹)/5²
E = -1.0778×10⁻¹⁰ N/C
Hence the electric field on the x-axis is -1.0778×10⁻¹⁰ N/C