9514 1404 393
Answer:
38 pounds Costa Rican62 pounds Arabian MochaStep-by-step explanation:
Let 'a' represent the number of pounds of Arabian Mocha in the mix. Then the number of pounds of Costa Rican blend is (100-a). The cost of the mix will be ...
9.10(100 -a) +13.10(a) = 11.58(100)
4a = 248 . . . . . . . . . . . . . collect terms, subtract 910
a = 62 . . . . . . . . . . . . divide by 4
62 pounds of Arabian Mocha and 38 pounds of Costa Rican blend should be mixed.
Sumas y restas
W+y=9
3W-y=11
Answer:
w = 5
y = 4
Step-by-step explanation:
w + y = 9
3w - y = 11 ( + )
________
4w + 0 = 20
4w = 20
w = 20 / 4
w = 5
Substitute w = 5 in eq. w + y = 9,
w + y = 9
5 + y = 9
y = 9 - 5
y = 4
help please i don't know how to do this
(URGENT!!) Which graph models the function f(x) = -4(2)x? (2 points)
Answer:
2nd Graph
Step-by-step explanation:
Bases off the graphs, you gave me, I assume your the equation is
[tex]f(x) = - 4(2) {}^{x} [/tex]
The parent equation of this function is
[tex]f(x) = b {}^{x} [/tex]
Let say x=0
Using the rules of exponets, the y value must be 1 so a critical point is
(0,1)
The function is multiplied by -4.
This means the function is stretched in the y direction by 4 and reflected over the x axis. So our new point will be
(0,-4).
The base 2 the function will get compressed by 1/2.
The best graph that represents this is the second graph
On a coordinate plane, a line goes through points (negative 1, 0), (0, 1), and (1, 2). Which table goes with the graph?
Answer:
Table B
Step-by-step explanation:
correct on edge :)
Estimate 19.625-6.77 by first rounding each number to the nearest tenth.
Answer:
13
Step-by-step explanation:
1. Round 19.625 up to 20.
2. Round 6.77 up to 7.
3. Calculate the equation. Ans is 13.
Find the equation of the lines in problem 1 (0,0) slope =2.
Answer:
y = 2x
Step-by-step explanation:
Given that , the line passes through the point (0,0) and has a slope of 2. So here we can use the point slope form of the line as ,
[tex]\implies y- y_1 = m( x - x_1) \\\\\implies y - 0 = 2( x - 0 ) \\\\\implies y = 2(x) \\\\\implies \underline{\underline{y = 2x }}[/tex]
need help with algebra problem
Answer:
[tex]option \: d \: 4.2 \times {10}^{ - 3} [/tex]
Step-by-step explanation:
Multiplication,
[tex] = 8.4 \times {10}^{ 8 } \times 5 \times {10}^{ - 11} \\ = 8.4 \times 5 \times {10}^{8 + ( - 11)} \\ = 4.2 \times {10}^{8 - 11} \\ = 4.2 \times {10}^{ - 3} [/tex]
SOLVE PLS!! ILL MARK BRAINILEST!!
Answer:
73.3333....
Step-by-step explanation:
please mark me brainliest
Answer:
a: t=13.6 cm
b: h=12.9 mm
Step-by-step explanation:
Hi there!
Let's start with a
in a, we are given a right triangle (notice the right angle), the length of the hypotenuse (the side OPPOSITE from the right angle) as 18 cm, one acute angle given as 41° and the length of one of the legs (the legs are the sides that make up the right angle) as t
We're asked to use the primary trigonometric ratios
Those ratios are:
Sine, which is opposite/hypotenuse
Cosine, which is adjacent/hypotenuse
Tangent, which is opposite/adjacent
We will be basing the ratio off of the 41° angle, so let's find out which sides will be which in reference to that angle
The opposite side will be the other leg, the unmarked side
The adjacent side will be t
The hypotenuse will be the side marked as 18 cm
So let's use cos(41) in this case
cos(41)=t/18
Plug cos(41) into your calculator, and remember to have the calculator in degree mode
cos(41)≈0.8 (rounded to the nearest tenth)
0.8=t/18
multiply both sides by 18
13.6 cm=t
It's already rounded to the nearest tenth :)
b.
We are given a right triangle, and the lengths of the legs as h and 9 mm, as well as one acute angle as 35°
We'll be basing our ratio off of the 35 degree angle, so let's find which sides will be which in reference to that angle
The opposite side will be the leg marked as 9 mm
The adjacent side will be the leg marked as h
The hypotenuse will be the unmarked side
Since we are given the lengths of the opposite and the adjacent, let's use tan(35)
tan(35)=9/h
Plug tan(35) into your calculator, and remember to have it in degree mode
tan(35)≈0.7
0.7=9/h
multiply both sides by h
0.7h=9
divide both sides by 0.7
h=12.9 mm (rounded to the nearest tenth)
Hope this helps!
If f(x) is a linear function, what is the value of n?
х
_4
f(x)
---25
-10
-1
n
20
2
оооо
9
Step-by-step explanation:
You can simply plot these points on a graph and see where the line goes. It go
(3k + 5)(2k2 – 5k – 3)
a number decreased by 22% is 117. What is the number?
Answer:
Old number = 150
Step-by-step explanation:
Given information;
Percentage decreased = 22%
New number obtain = 117
Find:
Old number
Computation:
Old number = New number obtain[100 / (100 - 22)]
Old number = 117[100 / (100 - 22)]
Old number = 117[100 / (78)]
Old number = 11,700 / 78
Old number = 150
Date Page The male population of a village is 9840 and the female population is 8965. Find the total population of the village ii) How many more males are there than females
The top and bottom ends of a windshield wiper blade are R = 24 in. and r = 14 in., respectively, from the pivot point. While in operation, the wiper sweeps through 135°. Find the area swept by the blade. (Round your answer to the nearest whole number.)
Answer:
Area swept by the blade = 448[tex]in^{2}[/tex]
Step-by-step explanation:
The arc the wiper wipes is for 135 degrees angle.
So, find area of sector with radius 24 inches. And the find area of arc with r=14 inches.
Then subtract the area of sector with 14 inches from area of sector with radius as 24 inches.
So, area of sector with r=24 in =[tex]\frac{135}{360} *\pi *24^{2}[/tex]
Simplify it,
=216[tex]\pi[/tex]
Now, let's find area of sector with radius 14 inches
Area of sector with r=14 in = [tex]\frac{135}{360} *\pi *14^{2}[/tex]
Simplify it
=73.5[tex]\pi[/tex]
So, area swept by the blade = 216[tex]\pi[/tex] -73.5[tex]\pi[/tex]
Simplify it and use pi as 3.14.....
Area of swept =678.584 - 230.907
=447.6769
Round to nearest whole number
So, area swept by the blade = 448[tex]in^{2}[/tex]
A ball is thrown into the air with an upward velocity of 24 ft/s. Its height h in feet after t seconds is given by the function h = –16t2 + 24t + 7. a. In how many seconds does the ball reach its maximum height? Round to the nearest hundredth if necessary. b. What is the ball’s maximum height?
Answer:
Step-by-step explanation:
Since you have this categorized under college math, I'm going to go out on a limb here and assume you're in calculus. We will solve using the position function and its first derivative (velocity) to solve. Remember that at an object's max height, the velocity is 0.
If the position function is
[tex]s(t)=-16t^2+24t+7[/tex] the first derivative, velocity, is
v(t) = -32t + 24. Set this equal to 0 to find the time when the object is at its max height:
0 = -32t + 24 and
-24 = -32t so
t = .75 seconds. Now we can plug that time into the position function to find where it is at that time. This "where" will be the max height:
s(.75) = [tex]-16(.75)^2+24(.75)+7[/tex] so
s(.75) = 16 feet
Blank DVD's are sold in packages of 50 for $17.95 if your company will need 2700 blank divide these next year how much money must your budget for blank dvd's
Answer:
Step-by-step explanation:
50 X 240 = 2700. So you will need 240 packs of 50. They cost 17.95 each, so the multiply. 240 X 17.95 is 4,308. So, 4,308 is your answer.
Convert 1.5% to decimal and a fraction. Show and explain your method.
Answer:
0.015
Step-by-step explanation:
1.5% = means 1.5 per 100 or simply 1.5/100.if you divide 1.5 by 100 you will get 0.015
What are the values of x for which the denominator is equal to zero for y=(x+3)/(x^2+4x)
9514 1404 393
Answer:
-4, 0
Step-by-step explanation:
The denominator is x^2+4x. This is zero when ...
x^2 +4x = 0
x(x +4) = 0
The zero product rule tells you the product is zero when the factors are zero.
x = 0
x +4 = 0 ⇒ x = -4
The denominator is zero for x=0 and x=-4.
Find the volume of the box. The box shows the length is 6 feet, the width is 5 feet, and the height is 3 feet. The volume of the box is blank cubic feet. The solution is
Answer:
[tex]90[/tex] [tex]ft^3[/tex]
Step-by-step explanation:
----------------------------------------
The formula to find the volume of a rectangular prism is [tex]V=lwh[/tex]
Let's substitute the number for the length, width, and height now.
[tex]V=(6)(5)(3)[/tex]
[tex]V=(30)(3)[/tex]
[tex]V=90[/tex]
--------------------
Hope this is helpful.
Pls answer
Subtract -37 from -53
Answer:
-37 subtract -53
-53 subtract -37 = -16
Step-by-step explanation:
Answer:
The answer is 16
Step-by-step explanation:
-37-(-53) = -37 + 53
You can flip it to 53 - 37 which equals 16.
Hope this helps! :)
*Heads up you can also search this up* ^^
data in the bar graph to solve the following problems. Choose the letter of the correl answer.
Distance from Churh (meters)
250
210
190
200
175
150
150
100
50
C. 25m
1. How much farther does Paolo walk thạnIgpher? Joshua
Topher
A. 20m
B. 15 m
C. 10m
D. 5m
2. How much farther does Joshua walk than Lucas?
A. 15m
B. 20m
D. 30m
3. How much farther does Topher than Lucas?
A. 50m
B. 40m
C. 30m
D. 20m
4. If you combine Paolo's and Lucas' distance from the church and compare it against the combined
distance walked by Joshua and Topher, which combined distance is farther
from the church?
A. Joshua and Topher
C. Joshua and Paolo
B. Paolo and Lucas
D. Topher and Lucas
5. Find the average distance of the houses of the 4 friends from the church?
A. 181
B. 191
C. 180
Answer:
The answer is below
Step-by-step explanation:
The bar chart to the question is attached below.
The distance traveled by Paolo = 210 m, The distance traveled by Lucas = 150 m, The distance traveled by Jashua = 175 m, The distance traveled by Topher = 190 m
1) The farther distance walk by Paolo = The distance traveled by Paolo - The distance traveled by Topher = 210 m - 190 m = 20 m
2) The farther distance walk by Jasha = The distance traveled by Jashua - The distance traveled by Lucas = 175 m - 150 m = 25 m
3) The farther distance walk by Topher = The distance traveled by Topher - The distance traveled by Lucas = 190 m - 150 m = 40 m
4) Combined distance of Paolo's and Lucas = 210 m + 150 m = 360 m
Combined distance of Jashua and Topher = 175 m + 190 m = 365 m
Therefore the Combined distance of Jashua and Topher is more
5) Average distance = (210 + 150 + 175 + 190)/4 = 181.25 m
Find the limit of f as or show that the limit does not exist. Consider converting the function to polar coordinates to make finding the limit easier. f(x,y)
Answer:
[tex]\lim_{(x,y) \to (0,0)} \frac{x^2 \sin^2y}{x^2+2y^2} = 0[/tex]
Step-by-step explanation:
Given
[tex]f(x,y) = \frac{x^2 \sin^2y}{x^2+2y^2}[/tex]
Required
[tex]\lim_{(x,y) \to (0,0)} f(x,y)[/tex]
[tex]\lim_{(x,y) \to (0,0)} f(x,y)[/tex] becomes
[tex]\lim_{(x,y) \to (0,0)} \frac{x^2 \sin^2y}{x^2+2y^2}[/tex]
Multiply by 1
[tex]\lim_{(x,y) \to (0,0)} \frac{x^2 \sin^2y}{x^2+2y^2}\cdot 1[/tex]
Express 1 as
[tex]\frac{y^2}{y^2} = 1[/tex]
So, the expression becomes:
[tex]\lim_{(x,y) \to (0,0)} \frac{x^2 \sin^2y}{x^2+2y^2} \cdot \frac{y^2}{y^2}[/tex]
Rewrite as:
[tex]\lim_{(x,y) \to (0,0)} \frac{x^2 y^2}{x^2+2y^2} \cdot \frac{\sin^2y}{y^2}[/tex]
In limits:
[tex]\lim_{(x,y) \to (0,0)} \frac{\sin^2y}{y^2} \to 1[/tex]
So, we have:
[tex]\lim_{(x,y) \to (0,0)} \frac{x^2 y^2}{x^2+2y^2} *1[/tex]
[tex]\lim_{(x,y) \to (0,0)} \frac{x^2 y^2}{x^2+2y^2}[/tex]
Convert to polar coordinates; such that:
[tex]x = r\cos\theta;\ \ y = r\sin\theta;[/tex]
So, we have:
[tex]\lim_{(x,y) \to (0,0)} \frac{(r\cos\theta)^2 (r\sin\theta;)^2}{(r\cos\theta)^2+2(r\sin\theta;)^2}[/tex]
Expand
[tex]\lim_{(x,y) \to (0,0)} \frac{r^4\cos^2\theta\sin^2\theta}{r^2\cos^2\theta+2r^2\sin^2\theta}[/tex]
Factor out [tex]r^2[/tex]
[tex]\lim_{(x,y) \to (0,0)} \frac{r^4\cos^2\theta\sin^2\theta}{r^2(\cos^2\theta+2\sin^2\theta)}[/tex]
Cancel out [tex]r^2[/tex]
[tex]\lim_{(x,y) \to (0,0)} \frac{r^2\cos^2\theta\sin^2\theta}{\cos^2\theta+2\sin^2\theta}[/tex]
[tex]\lim_{(x,y) \to (0,0)} \frac{r^2\cos^2\theta\sin^2\theta}{\cos^2\theta+2\sin^2\theta}[/tex]
Express [tex]2\sin^2 \theta[/tex] as [tex]\sin^2\theta+\sin^2\theta[/tex]
So:
[tex]\lim_{(x,y) \to (0,0)} \frac{r^2\cos^2\theta\sin^2\theta}{\cos^2\theta+\sin^2\theta+\sin^2\theta}[/tex]
In trigonometry:
[tex]\cos^2\theta + \sin^2\theta = 1[/tex]
So, we have:
[tex]\lim_{(x,y) \to (0,0)} \frac{r^2\cos^2\theta\sin^2\theta}{1+\sin^2\theta}[/tex]
Evaluate the limits by substituting 0 for r
[tex]\frac{0^2 \cdot \cos^2\theta\sin^2\theta}{1+\sin^2\theta}[/tex]
[tex]\frac{0 \cdot \cos^2\theta\sin^2\theta}{1+\sin^2\theta}[/tex]
[tex]\frac{0}{1+\sin^2\theta}[/tex]
Since the denominator is non-zero; Then, the expression becomes 0 i.e.
[tex]\frac{0}{1+\sin^2\theta} = 0[/tex]
So,
[tex]\lim_{(x,y) \to (0,0)} \frac{x^2 \sin^2y}{x^2+2y^2} = 0[/tex]
In the word PARADISE,how many pairs are there which have as many letters between them in the word as in the alphabet?
Answer:
three
P A R
A R A D
A D I S E
P Q R
A B C D
A B C D E
There are three such pairs of letters.
4. The average salary for public school teachers for a specific year was reported to be $39,385. A random sample of 50 public school teachers in a particular state had a mean of $41,680, and the population standard deviation is $5975. Is there sufficient evidence at the a _ 0.05 level to conclude that the mean salary differs from $39,385
Answer:
The p-value of the test is 0.0066 < 0.05, which means that there is sufficient evidence at the 0.05 significance level to conclude that the mean salary differs from $39,385
Step-by-step explanation:
The average salary for public school teachers for a specific year was reported to be $39,385. Test if the mean salary differs from $39,385
At the null hypothesis, we test if the mean is of $39,385, that is:
[tex]H_0: \mu = 39385[/tex]
At the alternative hypothesis, we test if the mean differs from this, that is:
[tex]H_1: \mu \neq 39385[/tex]
The test statistic is:
[tex]z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, [tex]\sigma[/tex] is the standard deviation and n is the size of the sample.
39385 is tested at the null hypothesis:
This means that [tex]\mu = 39385[/tex]
A random sample of 50 public school teachers in a particular state had a mean of $41,680, and the population standard deviation is $5975.
This means that [tex]n = 50, X = 41680, \sigma = 5975[/tex]
Value of the test statistic:
[tex]z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
[tex]z = \frac{41680 - 39385}{\frac{5975}{\sqrt{50}}}[/tex]
[tex]z = 2.72[/tex]
P-value of the test and decision:
The p-value of the test is the probability that the sample mean differs from 39385 by at least 2295, which is P(|Z| > 2.72), which is 2 multiplied by the p-value of Z = -2.72.
Looking at the z-table, Z = -2.72 has a p-value of 0.0033
2*0.0033 = 0.0066
The p-value of the test is 0.0066 < 0.05, which means that there is sufficient evidence at the 0.05 significance level to conclude that the mean salary differs from $39,385
In the xy-plane, the slope of the line y = mx − 4 is
less than the slope of the line y = x − 4. Which of the
following must be true about m?
[Show Workings}
I will give brainlist to the person with the right
If the slope of the line y = mx − 4 is less than the slope of the line y = x − 4, this shows that m will be any values less than 1 i.e. m < 1. This gives a true statement
The slope of a line defines the steepness of such a line. It is the ratio of the rise to the run of a line.
The general formula for calculating an equation of a line is expressed as:
[tex]y = mx + b[/tex] where:
m is the slope of the line
Given the equation of the line, [tex]y=x-4[/tex] the slope of the line will be derived through comparison as shown:
[tex]mx=1x\\[/tex]
Divide through by x
[tex]\dfrac{mx}{x} = \dfrac{1x}{x}\\ m=1[/tex]
Hence the slope of the line y = x - 1 is 1.
According to the question, since we are told that the slope of the line
y = mx − 4 is less than the slope of the line y = x − 4, this shows that m will be any values less than 1 i.e. m < 1. This gives a true statement
Learn more about the slope of a line here: https://brainly.com/question/16949303
Answer:
Step-by-step explanation:
ASAP!!!!!!!!! Please show process!!! Using law of sines!!!!!!!! Thank you so much
Answer:
the answers are on the picture but the numbers may be rounded
in a school there are 650 girls. It is 26% of the whole students, how many boys are there in the school?
Answer:
Step-by-step explanation:
Frt7v6c87buhinjomp,l.;
A swimming pool is circular with a 20-ft diameter. The depth is constant along east-west lines and increases linearly from 1 ft at the south end to 6 ft at the north end. Find the volume of water in the pool. (Round your answer to the nearest whole number.)
Answer:
1100 ft³
Step-by-step explanation:
Use the formula for the volume of a cylinder. For height, use the average of the minimum and maximum depths.
V = πr²h
r = d/2 = 20 ft/2 = 10 ft
h = (1 ft + 6 ft)/2 = 3.5 ft
V = π(10 ft)²(3.5 ft)
V = 1100 ft³
What is the amount f rainfall that Miami receives, round to the nearest half or whole? 55 9/10"
Answer:
56"
Step-by-step explanation:
If BC = 8.3, CD - 6,7, and AD = 11.6, find AB to the nearest tenth.
Answer:
ab=14.4
Step-by-step explanation:
This is going to be tricky to explain over text, so try to bear with me :) You have the information given above. Let's start with just ad = 11.6 for now. since these are variables, it can also be understood be understood as a times d= 11.6. Knowing this, we can figure out that d = 11.6/a, when you divide both sides by a. You now have d, so plug (11.6/a) into cd=6.7. You have to do the same thing you did last time, except this time you are aiming to get c by itself. So, multiply both sides by a/11.6 and you get c = (6.7a)/ 11.6. Guess what, you know c now! so you put (6.7a)/11.6 in for c in the equation given to you earlier, bc =8.3. The math gets a bit messy here, but you basically solve for b here, which, when you crunch the numbers down, ends up being ~14.3705 divided by a. You are looking for ab, so just multiply both sides by a, and round to the nearest tenth so that you have ab= 14.4
What is the value of x in the triangle?
Answer:b
Step-by-step explanation:
Ive done this